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Motivation

e Quantum observables may be incompatible:

position/momentum, polarisation, spin ...

e In traditional quantum logic approaches these observables are

simply incomparable in the lattice.

e However if one wants to compute with quantum mechanics we

need know how these observables relate to each other.



Classical Objects

In a f-category C, a triple (A, J, €) is called a classical object if :
e 0:A—- A® A and €: A — I for a cocommutative comonoid;
e )T:A® A — Aand € : I — A for a commutative monoid;

e they jointly satisfy the special frobenius condition.

The canonical example is FDHilb with A = C?2,
d: i) — |i1)

and

E:Z|i>l—>1



Classical Objects

Represent the free term model generated by (A, d, €) as graphs built
up from:



Comonoid laws:

Classical Objects




Special Frobenius laws:

Classical Objects




Spider Theorem

Theorem 1. Any diagram constructed from a classical object is

uniquely determined by the number of inputs and outputs.

Therefore the graphical calculus for one classical object is rather

uninteresting.



New classical structures from old

Given a classical object (A, J, €) and a unitary map f : A — B we can

define a new classical object (B, d’,€') by:

/ /

B B®B B > [
fT fef —c, ©

Y

A AR A 1




The Hadamard Map

1 1
The Hadamard map H = = enjoys a number of useful

1 -1

S

properties:

o Self adjointness: H = H'; and unitarity: HH = id;

]

]

e The Hadamard exchanges the X and Z bases.



Two Classical Objects
Given (Q, d,¢€) and (Q, dy, €) we have the following:
¢ V2|0) = €}y;
o el =350) = |00) = €}, @ €ly;
o [+)=¢
o dpel =0y |+) = |++) =€ @
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A 2nd Classical Structure

Represent the classical structure induced by H as a red dot:

\ /

We can immediately derive a law for changing the colour of dots by
introducing H boxes. What other laws hold?
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Bialgebraic Laws for Non-commuting observables

Y11 Yol
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Bialgebraic Laws for Non-commuting observables

Bialgebra Law:

X

o 4 Y
/‘\
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Bialgebraic Laws for Non-commuting observables

Dimension Law:

The pair of non-commuting observables fails to be a true bialgebra:
every equation has a (hidden) scalar factor. Call this structure a

scaled bialgebra.

14



Scaled Bialgebra Laws




A Useful Lemma
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A Useful Lemma
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A Useful Lemma
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A Useful Lemma

Therefore, the scaled bialgebra is in fact a scaled Hopf algebra, whose

antipode is the identity times the dimension of the underlying space.
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Representing Quantum Logic Gates
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Example: ANZ o ANZ =id

ll
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Example: ANZ o ANZ =id
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Example: ANZ o ANZ =id
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Example: ANZ o ANZ =id
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Example: NZ o AZ =1id
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Example: AZ o AZ =1id
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Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap
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Example: 3 x AX = swap

-
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Example: 3 x AX = swap

-
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Example: 3 x AX = swap

o
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Incorporating Phases

Let o € (0,27); consider the maps:
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Incorporating Phases

Za o Zﬁ = Za+5 =

)
Q Q®Q
Lo 7, ®id
Q QeQ

J
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Generalised Spider Law
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General unitary U

Proposition 2. If U is a unitary on C? there exist o, 3, such that
U=2,XgZ.

Here is (part of) a measurement based program to compute this:
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General unitary U
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General unitary U
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General unitary U
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General unitary U

\
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General unitary U

= ZoXpZ,
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How do phases interact?

Za |0) = 10) Zo|1) =€ [1) = 1)
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How do phases interact?
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How do phases interact?
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“Negation”

(o 1) {0>H1>
X=X = ::
1 0 1) — |0)

0
Q Q&
X X®X
Q Q&

J
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“Negation”
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“Negation”

X 2 |0) 4 €™ [1) = ™ |1) 4 |0) = |0) + e "> |1)

® - @
@
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Representing Controlled Phase
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Example: Quantum Fourier Transform

Among the most important quantum algorithms, the quantum

fourier transform is a key stage of factoring.
Jogi - gn) = (10) + €270 [1))(|0) + €™ [1)) -+ (0) + €2 1))

where ag = 0.5k Jn = D1y J1/2"
For 2 qubits:

100) = (]0) + [1))([0) + [1)) 10) — (10) + €™ [1))(10) + [1))
01) = (|0) + €™/ [1))([0) + e [1)) |11} = (|0) + €7/ [1))(|0) + e |1))
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform
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Example: Quantum Fourier Transform

o—
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Example: Quantum Fourier Transform

‘7

7t/2

which is the correct result!
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Conclusions

e Pairs of incompatible observables form a Hopf algebra-like

structure.

e This structure captures a fundamental aspect of quantum

mechanics.

e The axioms are sufficiently strong to derive the properties of
quantum logic gates and prove the correctness of important

quantum algorithms.
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Questions and Further Work

What about completeness?
— Are two observables sufficient?

— Can we prove that there is another maximally unbiassed basis
for the qubit?

— What about other dimensionalities?
How special is the choice of the H map?

Formal properties:

— Confluence? Termination?

— Can this be mechanized?

— Induction principals for reasoning about graphical rewriting?

We simulated the QFT algorithm: what is the complexity of this
simulation? Can complexity be studied in this setting?
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