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1. Anyons, ‘any’what?
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Anyons, ‘any’what?

‘Anyon’ is a generic term coined in by Frank Wilczek to
describe some particles that can acquire “any” phase
when two ore more of them are interchanged, in that
sense, they can be seen as a generalization of Bose
and Fermi statistics. In fact, such an exchange of two
such anyons can be expressed via representations of
the braid group and hence, it permits us to encode
information in topological features of a system
composed of many anyons.

Anyons & ribbon categories – p. 4/33



Anyons, ‘any’what?

Why braids? Because anyons live in a 2D world! Let’s
give an idea why... Consider two indistinguishable
particles moving in a 3D space starting and ending in
the same configuration, then there are 2 different
classes of paths:

and

i.e., direct and exchange.
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Anyons, ‘any’what?

Passing to the relative coordinate space, it is clear that
any path where the particles start and finishes in the
same position can be contracted to a point which says
that the space is, at least, simply connected. In fact, it
is doubly connected since any two exchanges taken
one after the other reduce to the trivial path. Thus, we
really have two classes of path in the end.

Solving this with path integral, one sees that the
amplitudes of direct and exchange either add up or
contribute with a minus sign thus yielding Bose and
Fermi statistics respectively.
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Anyons, ‘any’what?

Now, in two dimension, the game is a bit more
complex – The relative coordinate space is no longer
simply connected. We have an infinite number of
classes of paths which is specified by the interchange
of particles i.e.,

, , ...

time

Again, would we solve this system with path, we would
find that the factor of the amplitude for n swaps is
multiplied by a phase einφ.
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Anyons, ‘any’what?

Of course, if φ is 0 or π, this collapses to Bose or
Fermi statistics however, the more general type of
particles involved in 2D is called Anyons as mentioned
in the introduction.
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Anyons, ‘any’what?

We will describe:

1. A labelling system for our anyons (objects of a
category called ‘charge’ of the anyons),

2. Compound systems of anyons (monoidal category
where I, the tensor unit, is the trivial charge),

3. Charge conjugation (Rigid structure)

4. A system of morphisms encapsulating the
movement of the anyons (braids and ribbons from
the categorical structure)

5. A way to calculate the charge of a system of n

anyons (fusion rules from a semi-simple structure)
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2. Categorical language for
anyons: Ribbon categories
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Ribbon categories

We start from a monoidal category. The first structure
we add is the braid map:

Definition: A braided monoidal category 〈C,⊗, I, σ〉 is a
monoidal category equipped with a natural
isomorphism

σ : A ⊗ B
∼−→ B ⊗ A.

Moreover, it is required that the natural isomorphisms
from the braided monoidal signature are such that for
all A,B,C,D ∈ |C|, the following diagrams commute in
C:
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Ribbon categories

(i) Pentagon axiom.

((A ⊗ B) ⊗ C) ⊗ D
α⊗D

ssggggggggg α
++WWWWWWWWW

(A ⊗ (B ⊗ C)) ⊗ D

α
��

(A ⊗ B) ⊗ (C ⊗ D)
α

��

A ⊗ ((B ⊗ C) ⊗ D)
A⊗α

// A ⊗ (B ⊗ (C ⊗ D))

(ii) Triangle axiom.

(A ⊗ I) ⊗ B
α

//

ρ⊗B ((QQQQQQ

A ⊗ (I ⊗ B)

A⊗λvvmmmmmm

A ⊗ B
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Ribbon categories

(iii) Hexagon axiom.

A ⊗ (B ⊗ C)
σ

// (B ⊗ C) ⊗ A
α

))SSSSSSSSS

(A ⊗ B) ⊗ C

α
55kkkkkkkkk

σ⊗C ))SSSSSSSSS

B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C
α

// B ⊗ (A ⊗ C)
A⊗σ

55kkkkkkkkk

and the same diagram commuting of σ−1 instead of σ.
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Ribbon categories

The objects of such category as described above will
be labels for our anyons called charge. Therefore, we
need a notion to express the conjugation of charge
and this is given via the notion of duals within our
braided monoidal category.
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Ribbon categories

Definition: Let C be a monoidal category and A ∈ |C|. A
dual of A is an object A∗ together with the morphisms
iA : I → A ⊗ A∗ and eA : A∗ ⊗ A → I that are such that

A∗
A∗

⊗i
//

A∗

&&L
L

L
L

L
L

L
L

L
L

L
L

L A∗ ⊗ A ⊗ A∗

e⊗A∗

��
and

A
i⊗A

//

A
%%K

K
K

K
K

K
K

K
K

K
K

K
K A ⊗ A∗ ⊗ A

A⊗e

��

A∗ A

commute hence defining a compact structure for A.
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Ribbon categories

Definition: Let C be a braided monoidal category then,
C is said to be rigid if every A ∈ |C| has a dual.
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Ribbon categories

Now, rotating an anyon on itself is not the identity on
the system, we therefore need to add yet another rule
to our framework. Conceptually, if I rotate an anyon
labelled by (say) A on itself by 2π it will be the same as
if I rotate it around another anyon with a trivial charge
(labelled with the tensor unit I) thus, we can think of
the trajectory of this anyon as a belt turning around
some centre; straightening the belt induces a ‘twist’ of
2π in it.
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Ribbon categories

First, note that in any rigid braided monoidal category
C, one can define

γA : A∗∗ → A as γA := (A⊗eA∗)◦(A⊗σ−1)◦(iA⊗A∗∗)

for any A ∈ |C|.

A

A∗∗
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Ribbon categories

Definition: A rigid braided monoidal C is a ribbon
categorya if, for all A ∈ |C|, it comes equipped with a
natural isomorphisms

δA : A → A∗∗

subject to the following conditions:

i) δA⊗B = δA ⊗ δB;

ii) δA∗ = (δ∗A)−1 and,

iii) δI = 1.
aSometimes called a tortile category.
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Ribbon categories

This is enough to define the ‘twist’ that I spoke of
above:
Definition: Let C be a ribbon category and A ∈ |C|. The
twist map is given by the composite natural
isomorphism

θA := γA ◦ δA : A → A.

=

AA
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Ribbon categories

[Freyd] Recall that a category is:

a. A category is preadditive if its homsets are
(additive) abelian groups and the composition of
morphism is bilinear.

b. It is additive if every finite set of objects has a
biproduct.

c. It is preabelian if every morphism has both a
kernel and a cokernel.

d. It is abelian if every monomorphism and
epimorphism is normal.
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Ribbon categories

We also need:

Definition: Let C be an abelian category then, S ∈ |C|
such that S 6≃ 0 is said to be simple if for all B ∈ |C| any
f : B →֒ S is either the zero morphism or an
isomorphism.

This is the same as saying that A has no other
subobject than 0 and itself.
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Ribbon categories

From this, we have:

Definition: An abelian category C is semisimple if any
A ∈ |C| is such that

A ≃
⊕

j∈J

NjSj

with S a simple object, J is the set of isomorphism
classes of simple objects and Nj ∈ N are such that
only a finite number of them are non-zero.
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Ribbon categories

This is enough to give our last definition:

Definition: A semisimple ribbon category C is a
semisimple category endowed with a ribbon structure
where the tensor unit I ∈ |C| is simple, the tensor
product is bilinear and where for each simple object
S ∈ |C|, End(S) ≃ K, where K is a field of characteristic
0.
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Ribbon categories

Remark: The correct categorical structure that we need
in order to speak of anyons is the one of modular
tensor categories – ribbon categories satisfying some
additional assumptions; I won’t get into those details
now.
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3. Fusion rules and fusion
spaces
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Fusion

Suppose that two charges S and T can combine in
order to give yet another charge U in NU

ST ways we will
write this as S ⊗ T ≃ NU

ST U ; this makes sense since the
category is semisimple. There, the lower labels of NU

ST

then express which labels fuse in order to yield the
upper label. We get,
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Fusion

Definition: Let S and T be simple object in C the fusion
rule of S and T is

S ⊗ T ≃
⊕

U

NU
ST U.

The coefficient NU
ST = Dim(Hom(S ⊗ T, U)) are called

the fusion coefficients.

Of course, in the above definition, the direct sum over
U means that we sum over all classes of
isomorphisms of simple objects. We notice also that

NU
ST = NU

T S = NS∗

T U∗ = NU∗

S∗T∗
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Fusion

Now, the computation (braidings, twists...) will occur
within the space that encodes the various ways a set
of anyons can fuse together according to the fusion
rules (associativity of ⊗).

Definition: A fusion space is a Hilbert space HU
ST of

dimension equal NU
ST and the states it contains are

called fusion states.
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Fusion

Remark: The way we pass from the configuration
space of anyons to a Hilbert space is highly non-trivial;
in fact, this is where the modular functor comes in play.
We leave this for now in order to keep the exposition
simple.
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Fusion

Let us introduce the following notation: A fusion state
where S fuses with T obtaining a total charge of U in
the ηth possible way will be denoted by |ST ;U, η〉 so
that the set of basis vectors that spans HU

ST is

{|ST ;U, η〉 | η = 1, 2, ..., NU
ST }.

Note, however, that if we fuse together S and T as
above, U may also vary yielding a set of Hilbert space.
However, we will compute braiding the anyons S and T

and the total charge of the fusion state is the
measured charge U ultimately.
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Fusion

In that sense, superposition of different final state is
not allowed, the superposition really occurs in the
various ways the anyons can fuse to yield the total
charge U thus, what we actually get is a tuple of
Hilbert spaces 〈HU1

ST , ...,H
Uj

ST 〉j∈J each carrying a
different branch of the computation. Each of these
spaces are mutually orthogonal in a Hilbert space HST

of dimension
∑

j∈J N
Uj

ST spanned by the vectors

{|ST ; j, η〉 | η = 1, 2, ..., NU
ST , j ∈ J}.

where J is the (finite) set of isomorphisms classes of
simple objects.
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More...

Of course, there is a lot more. Here I just gave an
outline of the structure needed for computing with
anyons.

Documentation:

• (Physics) Preskill’s notes on Topological quantum
computation

• (Maths) My master’s thesis:
www.inexistant.net

• (Bridging the gap) Joint –introductory– paper with
Prakash Panangaden (in progress)
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