
Hierarchical compression for model-checking CSP
or How to check 1020 dining philosophers for

deadlock

A.W. Roscoe∗†, P.H.B. Gardiner†, M.H. Goldsmith†, J.R. Hulance†,
D.M. Jackson†J.B. Scattergood∗†

1 Introduction

FDR (Failures-Divergence Refinement) [6] is a model-checking tool for CSP [10].
Except for the recent addition of determinism checking [20, 22] (primarily for
checking security properties) its method of verifying specifications is to test for
the refinement of a process representing the specification by the target process.
The presently released version (FDR 1) uses only explicit model-checking tech-
niques: it fully expands the state-space of its processes and visits each state
in turn. Though it is very efficient in doing this and can deal with processes
with approximately 107 states in about 4 hours on a typical workstation, the
exponential growth of state-space with the number of parallel processes in a
network represents a significant limit on its utility. A new version of the tool
(FDR 2) is at an advanced stage of development at the time of writing (Febru-
ary 1995) which will offer various enhancements over FDR 1. In particular, it
has the ability to build up a system gradually, at each stage compressing the
subsystems to find an equivalent process with (hopefully) many less states. By
doing this it can check systems which are sometimes exponentially larger than
FDR 1 can – such as a network of 1020 (or even 101000) dining philosophers.

This is one of the ways (and the only one which is expected to be released
in the immediate future) in which we anticipate adding direct implicit model-
checking capabilities to FDR. By these means we can certainly rival the sizes
of systems analysed by BDD’s (see [2], for example) though, like the latter, our
implicit methods will certainly be sensitive to what example they are applied
to and how skillfully they are used. Hopefully the examples later in this paper
will illustrate this.

The idea of compressing systems as they are constructed is not new, and
indeed it has been used in a much more restricted sense in FDR for several

∗Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford
†Formal Systems (Europe) Ltd,3 Alfred Street, Oxford

1

years (applying bisimulation at the boundary between its low and high-level
processes). The novelty of this paper consists in several of the specific compres-
sions described and in their use in the context of FDR which differs from most
other model-checking tools in (i) being based on CSP and (ii) being a refinement
checker which compares two CSP processes rather than having the specification
written in a different language such as µ-calculus or temporal logic.

The ideas presented in this paper are closely related to those of [8] (whose
interface specifications – restrictions based on contexts – translate very natu-
rally and usefully to the context of CSP), and also of [3] since we will make
considerable use of optimisations resulting from restrictions to the sub-alphabet
of interest (which in the important case of deadlock turns out to be the empty
set). Most of the literature relates to compressions with respect to strong equiv-
alences such as observational equivalence and bisimulation. The most similar
work to our own, because it relates to the weaker, CSP style, equivalences is
that of Valmari, for example [12, 25].

The main ideas behind FDR were introduced in a paper in the Hoare Festschrift
[19] as, indeed, was part of the theory behind this compression.

In this paper we will introduce the main compression techniques used by
FDR2 and give some early indications of their efficiency and usefulness.

2 Two views of CSP

The theory of CSP has classically been based on mathematical models remote
from the language itself. These models have been based on observable be-
haviours of processes such as traces, failures and divergences, rather than at-
tempting to capture a full operational picture of how the process progresses.

On the other hand CSP can be given an operational semantics in terms
of labelled transition systems. This operational semantics can be related to
the mathematical models based on behaviour by defining abstraction functions
that ‘observe’ what behaviours the transition system can produce. Suppose
Φ is the abstraction function to one of these models. An abstract operator
op and the corresponding concrete/operational version op are congruent if, for
all operational processes P, we have Φ(op(P)) = op(Φ(P)). The operational
and denotational semantics of a language are congruent if all constructs in the
language have this property, which implies that the behaviours predicted for
any term by the denotational semantics are always the same as those that can
be observed of its operational semantics. That the standard semantics of CSP
are congruent to a natural operational semantics is shown in, for example, [18].

Given that each of our models represents a process by the set of its possible
behaviours, it is natural to represent refinement as the reduction of these op-
tions: the reverse containment of the set of behaviours. If P refines Q we write
Q � P , sometimes subscripting � to indicate which model the refinement it is
respect to.

2

In this paper we will consider three different models – which are the three
that FDR supports. These are

• The traces model: a process is represented by the set of finite sequences of
communications it can perform. traces(P) is the set of P ’s (finite) traces.

• The stable failures model: a process is represented by its set of traces
as above and also by its stable failures (s, X) pairs where s is a finite
trace of the process and X is a set of events it can refuse after s which
(operationally) means coming into a state where it can do no internal
action and no action from the set X. failures(P) is the set of P ’s stable
failures in this sense. (This model is relatively new; it is introduced in [11].
The concepts behind it will, however, be familiar to anyone well-versed in
CSP. It differs from those of [12] in that it entirely ignores divergence.)

• The failures/divergences model [1]: a process P diverges when it performs
an infinite unbroken sequence of internal actions. The set divergences(P)
is those traces after or during which the process can diverge (this set is al-
ways suffix closed). In this model a process is represented by divergences(P)
and a modified set of failures in which after any divergence the set of fail-
ures is extended so that we do not care how the process behaves

failures⊥(P) = failures(P) ∪ {(s, X) | s ∈ divergences(P)}

This is done both because one can argue that a divergent process looks
from the outside rather like a deadlocked one (i.e., refusing everything) and
because the technical problems of modelling what happens past divergence
are not worth the effort.

We will also only deal with the case where the overall alphabet of possible
actions is finite, since this makes the model a little more straightforward, and
is an obvious prerequisite to model-checking.

All three of these models have the obvious congruence theorem with the
standard operational semantics of CSP. In fact FDR works chiefly in the oper-
ational world: it computes how a process behaves by applying the rules of the
operational semantics to expand it into a transition system. The congruence
theorem are thus vital in supporting all its work: it can only claim to prove
things about the abstractly-defined semantics of a process because we happen
to know that this equals the set of behaviours of the operational process FDR
works with.

The congruence theorems are also fundamental in supporting the hierarchical
compression which is the main topic of this paper. For we know that, if C[·]
is any CSP context, then the value in one of our semantic models of C[P]
depends only on the value (in the same model) of P , not on the precise way it is
implemented. Therefore, if P is represented as a member of a transition system,

3

and we intend to compute the value of C[P] by expanding it as a transition
system also, it may greatly be to our advantage to find another representation
of P with fewer states. If, for example, we are combining processes P and Q in
parallel and each has 1000 states, but can be compressed to 100, the compressed
composition can have no more than 10,000 states while the uncompressed one
may have up to 1,000,000.

3 Generalised Transition Systems

A labelled transition system is usually deemed to be a set of (effectively) struc-
tureless nodes which have visible or τ transitions to other nodes. ¿From the
point of view of compression in the stable failures and failures/divergences
models, it is useful to enrich nodes by a set of minimal acceptance sets and
a divergence labelling. We will therefore assume that there are functions that
map the nodes of a generalised labelled transition system (GLTS) as follows:

• minaccs(P) is a (possibly empty) set of incomparable (under subset) sub-
sets of Σ (the set of all events). X ∈ minaccs(P) if and only if P can
stably accept the set X, refusing all other events, and can similarly ac-
cept no smaller set. Since one of these nodes is representing more than
one ‘state’ the process can get into, it can have more than one minimal
acceptance. It can also have τ actions in addition to minimal acceptances
(with the implicit understanding that the τs are not possible when a min-
imal acceptance is). However if there is no τ action then there must be
at least one minimal acceptance, and in any case all minimal acceptances
are subsets of the visible transitions the state can perform.

minaccs(P) represents the stable acceptances P can make itself. If it has
τ actions then these might bring it into a state where the process can have
other acceptances (and the environment has no way of seeing that the τ
has happened), but since these are not performed by the node P but by a
successor, these minimal acceptances are not included among those of the
node P .

• div(P) is either true or false. If it is true it means that P can diverge –
possibly as the result of an infinite sequence of implicit τ -actions within
P . It is as though P has a τ -action to itself. This allows us to represent
divergence in transition systems from which all explicit τ ’s have been
removed.

A node P in a GLTS can have multiple actions with the same label, just as
in a standard transition system.

A GLTS combines the features of a standard labelled transition system and
those of the normal form transition systems used in FDR 1 to represent spec-
ification processes [19]. These have the two sorts of labelling discussed above,

4

but are (apart from the nondeterminism coded in the labellings) deterministic
in that there are no τ actions and each node has at most one successor under
each a ∈ Σ.

The structures of a GLTS allow us to compress the behaviour of all the nodes
reachable from a single P under τ actions into one node:

• The new node’s visible actions are just the visible transitions (with the
same result state) possible for any Q such that P

τ−→ ∗Q.

• Its minimal acceptances are the smallest sets of visible actions accepted
by any stable Q such that P

τ−→ ∗Q.

• It is labelled divergent if, and only if, there is an infinite τ -path (invariably
containing a loop in a finite graph) from P .

• The new node has no τ actions.

It is this that makes them useful for our purposes. Two things should be pointed
out immediately

1. While the above transformation is valid for all the standard CSP equiva-
lences, it is not for most stronger equivalences such as refusal testing and
observational/bisimulation equivalence. To deal with one of these either
a richer structure of node, or less compression, would be needed.

2. It is no good simply carrying out the above transformation on each node
in a transition system. It will result in a τ -free GLTS, but one which
probably has as many (and more complex) nodes than the old one. Just
because P

τ−→ ∗Q and Q’s behaviour has been included in the compressed
version of P , this does not mean we can avoid including a compressed
version of Q as well: there may well be a visible transition that leads
directly to Q. One of the main strategies discussed below – diamond
elimination – is designed to analyse which of these Q’s can, in fact, be
avoided.

FDR2 is designed to be highly flexible about what sort of transition systems it
can work on. We will assume, however, that it is always working with GLTS
ones which essentially generalise them all. The operational semantics of CSP
have to be extended to deal with the labellings on nodes: it is straightforward
to construct the rules that allow us to infer the labelling on a combination of
nodes (under some CSP construct) from the labellings on the individual ones.

Our concept of a GLTS has been discussed before in [19], and is similar to
an “acceptance graph” from [4], though the latter is to all intents the same as
the normal form graphs used in FDR1 and discussed in [19, 6].

5

4 Methods of compression

FDR2 uses at least five different methods of taking one GLTS and attempting
to compress it into a smaller one.

1. Strong, node-labelled, bisimulation: the standard notion enriched (as dis-
cussed in [19] and the same as Π-bisimulations in [4]) by the minimal
acceptance and divergence labelling of the nodes. This is computed by
iteration starting from the equivalence induced by equal labelling. This
was used in FDR1 for the final stage of normalising specifications.

2. τ -loop elimination: since a process may choose automatically to follow a
τ -action, it follows that all the processes on a τ -loop (or, more properly,
a strongly connected component under τ -reachability) are equivalent.

3. Diamond elimination: this carries out the node-compression discussed in
the last section systematically, so as to include as few nodes as possible in
the output graph.

4. Normalisation: discussed extensively elsewhere, this can give significant
gains, but it suffers from the disadvantage that by going through pow-
erspace nodes it can be expensive and lead to expansion.

5. Factoring by semantic equivalence: the compositional models of CSP we
are using all represent much weaker congruences than bisimulation. There-
fore if we can afford to compute the semantic equivalence relation over
states it will give better compression than bisimulation to factor by this
equivalence relation.

There is no need here to describe either bisimulation, normalisation, or the
algorithms used to compute them. Efficient ways of computing the strongly con-
nected components of a directed graph (for τ -loop elimination) can be found in
many textbooks on algorithm design (e.g., [16]). Therefore we shall concentrate
on the other two methods discussed above, and appropriate ways of combining
the five.

Before doing this we will show how to factor a GLTS by an equivalence
relation on its nodes (something needed both for τ -loop elimination and for
factoring by a semantic equivalence). If T = (T, →, r) is a GLTS (r being its
root) and ∼= is an equivalence relation over it, then the nodes of T /∼= are the
equivalence classes n for n ∈ T , with root r. The actions are as follows:

• If a �= τ , then m
a−→n if and only if there are m′ ∈ m and n′ ∈ n such that

m′ a−→n′.

• If m �= n, then m
τ−→n if and only if there are m′ ∈ m and n′ ∈ n such

that m′ τ−→n′.

6

• If m = n, then m �τ−→n but (if we are concerned about divergence) the new
node is marked divergent if and only if there is an infinite τ -path amongst
the members of m, or one of the m′ ∈ m is already marked divergent.

The minimal acceptance marking of m is just the union of those of its members,
with non-minimal sets removed.

4.1 Computing semantic equivalence

Two nodes that are identified by strong node-labelled bisimulation are always
semantically equivalent in each of our models. The models do, however, repre-
sent much weaker equivalences and there may well be advantages in factoring
the transition system by the appropriate one. The only disadvantage is that
the computation of these weaker equivalences is more expensive: it requires an
expensive form of normalisation, so

• there may be systems where it is impractical, or too expensive, to compute
semantic equivalence, and

• when computing semantic equivalence, it will probably be to our advan-
tage to reduce the number of states using other compression techniques
first – see a later section.

To compute the semantic equivalence relation we require the entire normal
form of the input GLTS T . This is the normal form that includes a node
equivalent to each node of the original system, with a function from the original
system which exhibits this equivalence (the map need neither be injective –
because it will identify nodes with the same semantic value – nor surjective –
because the normal form sometimes contains nodes that are not equivalent to
any single node of the original transition system).

Calculating the entire normal form is more time-consuming that ordinary
normalisation. The latter begins its normalisation search with a single set (the
τ -closure τ∗(r) of T ’s root),but for the entire normal form it has to be seeded
with {τ∗(n) | n ∈ T} – usually∗ as many sets as there are nodes in T . As
with ordinary normalisation, there are two phases: the first (pre-normalisation)
computing the subsets of T that are reachable under any trace (of visible actions)
from any of the seed nodes, with a unique-branching transition structure over it.
Because of this unique branching structure, the second phase, which is simply a
strong node-labelled bisimulation over it, guarantees to compute a normal form
where all the nodes have distinct semantic values. We distinguish between the
three semantic models as follows:

• For the traces model, neither minimal acceptance nor divergence labelling
is used for the bisimulation.

∗If and only if there are no τ -loops.

7

• For the stable failures model, only minimal acceptance labelling is used.

• For the failures/divergences model, both sorts of labelling are used and in
the pre-normalisation phase there is no need to search beyond a divergent
node.

The map from T to the normal form is then just the composition of that which
takes n to the pre-normal form node τ∗(n) and the final bisimulation.

The equivalence relation is then simply that induced by the map: two nodes
are equivalent if and only if they are mapped to the same node in the normal
form. The compressed transition system is that produced by factoring out this
equivalence using the rules discussed earlier. To prove that the compressed
form is equivalent to the original (in the sense that, in the chosen model, every
node m is equivalent to m in the new one) one can use the following lemma and
induction, based on the fact that each equivalence class of nodes under semantic
equivalence is trivially τ -convex as required by the lemma.
lemma 1
Suppose T be any GLTS and let M be any set of nodes in T with the following
two properties

• All members of M are equivalent in one of our three models C.

• M is convex under τ (i.e., if m, m′ ∈ M and m′′ are such that m
τ−→ ∗m′′ τ−→ ∗m′

then m′′ ∈ M .

Then let T ′ be the GLTS T /≡, where ≡ is the equivalence relation which
identifies all members of M but no other distinct nodes in T . m is semantically
equivalent in the chosen model to m (the corresponding node in T ′).
proof
It is elementary to show that each behaviour (trace or failure or divergence) is
one of m (this does not depend on the nature of ≡).

Any behaviour of a node m of T ′ corresponds to a sequence σ of actions

m = m0
x1−→ m1

x2−→ m2 . . .

either going on for ever (with all but finitely many xi τ ’s), or terminating and
perhaps depending on either a minimal acceptance or divergence marking in the
final state. Without loss of generality we can assume that the mr are chosen so
that there is, for each r, m′

r+1 such that mr
xr−→ m′

r+1 and that (if appropriate)
the final mr possesses the divergence or minimal acceptance which the sequence
demonstrates. Set m′

0 = m, the node which we wish to demonstrate has the
same behaviour exemplified by σ.

For any relevant s, define σ ↑ s to be the final part of σ starting at ms:

ms
xs+1−→ ms+1

xs+2−→ ms+2 . . .

8

If M , the only non-trivial equivalence class appears more than once in the
final (τ -only) segment of an infinite demonstration of a divergence, then all
intermediate classes must be the same (by the τ -convexity of M). But this
is impossible since an equivalence class never has a τ action to itself (by the
construction of T / ≡).

Hence, σ can only use this non-trivial class finitely often. If it appears no
times then the behaviour we have in T ′ is trivially one in T . Otherwise it must
appear some last time in σ, as mr, say. What we will prove, by induction for s
from r down to 0, is that the node m′

s (and hence m = m′
0) possesses the same

behaviour demonstrated by the sequence σ ↑ s in T ′.
If the special node M in T ′ becomes marked by a divergence or minimal

acceptance (where relevant to C) through the factoring then it is trivial that
some member of the equivalence class has that behaviour and hence (in the
relevant models) all the members of M do (though perhaps after some τ actions)
since they are equivalent in C. It follows that if mr is the final state in σ, then
our inductive claim holds.

Suppose s ≤ r is not final in σ and that the inductive claim has been
established for all i with s < i ≤ r. Then the node ms is easily seen to possess
in T the behaviour of σ ↑ s. If the equivalence class of ms is not M then
ms = m′

s and there is nothing else to prove. If it is M then since ms and m′
s

are equivalent in C and m′
s has the behaviour, it follows that m′

s does also. This
completes the proof of the lemma.

4.2 Diamond elimination

This procedure assumes that the relation of τ -reachability is a partial order
on nodes. If the input transition system is known to be divergence free then
this is true, otherwise τ -loop elimination is required first (since this procedure
guarantees to achieve the desired state).

Under this assumption, diamond reduction can be described as follows,
where the input state-machine is S (in which nodes can be marked with infor-
mation such as minimal acceptances), and we are creating a new state-machine
T from all nodes explored in the search:

• Begin a search through the nodes of S starting from its root N0. At any
time there will be a set of unexplored nodes of S; the search is complete
when this is empty.

• To explore node N , collect the following information:

– The set τ∗(N) of all nodes reachable from N under a (possibly empty)
sequence of τ actions.

– Where relevant (based on the equivalence being used), divergence
and minimal acceptance information for N : it is divergent if any
member of τ∗(N) is either marked as divergent or has a τ to itself.

9

The minimal acceptances are the union of those of the members of
τ∗(N), with non-minimal sets removed. This information is used to
mark N in T .

– The set V (N) of initial visible actions: the union of the set of all
non-τ actions possible for any member of τ∗(N).

– For each a ∈ V (N), the set Na = N after a of all nodes reachable
under a from any member of τ∗(N).

– For each a ∈ V (N), the set min(Na) which is the set of all τ -minimal
elements of Na.

• A transition (labelled a) is added to T from N to each N ′ in min(Na), for
all a ∈ V (N). Any nodes not already explored are added to the search.

This creates a transition system where there are no τ -actions but where
there can be ambiguous branching under visible actions, and where nodes might
be labelled as divergent. The reason why this compresses is that we do not
include in the search nodes where there is another node similarly reachable but
demonstrably at least as nondeterministic: for if M ∈ τ∗(N) then N is always
at least as nondeterministic as M . The hope is that the completed search will
tend to include only those nodes that are τ -minimal: not reachable under τ from
any other. Notice that the behaviours of the nodes not included from Na are
nevertheless taken account of, since their divergences and minimal acceptances
are included when some node of min(Na) is explored.

It seems counter-intuitive that we should work hard not to unwind τ ’s rather
than doing so eagerly. The reason why we cannot simply unwind τ ’s as far as
possible (i.e., collecting the τ -maximal points reachable under a given action)
is that there will probably be visible actions possible from the unstable nodes
we are trying to bypass. It is impossible to guarantee that these actions can be
ignored.

The reason we have called this compression diamond elimination is because
what it does is to (attempt to) remove nodes based on the diamond-shaped tran-
sition arrangement where we have four nodes P, P ′, Q, Q′ and P

τ−→P ′, Q
τ−→Q′,

P
a−→Q and P ′ a−→Q′. Starting ¿from P , diamond elimination will seek to re-

move the nodes P ′ and Q′. The only way in which this might fail is if some
further node in the search forces one or both to be considered.

The lemma that shows why diamond reduction works is the following.
lemma 2
Suppose N is any node in S, s ∈ Σ∗ and N0

s=⇒ N (i.e., there is a sequence of
nodes M0 = N0, M1, ..., Mk = N and actions x1, ..., xk such that Mi

xi−→ Mm+1
for all i and s = 〈xi | i = 1, .., n, xi �= τ 〉). Then there is a node N ′ in T such
that N0

s=⇒ N ′ in T and N ∈ τ∗(N ′).
proof
This is by induction on the length if s. If s is empty the result is obvious (as

10

N0 ∈ T always), so assume it holds of s′ and s = s′〈a〉, with N0
s=⇒ N . Then

by definition of s=⇒, there exist nodes N1 and N2 of S such that N0
s′

=⇒ N1,
N1

a−→ N2 and N ∈ τ∗(N2).

By induction there thus exists N ′
1 in T such that N0

s′
=⇒ N ′

1 in T and
N1 ∈ τ∗(N ′

1). Since N ′
1 ∈ T it has been explored in constructing T . Clearly

a ∈ V (N ′
1) and N2 ∈ (N ′

1)a. Therefore there exists a member N ′ of min((N ′
1)a)

(a subset of the nodes of T) such that N2 ∈ τ∗(N ′). Then, by construction
of T and since N ∈ τ∗(N2) we have N0

s=⇒ N ′ and N ∈ τ∗(N ′) as required,
completing the induction.

This lemma shows that every behaviour displayed by a node of S is (thanks
to the way we mark each node of T with the minimal acceptances and divergence
of its τ -closure) displayed by a node of T .

Lemma 2 shows that the following two types of node are certain to be in-
cluded in T :

• The initial node N0.

• S0, the set of all τ -minimal nodes (ones not reachable under τ from any
other).

Let us call S0 ∪ {N0} the core of S. The obvious criteria for judging whether
to try diamond reduction at all, and of how successful it has been once tried,
will be based on the core. For since the only nodes we can hope to get rid
of are the complement of the core, we might decide not to bother if there are
not enough of these as a proportion of the whole. And after carrying out the
reduction, we can give a success rating in terms of the percentage of non-core
nodes eliminated.

Experimentation over a wide range of example CSP processes has demon-
strated that diamond elimination is a highly effective compression technique,
with success ratings usually at or close to 100% on most natural systems. To
illustrate how diamond elimination works, consider one of the most hackneyed
CSP networks: N one-place buffer processes chained together.

COPY COPY . . .COPY COPY

Here, COPY = left?x −→ right !x −→ COPY . If the underlying type has k
members then COPY has k + 1 states and the network has (k + 1)N . Since
all of the internal communications (the movement of data from one COPY to
the next) become τ actions, this is an excellent target for diamond elimination.
And in fact we get 100% success: the only nodes retained are those that are not
τ -reachable from any other. These are the ones in which all of the data is as
far to the left as it can be: there are no empty COPY ’s to the left of a full one.
If k = 1 this means there are now N + 1 nodes rather than 2N , and if k = 2 it
gives 2N+1 − 1 rather than 3N .

11

4.3 Combining techniques

The objective of compression is to reduce the number of states in the target
system as much as possible, with the secondary objectives of keeping the number
of transitions and the complexity of any minimal acceptance marking as low as
possible.

There are essentially two possibilities for the best compression of a given
system: either its normal form or the result of applying some combination of
the other techniques. For whatever equivalence-preserving transformation is
performed on a transition system, the normal form (from its root node) must
be invariant; and all of the other techniques leave any normal form system un-
changed. In many cases (such as the chain of COPY s above) the two will be the
same size (for the diamond elimination immediately finds a system equivalent
to the normal form, as does equivalence factoring), but there are certainly cases
where each is better.

The relative speeds (and memory use) of the various techniques vary substan-
tially from example to example, but broadly speaking the relative efficiencies are
(in decreasing order) τ -loop elimination (except in rare complex cases), bisimu-
lation, diamond elimination, normalisation and equivalence factoring. The last
two can, of course, be done together since the entire normal form contains the
usual normal form within it. Diamond elimination is an extremely useful strat-
egy to carry out before either sort of normalisation, both because it reduces
the size of the system on which the normal form is computed (and the num-
ber of seed nodes for the entire normal form) and because it eliminates the
need for searching through chains of τ actions which forms a large part of the
normalisation process.

One should note that all our compression techniques guarantee to do no
worse than leave the number of states unchanged, with the exception of normali-
sation which in the worst case can expand the number of states exponentially[19,
13]. Cases of expanding normal forms are very rare in practical systems. Only
very recently, after nearly four years, have we encountered a class of practically
important processes whose normalisation behaviour is pathological. These are
the “spy” processes used to seek errors in security protocols [21].

At the time of writing all of the compression techniques discussed have been
implemented and many experiments performed using them. Ultimately we ex-
pect that FDR2’s compression processing will be automated according to a
strategy based on a combination of these techniques, with the additional possi-
bility of user intervention.

5 Compression in context

FDR2 will take a complex CSP description and build it up in stages, compressing
the resulting process each time. Ultimately we expect these decisions to be at

12

least partly automated, but in early versions the compression directives will be
included in the syntax of the target process.

One of the most interesting and challenging things when incorporating these
ideas is preserving the debugging functionality of the system. The debug-
ging process becomes hierarchical: at the top level we will find erroneous be-
haviours of compressed parts of the system; we will then have to debug the
pre-compressed forms for the appropriate behaviour, and so on down. On very
large systems (such as that discussed in the next section) it will not be practical
to complete this process for all parts of the system. Therefore we expect the
debugging facility initially to work out subsystem behaviours down as far as the
highest level compressed processes, and only to investigate more deeply when
directed by the user (through the X Windows debugging facility of FDR).

The way a system is composed together can have an enormous influence on
the effectiveness of hierarchical compression. The following principles should
generally be followed:

1. Put together processes which communicate with each other together early.
For example, in the dining philosophers, you should build up the system
out of consecutive fork/philosopher pairs rather than putting the philoso-
phers all together, the forks all together and then putting these two pro-
cesses together at the highest level.

2. Hide all events at as low a level as is possible. The laws of CSP allow the
movement of hiding inside and outside a parallel operator as long as its
synchronisations are not interfered with. In general therefore, any event
that is to be hidden should be hidden the first time (in building up the
process) that it no longer has to be synchronised at a higher level. The
reason for this is that the compression techniques all tend to work much
more effectively on systems with many τ actions.

3. Hide all events that are irrelevant (in the sense discussed below) to the
specification you are trying to prove.

Hiding can introduce divergence, and thereby invalidate many failures/divergences
model specifications. However in the traces model it does not alter the sequence
of unhidden events, and in the stable failures model does not alter refusals which
contain every hidden event. Therefore if only trying to prove a property in one
of these models – or if it has already been established by whatever method that
one’s substantive system is divergence free – the improved compression we get
by hiding extra events makes it worthwhile doing so.

We will give two examples of this, one based on the COPY chain example
we saw above and one on the dining philosophers. The first is probably typical
of the gains we can make with compression and hiding; the second is atypically
good.

13

5.1 Hiding and safety properties

If the underlying datatype T of the COPY processes is large, then chaining
N of them together will lead to unmanageably large state-spaces whatever sort
of compression is applied to the entire system. For it really does have a lot
of distinct states: one for each possible contents the resulting N -place buffer
might have. Of course there are analytic techniques that can be applied to
this simple example that pin down its behaviour, but we will ignore these and
illustrate a general technique that can be used to prove simple safety properties
of complex networks. Suppose x is one member of the type T ; an obviously
desirable (and true) property of the COPY chain is that the number of x’s
input on channel left is always greater than or equal to the number output on
right , but no greater than the latter plus N . Since the truth or falsity of this
property is unaffected by the system’s communications in the rest of its alphabet
{left .y, right .y | y ∈ Σ \ {x}} we can hide this set and build the network up a
process at a time from left to right. At the intermediate stages you have to
leave the right-hand communications unhidden (because these still have to be
synchronised with processes yet to be built in) but nevertheless, in the traces
model, the state space of the intermediate stages grows more slowly with n
than without the hiding. In fact, with n COPY processes the hidden version
compresses to exactly 2n states whatever the size of T (assuming that this is at
least 2).

This is a substantial reduction, but is perhaps not as good as one might
ideally hope for. By hiding all inputs other than the chosen one, we are ignoring
what the contents of the systems are apart from x, but because we are still going
to compose the process with one which will take all of our outputs, these have to
remain visible, and the number of states mainly reflects the number of different
ways the outputs of objects other than x can be affected by the order of inputting
and outputting x. The point is that we do not know (in the method) that the
outputs other than x are ultimately going to be irrelevant to the specification,
for we are not making any assumptions about the process we will be connected
to.

Since the size of system we can compress is always likely to be one or two
orders of magnitude smaller than the number of explicit states in the final
refinement check, it would actually be advantageous to build this system not in
one direction as indicated above, but from both ends and finally compose the two
halves together. (The partially-composed system of n right-hand processes also
has 2N states.) Nothing useful would (in this example) be achieved by building
up further pieces in the middle, since we only get the simplifying benefit of the
hiding from the two ends of the system.

If the (albeit slower) exponential growth of states even after hiding and
compressing the actual system is unacceptable, there is one further option: find
a network with either less states, or better compression behaviour, that the
actual one refines, but which can still be shown to satisfy the specification. In

14

the example above this is easy: simply replace COPY with

Cx = (µp.left .x −→ right .x −→ p) ||| CHAOS (Σ \ {left .x, right .x})

the process which acts like a reliable one-place buffer for the value x, but can
input and output as it chooses one other members of T . It is easy to show
that COPY refines this, and a chain of n Cx’s compresses to n + 1 states (even
without hiding irrelevant external communications).

In a sense the Cx processes capture the essential reason why the chain of
COPY ’s satisfy the x-counting specification. By being clever we have man-
aged to automate the proof for much larger networks than following the ‘dumb’
approach, but of course it is not ideal that we have had to be clever in this way.

The methods discussed in this section could be used to prove properties
about the reliability of communications between a given pair of nodes in a com-
plex environment, and similar cases where the full complexity of the operation
of a system is irrelevant to why a particular property is true.

5.2 Hiding and deadlock

In the stable failures model, a system can deadlock if and only if P \ Σ can. In
other words, we can hide absolutely all events – and move this hiding as far into
the process as possible using the principles already discussed.

Consider the case of the N dining philosophers (in a version, for simplicity,
without a Butler process). A natural way of building this system up hierarchi-
cally is as progressively longer chains of the form

PHIL0‖FORK0‖PHIL1‖ . . . ‖FORKm−1‖PHILm

In analysing the whole system for deadlock, we can hide all those events of
a subsystem that do not synchronise with any process outside the subsystem.
Thus in this case we can hide all events other than the interactions between
PHIL0 and FORKN−1, and between PHILm and FORKm. The failures
normal form of the subsystem will have very few states (exactly 4). Thus we
can compute the failures normal form of the whole hidden system, adding a small
fixed number of philosopher/fork combinations at a time, in time proportional
to N , even though an explicit model-checker would find exponentially many
states.

We can, in fact, do even better than this. Imagine doing the following:

• First, build a single philosopher/fork combination hiding all events not in
its external interface, and compress it. This will (with standard defini-
tions) have 4 states.

• Next, put 10 copies of this process together in parallel, after suitable
renaming to make them into consecutive pairs in a chain of philosophers
and forks (the result will have approximately 4000 states) and compress
it to its 4 states.

15

• Now rename this process in 10 different ways so that it looks like 10
adjacent groups of philosophers, compute the results and compress it.

• And repeat this process as often as you like...clearly it will take time linear
in the number of times you do it.

By this method we can produce a model of 10N philosophers and forks in a row
in time proportional to N . To make them into a ring, all you would have to do
would be to add another row of one or more philosophers and forks in parallel,
synchronising the two at both ends. Depending on how it was built (such
as whether all the philosophers are allowed to act with a single handedness)
you would either find deadlock or prove it absent from a system with doubly
exponential number of states.

On the prototype version of FDR2, we have been able to use this technique to
demonstrate the deadlock of 101000 philosophers in 15 minutes, and then to use
the debugging tool described earlier to tell you the state of any individual one
of them (though the depth of the parse tree even of the efficiently constructed
system makes this tedious). Viewed through the eyes of explicit model-checking,
this system has perhaps 7101000

states. Clearly this simply demonstrates the
pointlessness of pure state-counting.

This example is, of course, extraordinarily well-suited to our methods. What
makes it work are firstly the fact that the networks we build up have a constant-
sized external interface (which could only happen in networks that were, like this
one, chains or nearly so) and have a behaviour that compresses to a bounded
size as the network grows.

On the whole we do not have to prove deadlock freedom of quite such ab-
surdly large systems. We expect that our methods will also bring great improve-
ments to the deadlock checking of more usual size ones that are not necessarily
as perfectly suited to them as the example above.

6 Related Work

A wide range of automated systems have been proposed for the analysis of state-
transition systems [5, 7, 14, 17] and it is instructive to examine where FDR, as
an industrial product, falls in the range of possibilities identified by academic
research. The more flexible tools, like the Concurrency Workbench of [5], per-
mit a wide range of semantic operations to be carried out in those formalisms
which exhibit less consensus about the central semantic models. Choosing an
alternative approach, systems constructed to decide specific questions about
suitably constructed finite-state representations can achieve much greater per-
formance [9, 23].

In designing FDR we make a compromise between these extremes: the CSP
language provides a flexible and powerful basis for describing problems, yet by
concentrating on the standard CSP semantics we are able to achieve acceptable

16

performance levels. Milner’s scheduling problem (used as a benchmark in [5])
can be reduced to CSP normal form in around 3s for seven clients and around
45s for ten. (The admittedly somewhat outdated figure for bisimulation mini-
mization using the Concurrency Workbench is 2000s for seven clients, and the
ten client problem was too large to be considered.) Furthermore, the flexibility
of CSP as a specification language removes much of the need for special-case al-
gorithms to detect deadlock or termination (such as those proposed as additions
to Winston in [15]).

Perhaps the most comparable approach is that taken by the SMV sys-
tem [14], which decides whether CTL logical specifications are satisfied by sys-
tems expressed as state-variable assignments. The BDD representation used by
SMV can encode very large problems efficiently, although as with any implicit
scheme its effectiveness can vary with the manner in which a system is described:
in this regard we hope that identifying candidate components for compression
or abstraction may prove easier in practice than arranging that state variables
respect a regular logical form. Unlike SMV, a key feature of FDR is its use of a
process algebra for both specification and design, encouraging step-wise refine-
ment and the combination of automatic verification with conventional proof.
The underlying semantic model, and the extrinsic nature of FDR2 compres-
sion can, of course, be applied to any notation or representation which can be
interpreted within the FDR framework. FDR2 is designed to facilitate such
extension.

7 Conclusions

We have given details of how FDR2’s compression works, and some simple
examples of how it can expand the size of problem we can automatically check.
At the time of writing we have not had time to carry out many evaluations
of this new functionality on realistic-sized examples, but we have no reason to
doubt that compression will allow comparable improvements in these.

It is problematic that the successful use of compression apparently takes
somewhat more skill than explicit model-checking. Only by studying its use in
large-scale case studies can we expect to assess the best ways to deal with this
– by automated tactics and transformation, or by design-rule guidance to the
user. In any case much work will be required before we can claim to understand
fully the capabilities and power of the extended tool.

Acknowledgements

As well as our owing him a tremendous debt for his development of CSP, on
which all this work is based, it was a remark by Tony Hoare that led the first
author to realise how our methods could check the exponential systems of dining

17

philosophers described in this paper.
We would like to thank the referees for some helpful remarks, in particular

for pointing out the need for Lemma 1.
The work of Roscoe and Scattergood was supported in part by a grant from

the US Office of Naval Research.

References

[1] S.D. Brookes and A.W. Roscoe, An improved failures model for communi-
cating processes, in Proceedings of the Pittsburgh seminar on concurrency,
Springer LNCS 197 (1985), 281-305.

[2] J.R. Burch, E.M. Clarke, D.L. Dill and L.J. Hwang, Symbolic model check-
ing: 1020 states and beyond, Proc. 5th IEEE Annual Symposium on Logic
in Computer Science, IEEE Press (1990).

[3] E.M. Clarke, D.E. Long and K.L.MacMillan, Compositional Model Checker,
Proceedings of LICS 1989.

[4] R. Cleaveland and M.C.B. Hennessy, Testing Equivalence as a Bisimulation
Equivalence, FAC 5 (1993) pp1–20.

[5] R. Cleaveland, J. Parrow and B. Steffen, The Concurrency Workbench: A
semantics-based verification tool for finite state systems, ACM TOPLAS
Vol.15, N.1, 1993, pp.36-72.

[6] Formal Systems (Europe) Ltd., Failures Divergence Refinement User Man-
ual and Tutorial, version 1.4 1994.

[7] J.-C. Fernandez An implementation of an efficient algorithm for bisim-
ulation equivalence., Science of Computer Programming 13: 219–236,
1989/1990.

[8] S.Graf and B. Steffen, Compositional Minimisation of Finite-State Systems,
Proceedings of CAV1990 (LNCS 531).

[9] J.F. Groote and F. Vaandrager, An efficient algorithm for branching bisim-
ulation and stuttering equivalence, Proc. 17th ICALP, Springer-Verlag
LNCS 443, 1990.

[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[11] L. Jategoankar, A Meyer and A.W. Roscoe, Separating failures from diver-
gence, in preparation.

[12] R. Kaivola and A Valmari The weakest compositional semantic equivalence
preserving nexttime-less linear temporal logic in Proc CONCUR ’92 (LNCS
630).

18

[13] P.C. Kanellakis and S.A. Smolka, CCS expressions, Finite state processes
and three problems of equivalence, Information and Computation 86, 43-68
(1990).

[14] K.L. McMillan, Symbolic Model Checking, Kluwer, 1993.

[15] Malhotra, J., Smolka, S.A., Giacalone, A. and Shapiro, R., Winston: A
Tool for Hierarchical Design and Simulation of Concurrent Systems., In
Proceedings of the Workshop on Specification and Verification of Concur-
rent Systems, University of Stirling, Scotland, 1988.

[16] K. Melhorn Graph Algorithms and NP Completeness, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag 1984.

[17] J. Richier, C. Rodriguez, J. Sifakis and J. Voiron, Verification in XESAR of
the Sliding Window Protocol, Proc. of the 7th IFIP Symposium on Protocol
Specification, Testing, and Verification, North-Holland, Amsterdam, 1987.

[18] A.W. Roscoe, Unbounded Nondeterminism in CSP, in ‘Two Papers on
CSP’, PRG Monograph PRG-67. Also Journal of Logic and Computation
3, 2 pp131-172 (1993).

[19] A.W. Roscoe, Model-checking CSP, in A Classical Mind: Essays in Honour
of C.A.R. Hoare, A.W. Roscoe (ed.) Prentice-Hall 1994.

[20] A.W. Roscoe, CSP and determinism in security modelling to ap pear in
the proceedings of 1995 IEEE Symposium on Security and Privacy.

[21] A.W. Roscoe, Modelling and verifying key-exchange protocols using CSP
and FDR, to appear in the proceedings of CSFW8 (1995), IEEE Press.

[22] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference t hrough
determinism, Proc. ESORICS 94, Springer LNCS 875, pp 33-53.

[23] V. Roy and R. de Simone, Auto/Autograph, In Proc. Computer-Aided Ver-
ification ’90, American Mathematical Society, Providence, 1991.

[24] J.B. Scattergood, A basis for CSP tools, To appear as Oxford University
Computing Laboratory technical monograph, 1993.

[25] A. Valmari and M. Tienari An improved failures equivalence for finite-state
systems with a reduction algorithm, in Protocol Specification, Testing and
Verification XI, North-Holland 1991.

19

