A Graphical Calculus for Quantum Observables

Ross Duncan and Bob Coecke Oxford University Computing Laboratory

9 August 2007

TANCL'07

Motivation

- Quantum observables may be incompatible: position/momentum, polarisation, spin ...
- In traditional quantum logic approaches these observables are simply *incomparable* in the lattice.
- However if one wants to *compute* with quantum mechanics we need know how these observables relate to each other.

In a \dagger -category C, a triple (A, δ, ϵ) is called a *classical object* if :

- $\delta: A \to A \otimes A$ and $\epsilon: A \to I$ for a cocommutative comonoid;
- $\delta^{\dagger}: A \otimes A \to A$ and $\epsilon^{\dagger}: I \to A$ for a commutative monoid;
- they jointly satisfy the special frobenius condition.

The canonical example is **FDHilb** with $A = \mathbb{C}^2$,

 $\delta: |i\rangle \mapsto |ii\rangle$

and

$$\epsilon:\sum |i\rangle\mapsto 1$$

Represent the free term model generated by (A, δ, ϵ) as graphs built up from:

Comonoid laws:

Special Frobenius laws:

Spider Theorem

Theorem 1. Any diagram constructed from a classical object is uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather uninteresting.

New classical structures from old

Given a classical object (A, δ, ϵ) and a unitary map $f : A \to B$ we can define a new classical object (B, δ', ϵ') by:

The Hadamard Map

The Hadamard map
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 enjoys a number of useful properties:

properties:

• Self adjointness: $H = H^{\dagger}$; and unitarity: HH = id;

• The Hadamard exchanges the X and Z bases.

Two Classical Objects

Given (Q, δ, ϵ) and $(Q, \delta_H, \epsilon_H)$ we have the following:

- $\sqrt{2} |0\rangle = \epsilon_H^{\dagger};$
- $\delta \epsilon_{H}^{\dagger} = \delta \left| 0 \right\rangle = \left| 00 \right\rangle = \epsilon_{H}^{\dagger} \otimes \epsilon_{H}^{\dagger};$
- $|+\rangle = \epsilon^{\dagger}$
- $\delta_H \epsilon^{\dagger} = \delta_H \ket{+} = \ket{++} = \epsilon^{\dagger} \otimes \epsilon^{\dagger}$

A 2nd Classical Structure

Represent the classical structure induced by H as a red dot:

We can immediately derive a law for changing the colour of dots by introducing H boxes. What other laws hold?

Bialgebraic Laws for Non-commuting observables

Cloning Laws:

Bialgebraic Laws for Non-commuting observables

Bialgebra Law:

Bialgebraic Laws for Non-commuting observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra: every equation has a (hidden) scalar factor. Call this structure a *scaled bialgebra*.

Scaled Bialgebra Laws

Therefore, the scaled bialgebra is in fact a *scaled Hopf algebra*, whose antipode is the identity times the dimension of the underlying space.

Representing Quantum Logic Gates

$$\wedge Z = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = - \square \square$$

$$\wedge X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = - \square \square$$

Incorporating Phases

Let $\alpha \in (0, 2\pi)$; consider the maps:

$$Z_{\alpha} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \bigcirc$$
$$X_{\alpha} = HZ_{\alpha}H = \bigcirc$$

Incorporating Phases

General unitary U

Proposition 2. If U is a unitary on \mathbb{C}^2 there exist α, β, γ such that $U = Z_{\alpha} X_{\beta} Z_{\gamma}$.

Here is (part of) a measurement based program to compute this:

General unitary \boldsymbol{U}

General unitary U

How do phases interact?

"Negation"

Representing Controlled Phase

$$\wedge Z_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\alpha} \end{pmatrix} = -\alpha/2$$

Among the most important quantum algorithms, the quantum fourier transform is a key stage of factoring.

$$|j_0 j_1 \cdots j_n\rangle \mapsto (|0\rangle + e^{2\pi i \alpha_0} |1\rangle)(|0\rangle + e^{2\pi i \alpha_1} |1\rangle) \cdots (|0\rangle + e^{2\pi i \alpha_n} |1\rangle)$$

where $\alpha_k = 0.j_k \cdots j_n = \sum_{l=k}^n j_l/2^k$
For 2 qubits:

 $|00\rangle \mapsto (|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \qquad |10\rangle \mapsto (|0\rangle + e^{i\pi} |1\rangle)(|0\rangle + |1\rangle)$ $|01\rangle \mapsto (|0\rangle + e^{i\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle) \qquad |11\rangle \mapsto (|0\rangle + e^{i3\pi/2} |1\rangle)(|0\rangle + e^{i\pi} |1\rangle)$

which is the correct result!

Conclusions

- Pairs of incompatible observables form a Hopf algebra-like structure.
- This structure captures a fundamental aspect of quantum mechanics.
- The axioms are sufficiently strong to derive the properties of quantum logic gates and prove the correctness of important quantum algorithms.

Questions and Further Work

- What about completeness?
 - Are two observables sufficient?
 - Can we prove that there is another maximally unbiassed basis for the qubit?
 - What about other dimensionalities?
- How special is the choice of the *H* map?
- Formal properties:
 - Confluence? Termination?
 - Can this be mechanized?
 - Induction principals for reasoning about graphical rewriting?
- We simulated the QFT algorithm: what is the complexity of this simulation? Can complexity be studied in this setting?