Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Geometry of abstraction in quantum computation

Dusko Pavlovic

Kestrel Institute and Oxford University

Oxford, August 2007

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline

Introduction Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Outline

Introduction Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Categorical quantum mechanics

Q: Why (how) does it work?

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction

 λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Task

Rational reconstruction of the "logically relevant structure".

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Task

Rational reconstruction of the "logically relevant structure".

- $\triangleright \otimes, \ddagger$ partitions and interactions
- ▶ ⊕ base decompositions

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Task

Rational reconstruction of the "logically relevant structure".

- \otimes, \ddagger partitions and interactions
- ▶ ⊕ base decompositions

Pro: Need a computational base.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction

 λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Task

Rational reconstruction of the "logically relevant structure".

- $\triangleright \otimes, \ddagger$ partitions and interactions
- ⊕ base decompositions
 - Pro: Need a computational base.
 - Con: Not preserved on the states.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction

 λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Categorical quantum mechanics

- Q: Why (how) does it work?
- A: ‡-compact/scc categories capture the logically relevant structure of **Hilb**.

Task

Rational reconstruction of the "logically relevant structure".

- \otimes, \ddagger partitions and interactions
- ⊕ base decompositions

Pro: Need a computational base.

Con: Not preserved on the states.

Proposal: Classical objects

Where do they come from?

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction

 λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example

$$\frac{f: \Omega \longrightarrow \Omega: \mathbf{x} \mapsto f(\mathbf{x})}{f': \Omega \times \Omega \xrightarrow{\sim} \Omega \times \Omega: (\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}, f(\mathbf{x}) \oplus \mathbf{y})}$$
$$\overline{U_f: \mathcal{B} \otimes \mathcal{B} \longrightarrow \mathcal{B} \otimes \mathcal{B}: |\mathbf{x}, \mathbf{y}\rangle \mapsto |\mathbf{x}, f(\mathbf{x}) \oplus \mathbf{y}\rangle}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective λ -abstraction

 $\lambda\text{-abstraction}$ in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Example

$$f: \Omega \longrightarrow \Omega: \mathbf{X} \mapsto f(\mathbf{X})$$

$$f': \Omega \times \Omega \xrightarrow{\sim} \Omega \times \Omega : (\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}, f(\mathbf{x}) \oplus \mathbf{y})$$

$$U_{f}: \mathcal{B} \otimes \mathcal{B} \longrightarrow \mathcal{B} \otimes \mathcal{B}: |x, y\rangle \mapsto |x, f(x) \oplus y\rangle$$

Abstraction in computation

- counterpart of implementation:
 - "... whatever x and y might be...
- interface specification
 - denote abstract data by variables: copiable, deletable

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective

 λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

λ -abstraction

$\mathbb{Z}^2 \longrightarrow \mathbb{Z}[x] : (a,b) \mapsto ax^3 + bx + 1$ $\mathbb{Z}^2 \longrightarrow \mathbb{Z}^{\mathbb{Z}} : (a,b) \mapsto \lambda x. ax^3 + bx + 1$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Objective

 λ -abstraction

 λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・ エー・ 日・ うらぐ

$$\frac{A \xrightarrow{f_x} B \text{ in } \mathcal{S}[x:X]}{A \xrightarrow{\lambda_x.f_x} B^X \text{ in } \mathcal{S}}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

(日)

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a right adjoint $ab_x : S[x] \longrightarrow S : A \mapsto A^X$ and the transpositions

model λ -abstraction and application.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● のへで

Theorem (Lambek, Adv. in Math. 79)

Let S be a cartesian closed category, and S[x] the free cartesian closed category generated by S and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a right adjoint $ab_x : S[x] \longrightarrow S : A \mapsto A^X$ and the transpositions

$$A^{\stackrel{\langle \varphi, x \rangle}{\longrightarrow} B^{\chi} \times X \stackrel{\epsilon}{\longrightarrow} B} \mathcal{S}[x](ad_{x}A, B) \xrightarrow{A \stackrel{f_{x}}{\longrightarrow} B} \\ \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \\ A^{\stackrel{\varphi}{\longrightarrow} B^{\chi}} \mathcal{S}(A, ab_{x}B) \xrightarrow{A^{\lambda_{x}, f_{x}} B^{\chi}} B^{\chi}$$

model λ -abstraction and application.

S[x] is isomorphic with the Kleisli category for the power monad $(-)^{X}$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

κ -abstraction in cartesian

Theorem (Lambek, Adv. in Math. 79)

Let *S* be a cartesian category, and S[x] the free cartesian category generated by *S* and $x : 1 \rightarrow X$.

Then the inclusion $ad_x : S \longrightarrow S[x]$ has a left adjoint $ab_x : S[x] \longrightarrow S : A \mapsto X \times A$ and the transpositions

$$A^{\stackrel{\langle x, id \rangle}{\longrightarrow}} X \times A \stackrel{\varphi}{\rightarrow} B \quad \mathcal{S}[x](A, \operatorname{ad}_{x} B) \quad A \stackrel{f_{x}}{\longrightarrow} B \\ \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \\ X \times A \stackrel{\varphi}{\longrightarrow} B \quad \mathcal{S}(\operatorname{ab}_{x} A, B) \quad X \times A \stackrel{\kappa_{x}, f_{x}}{\longrightarrow} B$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

model first order abstraction and application.

S[x] is isomorphic with the Kleisli category for the product comonad $X \times (-)$.

categories

κ-abstraction in *monoidal*

Theorem (DP, MSCS 95)

Then the strong adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ are in one-to-one correspondence with the internal comonoid structures on X. The transpositions

$$\begin{array}{ccc} A^{\underline{x}\otimes A}X\otimes A \xrightarrow{\varphi} B & \mathcal{C}[x](A, \operatorname{ad}_{x}B) & A \xrightarrow{f_{x}} B \\ & & & & \downarrow \\ & & & & \downarrow \\ X\otimes A \xrightarrow{\varphi} B & \mathcal{C}(\operatorname{ab}_{x}A, B) & X\otimes A^{\underline{r_{x}, f_{x}}}B \end{array}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

model action abstraction and application.

C[x] is isomorphic with the Kleisli category for the comonad $X \otimes (-)$, induced by any of the comonoid structures.

categories

κ -abstraction in monoidal categories

Task Extend this to Categorical Quantum Mechanics.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

(日)

κ -abstraction in monoidal categories

Task Extend this to Categorical Quantum Mechanics.

Problem

Lots of complicated diagram chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

 $\begin{array}{l} \text{Objective} \\ \lambda \text{-abstraction} \\ \lambda \text{-abstraction in} \\ \text{categories} \end{array}$

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

κ -abstraction in monoidal categories

Task Extend this to Categorical Quantum Mechanics.

Problem Lots of complicated diagram chasing.

Solution? What does abstraction mean graphically? **Dusko Pavlovic**

Introduction

Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

ntroduction Objective λ-abstraction λ-abstraction in categories

Graphic notation

- Geometry of abstraction Abstraction with pictures Consequences
- Geometry of ‡-abstraction
 - ‡-monoidal categories
 Quantum objects
 Abstraction in ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・西ト・西ト・日・日・

Objects

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

 $X \otimes A \otimes B \otimes D$

Identities

.

Geometry of

Morphisms

Tensor (parallel composition)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ● ● ●

Geometry of

Sequential composition

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Geometry of

Elements (vectors) and coelements (functionals)

Geometry of

Symmetry

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Polynomials

B⊗X B⊗X⊗b B⊗X⊗C h⊗f $X \otimes A \otimes D \otimes B \otimes X$ id⊗x $X \otimes A \otimes D \otimes B \otimes I$ $X \otimes A \otimes c \otimes r$ X⊗A⊗B⊗D $X \otimes A \otimes B \otimes g$ $X \otimes A \otimes B \otimes D \otimes D \otimes X$ x⊗a⊗D⊗D⊗x $I \otimes I \otimes D \otimes D \otimes I$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・ エー・ 日・ うらぐ

Outline

ntroduction Objective λ -abstraction λ -abstraction in categories

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categ Classical objects Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the free symmetric monoidal category generated by C and $x : 1 \rightarrow X$.

Then there is a one-to-one correspondence between

• adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ satisfying

1.
$$ab_x(A \otimes B) = ab_x(A) \otimes B$$

$$2. \ \eta(\mathbf{A} \otimes \mathbf{B}) = \eta(\mathbf{A}) \otimes \mathbf{B}$$

3.
$$\eta_I = \mathbf{x}$$

and

commutative comonoids on X.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

Abstraction with pictures

Theorem (again)

Let C be a symmetric monoidal category, and C[x] the free symmetric monoidal category generated by C and $x : 1 \rightarrow X$.

Then there is a one-to-one correspondence between

• adjunctions $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$ satisfying

1.
$$ab_x(A \otimes B) = ab_x(A) \otimes B$$

2.
$$\eta(A \otimes B) = \eta(A) \otimes B$$

3. $\eta_I = x$

and

commutative comonoids on X.

C[x] is isomorphic with the Kleisli category for the commutative comonad $X \otimes (-)$, induced by any of the comonoid structures.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

Proof (↓)

Given $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x]$, conditions 1.-3. imply

•
$$\operatorname{ab}_{X}(A) = X \otimes A$$

$$\blacktriangleright \ \eta(A) = \mathbf{x} \otimes A$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

Therefore the correspondence

 $\mathcal{C}(ab_x(A), B)$ $\mathcal{C}[x](A, \mathrm{ad}_x(B))$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Proof (\downarrow)

... is actually

 $\mathcal{C}(X \otimes A, B)$ $\mathcal{C}[\mathbf{x}](\mathbf{A},\mathbf{B})$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・ エー・ 日・ うらぐ

Proof (\downarrow)

... with

Х

Α

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Α

Proof (\downarrow)

...and

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Geometry of

quantum abstraction Dusko Pavlovic

Graphic notation Geometry of

The bijection corresponds to the conversion:

$$(\kappa \mathbf{x}. \varphi(\mathbf{x})) \circ (\mathbf{x} \otimes \mathbf{A}) = \varphi(\mathbf{x})$$
 (β -rule

$$\kappa \mathbf{x}. \ (f \circ (\mathbf{x} \otimes \mathbf{A})) = f \qquad (\eta \text{-rule})$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

(日)

Proof (↓)

The comonoid structure (X, Δ, \top) is

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・ エー・ 日・ うらぐ

The conversion rules imply the comonoid laws

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction Abstraction with pictures

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

Proof (↑)

Given (X, Δ, \top) , use its copying and deleting power, and the symmetries, to normalize every C[x]-arrow:

▲□▶▲□▶▲□▶▲□▶ □ のへで

Geometry of

quantum abstraction Dusko Pavlovic

Graphic notation

Geometry of abstraction Abstraction with pictures

Proof (↑)

Then set κx . $\varphi(x) = \overline{\varphi}$ to get

$$(\kappa \mathbf{x}. \varphi(\mathbf{x})) \circ (\mathbf{x} \otimes \mathbf{A}) = \varphi(\mathbf{x})$$
 (β -rule

$$\kappa \mathbf{x}. \ (f \circ (\mathbf{x} \otimes \mathbf{A})) = f \qquad (\eta \text{-rule})$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

(日)

Remark

C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗}, reduce the finite polynomials to the Kleisli morphisms.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remark

- C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗}, reduce the finite polynomials to the Kleisli morphisms.
- But the extensions C[X], where X is large are also of interest.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 ● のへで

Remark

- C[x] ≅ C_{X⊗} and C[x, y] ≅ C_{X⊗Y⊗}, reduce the finite polynomials to the Kleisli morphisms.
- But the extensions C[X], where X is large are also of interest.
 - Cf. $\mathbb{N}[\mathbb{N}]$, Set[Set], and $CPM(\mathcal{C})$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ □ のへで

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction Abstraction with pictures

Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Definition

A vector $\varphi \in C(I, X)$ is a *base vector* (or a *set-like element*) with respect to the abstraction operation κx if it can be copied and deleted in C[x]

$$(\kappa \mathbf{X} . \mathbf{X} \otimes \mathbf{X}) \circ \varphi = \varphi \otimes \varphi (\kappa \mathbf{X} . \mathrm{id}_{I}) \circ \varphi = \mathrm{id}_{I}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ □ のへで

Upshot

In symmetric monoidal categories, abstraction applies just to copiable and deletable data.

Definition

A vector $\varphi \in C(I, X)$ is a *base vector* (or a *set-like element*) with respect to the abstraction operation κx if it can be copied and deleted in C[x]

$$(\kappa \mathbf{X} . \mathbf{X} \otimes \mathbf{X}) \circ \varphi = \varphi \otimes \varphi (\kappa \mathbf{X} . \mathrm{id}_{I}) \circ \varphi = \mathrm{id}_{I}$$

Proposition

 $\varphi \in \mathcal{C}(I, X)$ is a *base vector* with respect to κx if and only if it is a homomorphism for the comonoid structure $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ corresponding to κx .

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

Teleportation through abstraction

Outline

ntroduction Objective λ-abstraction λ-abstraction in categori

Graphic notation

Geometry of abstraction Abstraction with pictures Consequences

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

+-monoidal categories
 Quantum objects
 Abstraction in
 +-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Definitions

A \ddagger -category C comes with ioof $\ddagger : C^{op} \longrightarrow C$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

+-monoidal categories
 Quantum objects
 Abstraction in
 +-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・ エー・ 日・ うらぐ

Definitions

A \ddagger -category C comes with ioof $\ddagger : C^{op} \longrightarrow C$.

A morphism *f* in a \ddagger -category *C* is called *unitary* if $f^{\ddagger} = f^{-1}$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definitions

A \ddagger -category C comes with ioof $\ddagger : C^{op} \longrightarrow C$.

A morphism *f* in a \ddagger -category *C* is called *unitary* if $f^{\ddagger} = f^{-1}$.

A (symmetric) monoidal category C is \ddagger -monoidal if its monoidal isomorphisms are unitary.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・ キャ・キャー ヨー うくぐ

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

abstract inner product

$$\langle -|-\rangle_{\mathcal{A}} : \mathcal{C}(\mathcal{A}) \times \mathcal{C}(\mathcal{A}) \longrightarrow \mathbb{I}$$

 $(\varphi, \psi: I \longrightarrow \mathcal{A}) \longmapsto \left(I \stackrel{\varphi}{\longrightarrow} \mathcal{A} \stackrel{\psi^{\ddagger}}{\longrightarrow} I\right)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- ▶ scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

- ► abstract inner product $\langle -|-\rangle_{A} : C(A) \times C(A) \longrightarrow \mathbb{I}$ $(\varphi, \psi: I \longrightarrow A) \longmapsto (I \xrightarrow{\varphi} A \xrightarrow{\psi^{\ddagger}} I)$
- ► partial inner product $\langle -|-\rangle_{AB} : C(AB) \times C(A) \longrightarrow C(B)$ $(\varphi : I \to A \otimes B, \psi : I \to A) \longmapsto (I \xrightarrow{\varphi} A \otimes B \xrightarrow{\psi^{\ddagger} \otimes B} B)$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Using the monoidal notations for:

- vectors: C(A) = C(I, A)
- scalars: $\mathbb{I} = \mathcal{C}(I, I)$

in every ‡-monoidal category we can define

- ► abstract inner product $\langle -|-\rangle_{A} : C(A) \times C(A) \longrightarrow \mathbb{I}$ $(\varphi, \psi: I \longrightarrow A) \longmapsto (I \xrightarrow{\varphi} A \xrightarrow{\psi^{\ddagger}} I)$
- ► partial inner product $\langle -|-\rangle_{AB} : C(AB) \times C(A) \longrightarrow C(B)$ $(\varphi : I \to A \otimes B, \psi : I \to A) \longmapsto (I \xrightarrow{\varphi} A \otimes B \xrightarrow{\psi^{\ddagger} \otimes B} B)$

• entangled vectors $\eta \in C(A \otimes A)$, such that $\forall \varphi \in C(A)$

$$\langle \eta | \varphi \rangle_{AA} = \varphi$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects Consequences

Teleportation through abstraction

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) $\eta \in C(A \otimes A)$ is entangled

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

+-monoidal categories
 Quantum objects
 Abstraction in
 +-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

(日)

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) η ∈ C(A ⊗ A) is entangled
(b) ε = η[‡] ∈ C(A ⊗ A, I) internalizes the inner product

$$\varepsilon \circ (\psi \otimes \varphi) = \langle \varphi | \psi \rangle$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Proposition

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

(a) η ∈ C(A ⊗ A) is entangled
(b) ε = η[‡] ∈ C(A ⊗ A, I) internalizes the inner product

$$\varepsilon \circ (\psi \otimes \varphi) = \langle \varphi | \psi \rangle$$

(c) (η, ε) realize the self-adjunction $A \dashv A$, in the sense

$$\begin{array}{rcl} A \xrightarrow{\eta \otimes A} A \otimes A \otimes A \otimes A \xrightarrow{A \otimes \varepsilon} A & = & \operatorname{id}_{A} \\ A \xrightarrow{A \otimes \eta} A \otimes A \otimes A \otimes A \xrightarrow{\varepsilon \otimes A} A & = & \operatorname{id}_{A} \end{array}$$

The three conditions are equivalent if I generates C.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Proposition in pictures

For every object A in a \ddagger -monoidal category C holds (a) \iff (b) \iff (c), where

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Quantum objects

Definition

A *quantum object* in a ‡-monoidal category is an object equipped with the structure from the preceding proposition.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects

Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Quantum objects

Definition

A *quantum object* in a ‡-monoidal category is an object equipped with the structure from the preceding proposition.

Remark

The subcategory of quantum objects in any ‡-monoidal category is ‡-compact (strongly compact) — with all objects self-adjoint.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$ Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent:

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Theorem

Let C be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : C \longrightarrow C[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{l}$. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

Let C be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : C \longrightarrow C[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{I}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Theorem

Let C be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : C \longrightarrow C[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{I}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

(c) $(X \otimes \nabla) \circ (\Delta \otimes X) = \Delta \circ \nabla = (\nabla \otimes X) \circ (X \otimes \Delta)$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

+-monoidal categories
 Quantum objects
 Abstraction in
 +-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本
Abstraction in ‡-monoidal categories

Theorem

Let \mathcal{C} be a \ddagger -monoidal category, and $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ a comonoid that induces $ab_x \dashv ad_x : \mathcal{C} \longrightarrow \mathcal{C}[x].$

Then the following conditions are equivalent: (a) $\operatorname{ad}_{x} : \mathcal{C} \longrightarrow \mathcal{C}[x]$ creates $\ddagger : \mathcal{C}[x]^{op} \longrightarrow \mathcal{C}[x]$ such that $\langle x | x \rangle = x^{\ddagger} \circ x = \operatorname{id}_{I}$.

(b)
$$\eta = \Delta \circ \bot$$
 and $\varepsilon = \eta^{\ddagger} = \nabla \circ \top$ realize $X \dashv X$.

 $(c) \ (X \otimes \nabla) \circ (\Delta \otimes X) = \Delta \circ \nabla = (\nabla \otimes X) \circ (X \otimes \Delta)$

where $X \otimes X \xrightarrow{\nabla} X \xleftarrow{\perp} I$ is the induced monoid

$$\begin{array}{rcl} \nabla & = & \Delta^{\ddagger} \\ \bot & = & \top^{\ddagger} \end{array}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Abstraction in ‡-monoidal categories

Theorem in pictures

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Geometry of

quantum abstraction Dusko Pavlovic

Introduction Graphic notation

Abstraction in ‡-monoidal categories

Theorem in pictures

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories

Quantum objects Abstraction in ‡-monoidal categories Classical objects Consequences

Teleportation through abstraction

(日)

Proof of (b) \Longrightarrow (c)

Lemma 1

If (b) holds then

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Proof of (b) \Longrightarrow (c)

Then (c) also holds because

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories

Quantum objects Abstraction in ‡-monoidal categories Classical objects Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof of Lemma 1

Using Lemma 2, and the fact that (b) implies $\nabla=\Delta^{\ddagger}=\Delta^{\ast},$ we get

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories

Classical objects Consequences

Teleportation through abstraction

The message of the proof

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The message of the proof

There is more to categories than just diagram chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

The message of the proof

There is more to categories than just diagram chasing.

There is also picture chasing.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction ‡-monoidal categories

4-monoidal categories
 Quantum objects
 Abstraction in
 4-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

(日)

Classical objects

Definition

A *classical object* in a ‡-monoidal category is an object equipped with the structure from the preceding proposition.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Upshot

The Frobenius condition (c) assures the preservation of the abstraction operation under ‡.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

(日)

Upshot

The Frobenius condition (c) assures the preservation of the abstraction operation under ‡.

This leads to entanglement.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Definition

Two vectors $\varphi, \psi \in C(A)$ in a \ddagger -monoidal category are *orthonormal* if their inner product is idempotent:

$$\langle \varphi \mid \psi \rangle = \langle \varphi \mid \psi \rangle^2$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Definition

Two vectors $\varphi, \psi \in C(A)$ in a \ddagger -monoidal category are *orthonormal* if their inner product is idempotent:

 $\langle \varphi \mid \psi \rangle = \langle \varphi \mid \psi \rangle^2$

Proposition

Any two base vectors are orthonormal. In particular, any two variables in a polynomial category are orthonormal. Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Definition

A classical object X is *standard* if it is generated by its base vectors

$$\mathcal{B}(\boldsymbol{X}) = \{ \varphi \in \mathcal{C}(\boldsymbol{X}) | (\kappa \boldsymbol{x}. \ \boldsymbol{x} \otimes \boldsymbol{x}) \varphi = \varphi \otimes \varphi \}$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Definition

A classical object X is *standard* if it is generated by its base vectors

$$\mathcal{B}(\mathbf{X}) = \{ \varphi \in \mathcal{C}(\mathbf{X}) | (\kappa \mathbf{x} \cdot \mathbf{x} \otimes \mathbf{x}) \varphi = \varphi \otimes \varphi \}$$

in the sense that

$$\forall f, g \in \mathcal{C}(X, Y). \ (\forall \varphi \in \mathcal{B}(X). \ f\varphi = g\varphi) \Longrightarrow f = g$$

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Definition

A classical object X is *standard* if it is generated by its base vectors

$$\mathcal{B}(\mathbf{X}) = \{ \varphi \in \mathcal{C}(\mathbf{X}) | (\kappa \mathbf{x} \cdot \mathbf{x} \otimes \mathbf{x}) \varphi = \varphi \otimes \varphi \}$$

in the sense that

$$\forall f, g \in \mathcal{C}(X, Y). \ (\forall \varphi \in \mathcal{B}(X). \ f\varphi = g\varphi) \Longrightarrow f = g$$

Proposition

There are classical objects with no base vectors.

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

‡-monoidal categories
 Quantum objects
 Abstraction in
 ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

・ロト・日本・日本・日本・日本・日本

Example

In (Rel, \times , 1, \ddagger = Id), take any A > 3 and

$$X = \{\{a, b\} \mid a, b \in A\}$$

Define $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ by

$$\begin{array}{ll} \{a,b\} & \Delta & \left(\{a,c,\},\{b,c\}\right) \\ \{a\} & \top & \{*\} \end{array}$$

Then $(\kappa x. x \otimes x)\varphi$ is entangled for every φ .

Geometry of quantum abstraction Dusko Pavlovic Introduction **Graphic notation** Geometry of abstraction Geometry of ±-abstraction ±-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects

Consequences

Teleportation through abstraction

・ロト・西ト・田・・田・ ひゃぐ

Example

In (**Rel**, \times , 1, \ddagger = Id), take any A > 3 and

$$X = \{\{a, b\} \mid a, b \in A\}$$

Define $X \otimes X \xleftarrow{\Delta} X \xrightarrow{\top} I$ by

$$\begin{array}{rcl} \{a,b\} & \Delta & \left(\{a,c,\},\{b,c\}\right) \\ \{a\} & \top & \{*\} \end{array}$$

Then $(\kappa x. x \otimes x)\varphi$ is entangled for every φ .

The example lifts to **Hilb** as $X = A \bigotimes_{s} A$.

Geometry of quantum abstraction Dusko Pavlovic Introduction Graphic notation Geometry of abstraction ‡-abstraction ‡-monoidal categories Quantum objects Abstraction in ‡-monoidal categories Classical objects

Consequences Teleportation

through abstraction

・ロト・日本・日本・日本・日本・日本

Outline

ntroduction Objective λ-abstraction λ-abstraction in categori

Graphic notation

- Geometry of abstraction Abstraction with pictures Consequences
- Geometry of *‡*-abstraction
 - ‡-monoidal categories
 Quantum objects
 Abstraction in ‡-monoidal categories
 Classical objects
 Consequences

Teleportation through abstraction

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

Variables in teleportation

This was not presented

Geometry of quantum abstraction

Dusko Pavlovic

Introduction

Graphic notation

Geometry of abstraction

Geometry of ‡-abstraction

Teleportation through abstraction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ