A Graphical Calculus for Quantum Observables

Ross Duncan and Bob Coecke
Oxford University Computing Laboratory

Motivation

- Quantum observables may be incompatible: position/momentum, polarisation, spin ...
- In traditional quantum logic approaches these observables are simply incomparable in the lattice.
- However if one wants to compute with quantum mechanics we need know how these observables relate to each other.

Classical Objects

In a \dagger-category \mathcal{C}, a triple (A, δ, ϵ) is called a classical object if :

- $\delta: A \rightarrow A \otimes A$ and $\epsilon: A \rightarrow I$ for a cocommutative comonoid;
- $\delta^{\dagger}: A \otimes A \rightarrow A$ and $\epsilon^{\dagger}: I \rightarrow A$ for a commutative monoid;
- they jointly satisfy the special frobenius condition.

The canonical example is FDHilb with $A=\mathbb{C}^{2}$,

$$
\delta:|i\rangle \mapsto|i i\rangle
$$

and

$$
\epsilon: \sum|i\rangle \mapsto 1
$$

Classical Objects

Represent the free term model generated by (A, δ, ϵ) as graphs built up from:

Classical Objects

Comonoid laws:

Classical Objects

Special Frobenius laws:

Spider Theorem

Theorem 1. Any diagram constructed from a classical object is uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather uninteresting.

New classical structures from old

Given a classical object (A, δ, ϵ) and a unitary map $f: A \rightarrow B$ we can define a new classical object ($B, \delta^{\prime}, \epsilon^{\prime}$) by:

The Hadamard Map

The Hadamard map $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ enjoys a number of useful properties:

- Self adjointness: $H=H^{\dagger}$; and unitarity: $H H=\mathrm{id}$;

- The Hadamard exchanges the X and Z bases.

Two Classical Objects

Given (Q, δ, ϵ) and ($Q, \delta_{H}, \epsilon_{H}$) we have the following:

- $\sqrt{2}|0\rangle=\epsilon_{H}^{\dagger}$;
- $\delta \epsilon_{H}^{\dagger}=\delta|0\rangle=|00\rangle=\epsilon_{H}^{\dagger} \otimes \epsilon_{H}^{\dagger}$;
- $|+\rangle=\epsilon^{\dagger}$
- $\delta_{H} \epsilon^{\dagger}=\delta_{H}|+\rangle=|++\rangle=\epsilon^{\dagger} \otimes \epsilon^{\dagger}$

A 2nd Classical Structure

Represent the classical structure induced by H as a red dot:

We can immediately derive a law for changing the colour of dots by introducing H boxes. What other laws hold?

Bialgebraic Laws for Non-commuting observables
Cloning Laws:

Bialgebraic Laws for Non-commuting observables Bialgebra Law:

Bialgebraic Laws for Non-commuting observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a scaled bialgebra.

Scaled Bialgebra Laws

!

: ! = !

$$
\ddot{0}=0
$$

A Useful Lemma

A Useful Lemma

A Useful Lemma

A Useful Lemma

A Useful Lemma

A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose antipode is the identity times the dimension of the underlying space.

Representing Quantum Logic Gates

$$
\begin{aligned}
& \wedge Z=\left(\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=
\end{aligned}
$$

Example: $\wedge Z \circ \wedge Z=\mathrm{id}$

Example: $3 \times \wedge X=$ swap

Incorporating Phases

Let $\alpha \in(0,2 \pi)$; consider the maps:

$$
\begin{gathered}
Z_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \alpha}
\end{array}\right)= \\
X_{\alpha}=H Z_{\alpha} H=
\end{gathered}
$$

Incorporating Phases

$$
Z_{\alpha} \circ Z_{\beta}=Z_{\alpha+\beta}
$$

Generalised Spider Law

General unitary U

Proposition 2. If U is a unitary on \mathbb{C}^{2} there exist α, β, γ such that $U=Z_{\alpha} X_{\beta} Z_{\gamma}$.

Here is (part of) a measurement based program to compute this:

General unitary U

$$
=Z_{\alpha} X_{\beta} Z_{\gamma}
$$

How do phases interact?

$$
Z_{\alpha}|0\rangle=|0\rangle \quad Z_{\alpha}|1\rangle=e^{i \alpha}|1\rangle=|1\rangle
$$

How do phases interact?

How do phases interact?

"Negation"

$$
\begin{aligned}
& X_{\pi}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad::\left\{\begin{array}{l}
|0\rangle \mapsto|1\rangle \\
|1\rangle \mapsto|0\rangle
\end{array}\right. \\
& Q \xrightarrow{\delta} Q \otimes Q \\
& X\left|\begin{array}{l}
\downarrow \\
Q \\
{ }_{\delta} \\
\\
\otimes
\end{array}\right| X \otimes X
\end{aligned}
$$

"Negation"

"Negation"

$$
X::|0\rangle+e^{i \alpha}|1\rangle \mapsto e^{i \alpha}|1\rangle+|0\rangle=|0\rangle+e^{-i \alpha}|1\rangle
$$

Representing Controlled Phase

Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum fourier transform is a key stage of factoring.

$$
\left|j_{0} j_{1} \cdots j_{n}\right\rangle \mapsto\left(|0\rangle+e^{2 \pi i \alpha_{0}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i \alpha_{1}}|1\rangle\right) \cdots\left(|0\rangle+e^{2 \pi i \alpha_{n}}|1\rangle\right)
$$

where $\alpha_{k}=0 . j_{k} \cdots j_{n}=\sum_{l=k}^{n} j_{l} / 2^{k}$
For 2 qubits:

$$
\begin{aligned}
& |00\rangle \mapsto(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) \\
& |10\rangle \mapsto\left(|0\rangle+e^{i \pi}|1\rangle\right)(|0\rangle+|1\rangle) \\
& |01\rangle \mapsto\left(|0\rangle+e^{i \pi / 2}|1\rangle\right)\left(|0\rangle+e^{i \pi}|1\rangle\right) \\
& |11\rangle \mapsto\left(|0\rangle+e^{i 3 \pi / 2}|1\rangle\right)\left(|0\rangle+e^{i \pi}|1\rangle\right)
\end{aligned}
$$

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform (T)

Example: Quantum Fourier Transform (π H-

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

Example: Quantum Fourier Transform

which is the correct result!

Conclusions

- Pairs of incompatible observables form a Hopf algebra-like structure.
- This structure captures a fundamental aspect of quantum mechanics.
- The axioms are sufficiently strong to derive the properties of quantum logic gates and prove the correctness of important quantum algorithms.

Questions and Further Work

- What about completeness?
- Are two observables sufficient?
- Can we prove that there is another maximally unbiassed basis for the qubit?
- What about other dimensionalities?
- How special is the choice of the H map?
- Formal properties:
- Confluence? Termination?
- Can this be mechanized?
- Induction principals for reasoning about graphical rewriting?
- We simulated the QFT algorithm: what is the complexity of this simulation? Can complexity be studied in this setting?

