
The Perfect ``Spy'' for Model-Checking
Cryptoprotocols

• A.W. Roscoe(1,2)
• M.H. Goldsmith(2)

(1) Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD
UK
(2) Formal Systems (Europe) Ltd
3 Alfred Street
Oxford OX4 1EH
UK

Email: Bill.Roscoe@comlab.ox.ac.uk, Michael.Goldsmith@fsel.com

Abstract
This paper describes the modeling of a fully potent attacker against cryptoprotocols, including
its inference system, in the process algebra CSP. Techniques for keeping the state space
within practical bounds for the model checker FDR2 are explained.

Introduction
Over the past four years, we have been engaged in research and development into
specification and model-checking techniques for cryptoprotocols. These techniques have
discovered flaws in a number of published key-exchange and authentication protocols, as well
as more academic studies establishing the necessity of certain message components in more
robust ones. Protocol descriptions are interpreted in Hoare's language of Communicating
Sequential Processes (CSP), as are specifications such as confidentiality. The model checking
exploits (and has in turn inspired) new features of Formal Systems' second generation tool,
FDR2.

Not only does this methodology give a elegant and convenient approach, as it generally
requires no prior knowledge of potential flaws in the protocol; but it is also able to reason
about issues such as liveness (non-denial of service) which are not even expressible in other
formalisms. The range of protocol mechanisms which have been addressed shows that there
are few, if any, fundamental limitations to the applicability of these techniques; and progress
is continually being made in solving the problems of scale involved in extending the work to
more complex examples.

Modeling Issues
One of the perennial problems with model-checking approaches, especially those using
primarily explicit state-exploration algorithms, is state-space growth. Earlier work sought to
keep this within bounds by limiting the attacker's ``memory'' to only a few data items, but
even very tight limits typically left this as a limiting factor on the complexity of problem
which could practically be addressed. Simple experiments verified the intuition that
significant performance benefits could be gained by exploring only those possible behaviors
of an intruder which are reachable given the specific history of values observed in a sequence
of protocol runs, rather than compiling the whole of the intruder's possible behavior. Indeed,
exploiting such a ``lazy spy'' implemented as an extension to the FDR2 system allowed (and
positively benefited from) relaxing the limitations on the spy's memory.

The spy comprises two major functions: information gathering, by overhearing or
destructively capturing messages; and disinformation, faking messages from data in its
possession, subject only to not being able to manipulate encrypted or otherwise protected
message components without access to the appropriate keys. These are connected by an
information repository, storing data items which have been learnt directly, or are deducible by
analysis or synthesis. It is this component which makes the demand on state-space.

An intellectually attractive decomposition would provide a two-state process for each possible
``fact'', essentially representing the boolean value whether it is available to the spy or not,
with some mechanism superposed to implement the inferences. Our initial intuition was that
this was perhaps beyond the point of sensible decomposition, but it has turned out to be the
case that in most of the classes of example we are considering, it is not only practical but
highly desirable to decompose the system in this manner.

First, we can observe that there is no advantage to keeping track of all possible data items.
Messages and their larger subcomponents which are constructed from simpler pieces of
information essentially by catenation are known if and only if all the subcomponents are. This
purely structural deduction can be encoded by making the communication of the compound
message equivalent to the communication of all its atomic components (that is, plain text
atoms and all encrypted subcomponents). This generally reduces the number of facts which
must be tracked to be the sum, rather than the product, of the size of the atomic types
involved. This makes practical the construction in the rest of this section.

Given a set "MESSAGES" of possibly interesting messages (essentially, those with the form
of messages that are sent in the protocol, but not necessarily respecting any internal or
external invariants) and a function "components" mapping the elements of this set to their
immediately accessible subcomponents, we can form the converse function, yielding all
messages involving a fact "f":

 messages(f) = { m | m <- MESSAGES, member(f,components(m)) }

Similarly, given a set "DEDUCTIONS" of (antecedents,conclusion) pairs that axiomatize the
inference system, we can identify those yielding or requiring a given fact:

 inferences(f) = { (a,c) | (a,c) <- DEDUCTIONS, f == c }
 implications(f) = { (a,c) | (a,c) <- DEDUCTIONS, member(f,a) }

Essentially, the intruder's knowledge within a given domain (of, say, "N" facts) is represented
by "N" two-state processes each of which represents a given fact which is known or unknown.
Transitions from unknown to known are possible by one of two events for each fact "f". One
possibility is that the fact is a component in ``clear'' of a message which can be overheard; the
other that it is the consequent of an inference from other facts known to the spy:

 IGNORANT(f) =
 hear?_:messages(f) -> KNOWS(f)
 []
 infer?_:inferences(f) -> KNOWS(f)

Once a fact "f" is known, the process will permit further events representing any inferences
which use "f" as an antecedent, as well as being able to allow messages containing "f" to be
synthesized. In addition, if "f" has been said to be a secret, its disclosure can be signaled:

 KNOWS(f) =
 hear?_:messages(f) -> KNOWS(f)
 []
 infer?_:implications(f) -> KNOWS(f)
 []
 say?_:messages(f) -> KNOWS(f)
 []
 member(f,SECRETS) & leak.f -> KNOWS(f)

The activity of an intruder performing deductions is thus represented by the occurrence of
these "infer" actions, and no additional process is required. The deductions thus make no
additional contribution to the state space of the attacker. Synchronizing parallel composition
is used to combine these two-state processes in such a way that an inference event can only
occur when all of its antecedents are known and its conclusion is not already known [The
inference events are naturally concealed from the rest of the system; if they could be repeated,
this would lead to the possibility of infinite chatter -- in contrast, the "hear" events must not
be inhibited, as further messages involving "f" can quite legitimately form part of the
protocol. The requirement for non-repetition of "infer" events can be met by blocking those
deductions which involve the conclusion among the antecedents of the axiom.], and that
hearing and saying compound messages involves the participation of all their components:

 SPY =
 (|| f : ATOMIC_FACTS @
 [Union {
 { hear.m, say.m | m <- messages(f) },
 { infer.d | d <- diff(inferences(f),implications(f)) },
 { infer.d | d <- diff(implications(f),inferences(f)) },
 { leak.f | member(f,SECRETS) }
 }
]
 if member(f,SPY_INITIAL_KNOWLEDGE)
 then KNOWS(f)
 else IGNORANT(f)
) \ {|infer|}

Managing the deduction system
Although this structure of intruder model does have significant advantages, it does have a
crucial practical drawback if implemented directly as described. Because of the way the CSP
semantic models treat internal actions, in order to establish the normal refinement properties
of a protocol composed with an intruder it is necessary to consider all possible combinations
of reachable states. For example if two deductions may occur which do not depend on one
another, there are four configurations of the intruder's memory which need to be tested, even
though in our application the exact order of deductions will make no difference to the final
outcome. This combinatorial explosion is clearly undesirable, and is made worse if the
genuine protocol entities can engage in some events without the co-operation of the intruder:
each such event further increases the number of interleaved paths by which the intruder can
complete the deductive process.

In the analysis of cryptoprotocols, however, we may make use of the specific properties of
intruders of the type described above. Since the deduction system is, in semantic fact,
deterministic despite the internal actions, we can use partial-order techniques to optimize the
exploration. Each state of the intruder has a unique final tau successor; our approach to
simplifying the exploration of systems containing an intruder is thus to consider not the
parallel process described in the previous section, but the state machine which results from
replacing any intruder state by its ultimate tau successor, and to eliminate the internal actions
of the intruder from our representation of the process altogether. In effect we evaluate the
effect of internal actions of the intruder before considering the intruder's interaction with the
environment. This eager evaluation of transitions out of a single state does not, of course,
prevent our exploring the actual state space itself in a lazy fashion.

The FDR2 system provides a highly flexible interface for adding transformations on state
machines, and the tau-removal scheme described above has been implemented using this
facility. The resulting transformation is available as an external function "chase" in the FDR2
input language.

Interfacing with the legitimate agents
The legitimate agents of the system are coded so that all of their interactions with one another
are to be carried over a channel "comm":

 channel comm : Agent.Agent.MESSAGES

The first index represents the purported sender of the message, and the second the intended
receiver.

Rather than simply wire the "comm" channel point-to-point between the agents, the parallel
composition of the system needs to allow for the potential actions of the spy. This is mediated
by two additional channels of the same type, "take" and "fake". Renaming is used to present a
choice of external action when an agent engages in a "comm". At the attacker's end, "hear"
events are renamed to give a choice between the "comm" between two agents (modeling
simple overhearing) and the corresponding "take" event (modeling complete capture). [In
both cases, we must take care that a legitimate agent is involved as the sender; otherwise the
spy could learn facts from overhearing itself!] The "say" events could be renamed to "fake"
between any two agents, but in practice, there can be nothing to be gained in faking messages
to himself:

 SYSTEM =
 chase(SPY) [[hear<-comm.l.a, hear<-take.l.a, say<-fake.a.l |
 l<-Legitimate, a<-Agent]]
 [| {| comm, take, fake |} |]
 || id : Legitimate
 [{| comm.id, take.id, comm.a.id, fake.a.id | a <- agent |}]
 AGENT(id) [[comm.id<-comm.id, comm.id<-take.id,
 comm.a.id<-comm.a.id, comm.a.id<-fake.a.id |
 a <- agent]]

The renaming of one event to several means that which happens is at the choice of the
environment, while the process within the renaming has no way of telling which way this has
been resolved. If we now hide the "comm", "take" and "fake" channels, the choice becomes
nondeterministic. All the dastardly cunning possible to the spy is captured by the simple
expedient of exploring the effect of every random sequence of communications available to
him by which he might try to inject a spanner into the works!

Optimizations
The presentation above has aimed at presenting the ideas with as little clutter as possible.
There are a number of simple optimizations which significantly improve the performance,
particularly of compiling the low-level machines. For example, the sets of messages and
deductions associated with each fact can be pre-computed.
The initial knowledge of the spy can also be treated more efficiently: it is logically closed
under deduction (and this can be calculated, if the natural presentation is not), and its effect on
the inference system can also be taken into account before we start. We can strike out initially
known facts from the antecedents of any axiom, and completely discard any whose
conclusion is among them. In this way, rather than initially start some ``fact'' processes in the
"KNOWS" state, we can separate off the initially known space entirely and represent it by a
(one-state) process which takes no part in the inferences.

Example: Deduction System

The datatype of which "MESSAGES" is a finite subset is generally recursive. It contains as
branches agent names, nonces, keys of all sorts, and structured messages -- both simple
catenation, and encryption:

 datatype DATA =
 Alice | Bob | Sam | Xavier | ... |
 Na1 | Na2 | Nb1 | Nb2 | Nx1 | Nx2 | ... |
 Kas | Kbs | Kxs | ... |
 SKa | SKb | SKx | ... |
 PKa | PKb | PKx | ... |
 Sq.Seq(DATA) |
 Symmetric.DATA.Seq(DATA) |
 PublicKey.DATA.Seq(DATA) |
 ...
The particular extent of the type will depend on the protocol in question; Lowe's CAPSER
synthesizes the datatype from the types specified in the input script.

"MESSAGES" is the subset of this type which includes all the bodies of messages of the
forms used in the protocol which are type-correct (have nonces in the right place, use keys as
the key in encryptions, and so on). We can decompose these using the "components" function
discussed above, to give the set "FACTS" (of which the set "ATOMIC_FACTS" over which
we replicated the spy's knowledge cells is a subset).

There are standard axioms concerning encryption which will apply whenever the relevant
type of encryption is part of the protocol. For symmetric encrytion:

 SymmetricDeductions =
 Union (
 {
 { ({Symmetric.k.xs, k}, x) | x <- set(xs) },
 { ({k, x | x <- set(xs)}, Symmetric.k.xs) }
 | Symmetric.k.xs <- FACTS
 })

For public-key encryption, we require the function "dual" which maps each key to its inverse
(public to secret, and vice versa); then we have

 PublicKeyDeductions =
 Union (
 {
 { ({PublicKey.k.xs, dual(k)}, x) | x <- set(xs) },
 { ({k, x | x <- set(xs)}, PublicKey.k.xs) }
 | PublicKey.k.xs <- FACTS
 })

For many systems these will be all the deductions which are necessary to model.

CSP is not an appropriate vehicle either for describing encryption algorithms or for devising
methods of deciphering coded messages. That involves a lot of sophisticated mathematics in
number theory, algebra, etc. It is often the case that a use of encryption fails not because of
vulnerability of the cipher in use, but because of the way it is used, which is the scenario we
have been addressing so far. All too frequently it is possible to defeat protocols using and

supporting encryption even under the assumption that the encryption method used is
unbreakable. In other cases, however, the combination of weaknesses in the precise
encryption method and the shape of messages in the protocol allow additional attacks; if these
weaknesses are made known as axioms in the inference system, then FDR2 can search out the
attacks

Examples of the kind of weakness which it is straightforward to model include schemes such
as block ciphers where (subject to alignment of the data items) knowing the encryption of a
sequence of data items is tantamount to knowing their encryptions under the same key
individually, without needing to know the key! Cipher block chaining exhibits a similar if less
fatal property, in that the encryption of prefixes of a sequence can be inferred from the
encryption of the whole.
Algebraic attacks on low-exponent RSA have been exhibited by Franklin, Reiter and others
[e.g., CRYPTO '95 Rump Session, August 1995]. If this is the form of public-key encryption
used, then we can add deductions to reflect the additional fragility:

 LowRSAdeductions =
 Union (
 {
 { ({PublicKey.k.,PublicKey.k.,a},x)
 | PublicKey.k. <- FACTS,
 member(PublicKey.k.,FACTS) },
 { ({PublicKey.k.,PublicKey.k.,a},x)
 | PublicKey.k. <- FACTS,
 member(PublicKey.k.,FACTS) },
 { ({PublicKey.k.,PublicKey.k.,a,b},x)
 | PublicKey.k. <- FACTS, b <- FACTS, b != a
 member(PublicKey.k.,FACTS) },
 { ({PublicKey.k.,PublicKey.k.,a,b},x)
 | PublicKey.k. <- FACTS, b <- FACTS,
 member(PublicKey.k.,FACTS) },
 { ({PublicKey.k.,PublicKey.k.,a,b},x)
 | PublicKey.k. <- FACTS, b <- FACTS,
 member(PublicKey.k.,FACTS) },
 { ({PublicKey.k.,PublicKey.k.,a,b},x)
 | PublicKey.k. <- FACTS, b <- FACTS, b != a
 member(PublicKey.k.,FACTS) }
 })

These deductions capture the simplest linear cases of the identified weaknesses; further
axioms could be added to deal with multivariate polynomial relationships between the bodies
of messages encrypted with the same key, where this gives rise to feasible attacks.

Algebraic equivalences
As well as the construction/destruction style of inference we have considered so far, there are
sometimes equivalences between terms so that the semantic value that they represent is in fact
identical. Examples include the commutativity and cancellation properties of exclusive-or,
and the commutativity of many forms of public-key encryption.
Not only may these give rise to attacks (signing-after-encryption problems, for example), but
they may be required for the correct operation of the protocol: Diffie-Helman style key
exchange, for example, relies on commutativity between exponentiations and of the function
used to combine the two half-keys.

One way to achieve this would be to code the equivalence as deductions which can take place
even within opaque encrypted terms, and then rely upon the spy to "take" one agent's view of
the value and "fake" the other's. This is somewhat bizarre, and certainly would not extend to
establishing any liveness properties.
A superior approach is to identify which "MESSAGES" are equivalent (by computing the
transitive closure of that kind of deduction system), and then use renaming to identify the
``external'' view of any member of a given equivalence class with a canonical representative.
Where the spy can gain access to additional values by moving outside the normal space of
terms used in the protocol -- as for instance, exploiting

 Xor.Xor.a.b.Xor.b.c = Xor.a.c

when the protocol never xor's Xor's together -- then there are two equally possible solutions.
Either such additional equivalences can be coded in as deductions; or the spy can be given
license to use a suitable larger language, and the renaming will then take care of it once more.

This technique of modeling algebraic equivalences can also be used to weaken the type
system, so that an agent may be fooled into thinking a key is a nonce, for example, and
perhaps be persuaded to decrypt it.

Conclusion

Overall, this approach has a number of significant advantages over previous attempts at such
modeling in FDR:

• Because all possible knowledge (within the admittedly fixed domain) is known, we
place no arbitrary restrictions on the size of a spy's knowledge, strengthening the value
of our positive results (i.e. those where no attack is found).

• Because the intruder no longer discards information, the intruder's state after all
pending deductions have been completed is a direct function of values previously
communicated in the protocol, and so the intruder does not introduce as much
additional state.

• Because the overall behavior of the intruder in now explored in parallel with the
evolution of the protocol rather than in advance, we effectively implement a lazy
exploration strategy, and examine only those intruder states which are reachable by
actual protocol behavior.

• The individual sequential processes are small, and thus well-suited to the FDR
compilers. The parallel composition and synchronization is complex, but it is
efficiently handled by FDR2's supercompilation approach.

These techniques are now incorporated into Gavin Lowe's CASPER system which compiles
high level protocol descriptions into CSP scripts for checking on FDR2. It is possible to
combine the lazy spy techniques naturally with methods for allowing the spy to exploit any
algebraic relationships which may exist between encrypted and similar objects.

Acknowledgments The work described in this paper formed part of a collaborative Strategic
Research Project funded by the UK Defence Research Agency, led by Peter Ryan. The
original ideas have undoubtedly benefited from comments and polish from many members of
the project team, and particularly from Lowe's experiences in incorporating the scheme into
CASPER.

References to (and in some cases downloadable copies of) papers arising from and around this
project can be found at URL: http://www.comlab.ox.ac.uk/oucl/groups/security/

http://www.comlab.ox.ac.uk/oucl/groups/security/

	The Perfect ``Spy'' for Model-Checking Cryptoprotocols
	Abstract
	Introduction
	Modeling Issues
	Managing the deduction system
	Interfacing with the legitimate agents
	Optimizations
	Algebraic equivalences
	Conclusion

