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Abstract

Bohrification defines a locale of hidden variables internal in a topos.
We find that externally this is the space of partial measurement outcomes.
By considering the ——-sheafification, we obtain the space of measurement
outcomes, a genuine generalization of the spectrum of a C*-algebra.

1 Introduction

By combining Bohr’s philosophy of quantum mechanics, Connes’ non-commuta-
tive geometry [Con94], constructive Gelfand duality [BM00b, BM00a, Coq05,
CS09] and inspiration from Doering and Isham’s spectral presheaf [DI08], we
proposed Bohrification as a spatial quantum logic [HLS09a, HLS09b]. Given a
C*-algebra A, modeling a quantum system, consider the poset of Bohr’s classical
concepts

C(A) :={C | C is a commutative C*-subalgebra of A}.
In the functor topos Sets®) we consider the Bohrification A: the trivial functor
C — C. This is an internal C*-algebra of which we can compute the spectrum,
an internal locale ¥ in the topos Sets®4). This locale, or its externalization, is
our proposal for an intuitionistic quantum logic. In section 3 we compute the
externalization of this locale. It is the space of partial measurement outcomes:
the points are pairs of a C*-subalgebra together with a point of its spectrum.
This construction raises two natural questions:

e Can we restrict to the maximal commutative subalgebras, i.e. total mea-
surement frames?

e Are we allowed to use classical logic internally?

In section 4 we will see that, in a sense, the answers to both of these questions are
positive. The collection of maximal commutative subalgebras covers the space in
the dense topology and this dense, or double negation, topology forces (sic) the
logic to be classical. By considering the ——-sheafification, we obtain a genuine
generalization of the spectrum. Moreover, our previous constructions [HLS09a]
of the phase space (X) and the state space still apply essentially unchanged.
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2 Preliminaries

An extensive introduction to the context of the present paper can be found
in [HLS09b, HLS09a] and the references therein. Here we will just repeat the
bare minimum of definitions.

A site on an poset defines a covering relation. To simplify the presentation
we restrict to the case of a meet-semilattice.

Definition 1 Let L be a meet-semilattice. A covering relation on L is a relation
< C L x P(L) satisfying:

1. ifzelU thenx<U;

2. ifx<U and U <V (ie. y<V forally € U) then x<V;

3. ifx U thenx ANy<U;

4. ifx<U and x <V, then x QU AV, where UNV ={zAy |z €U,y € V}.

Such a pair (L, <) is called a formal topology.

Every formal topology defines a locale, conversely every locale can be pre-
sented in such a way.

Definition 2 Let (L, <) be a formal topology. A point is an inhabited « C L
that is filtering with respect to <, and such that for each a € « if a<1U, then
U N« is inhabited. In short, it is a completely prime filter.

The spectrum ¥ of a C*-algebra A can be described directly as a lattice
L(A) together with covering a relation; see [CS09].

3 The space of partial measurement outcomes

Iterated topos constructions, similar to iterated forcing in set theory were stud-
ied by Moerdijk [Moe86][Joh02, C.2.5]. To wit, let S be the ambient topos.
One may think of the topos Sets, but we envision applications where a different
choice for S is appropriate [HLS09b).

Theorem 3 (Moerdijk) Let C be a site in S and D be a site in S[C], the
topos of sheaves over C. Then there is a site! C x D such that

S[C)D] = S[C x DJ.

We will specialize to sites on a poset and without further ado focus on our
main example. As before, let

C(A) :=={C | C is a commutative C*-subalgebra of A}.

Let C := C(A)°? and D = ¥ the spectrum of the Bohrification, we compute
C x D. The objects are pairs (C,u), where C' € C(A) and u in L(C). Define

1The notation X is motivated by the special case where C is a group G considered as a
category with one object and I is a group H in Sets®. Then C x D is indeed the semi-direct
product H X G
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the order (D,v) < (C,u) as D D C and v C u. In terms of forcing, this is the
information order and the objects are forcing conditions. We add a covering
relation (C,u) <(D;,v;) as for all 4, C C D; and C IF u <1V, where V is the
presheaf? generated by the conditions D; IF v; € V. It follows from the general
theory that this is a Grothendieck topology.

We simplify: the presheaf V' is generated by the conditions D; I+ v; € V
means V is defined by v; € V(D) iff D > D,. Hence,

ClruaViff u<{v; | D; = C}
by the following lemma.

Lemma 4 [HLS09a] Let V' be an internal sublattice of L. Then C' Ik u <V iff
uV(C).

We claim that the points of C x D are partial measurement outcomes.

Definition 5 A measurement outcome is a point in the spectrum of a mazi-
mal commutative subalgebra. A partial measurement outcome is a point in the
spectrum of a commutative subalgebra.

Theorem 6 The locale generated by C x D is the classifying space of partial
measurement outcomes.

Proof Let 7 be a point, that is a completely prime filter. Suppose that (D, u) €
7, then by the covering relation for D, 7 defines a point of the spectrum (D).
This point is defined consistently: If uw € L(C) C L(D), then (D,u) < (C,u).
Hence, if (D, u) € 7, so is (C,u) and the point in X(D) defines a point in %(C)
as a restriction of functionals. When both (C,u) and (C’,u’) are in 7, then,
by directedness, there exists (D,v) in 7 such that C,C" C D and v C u,u'.
Moreover, (C,u) € 7 implies (C,T) € 7. Hence J{C | (C,T) € 7} is the
required subalgebra.
Conversely, let 7 be a partial measurement outcome, then

{(C,u) | C C domT and 7 € u}
defines a completely prime filter. O

Let us call this locale pM O for partial measurement outcomes. For commu-
tative C*-algebras pMO is similar, but not equal, to the spectrum:

Corollary 7 For a compact reqular X, the points of pMO(C (X)) are points of
the spectrum of a C*-subalgebra of C(X).

An explicit external description of the locale may be found in [HLS09b].
The present computation gives an alternative description which makes it easy
to compute the points.

2In the general setting we use a sheaf.
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4 Maximal commutative subalgebras, classical
logic and the spectrum

As stated in the introduction, we address the following questions:
e Can we restrict to the mazimal commutative subalgebras?
e Are we allowed to use classical logic internally?

In a sense, the answers to both of these questions are positive. The collec-
tion of maximal commutative subalgebras covers the space C(A) in the dense
topology and this dense, or double negation, topology forces the logic to be
classical.

Sheaves for the dense topology may be used to present classical set theoretic
forcing or Boolean valued models. In set theoretic forcing one considers the
topos Sh(P,——) [MM92, p.277]. The dense topology on a poset P is defined as
p<1 D if D is dense below p: for all ¢ < p, there exists a d € D such that d < ¢.3
The locale presented by this site is a Boolean algebra, the topos is a Boolean
valued model. This topos satisfies the axiom of choice [MM92, VI.2.9] when our
base topos does. The associated sheaf functor sends the presheaf topos P to
the sheaves Sh(P,——). The sheafification can be described explicitly [MM92,
p.273] for V.— W:

=V (p) = {x € W(p) | for all ¢ < p there exists r < ¢ such that z € V(r)}.

We apply this to the poset C(A). We write A for the constant functor C — A.
Then A C A in Sets®).

For commutative A, C(A) has A as bottom element. For all C', A__(C) = A.

For the general case, we observe that each C'is covered by the collection of all
its supersets. By Zorn?, each commutative subalgebra is contained in a maximal
commutative one. Hence the collection of maximal commutative subalgebras is
dense. So, A__(C) is the intersection of all maximal commutative subalgebras
containing C.

The covering relation for (C(A),——) x X is (C,u) Q(D;, v;) iff C C D; and
CIFu<aV__, where V__ is the sheafification of the presheaf V generated by the
conditions D; IF v; € V. Now, V »— L, where L is the spectral lattice of the
presheaf A.

Vo(C) = {ueL(C)|¥D<CIE < DucV(E))
SO, (C, u) <](Di,’Ui) iff
VD < C3D; < Dau< V(D).

Theorem 8 The locale MO generated by (C(A), -—) X X classifies measurement
outcomes. It is a (dense) sublocale of pMO.

Proof In the context of Theorem 6 we suppose that (C, T) € 7. The subalgebra
C is covered by all the maximal commutative subalgebras containing it, so by
directedness we conclude that (M, T) € 7 for some maximal M.

3This description uses classical meta-logic. In general it is only a necessary condition.
4Here we use classical meta-logic.
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The MO construction is a non-commutative generalization of the spectrum.
In this sense it behaves better then pMO; compare Corollary 7.

Corollary 9 For a compact regular X, X = MO(C(X)).
Proof C(X) is the only maximal commutative subalgebra of C'(X). O

By considering the double negation we may use classical logic internally in
our Boolean valued model. A global point in the internal spectrum still defines
a unique value for each a in A and the relation with Kochen-Specker is as
before [HLS09b]: global points do not exist. Internally the axiom of choice
holds, so ¥ is a compact Hausdorff space. Still, the spectrum does not have a
global point and the algebra does not have a global element. This underlines the
convenience of the double negation: the value is uniquely defined. By contrast,
this is not the case when we trivialize the poset C(A) by restricting it to its
maximal elements.

As an example, consider the matrix algebra M,,. Let D,, be the n-dimensional
diagonal matrix. The maximal subalgebras of M,, are {¢D,, | ¢ € SU,}; see
[CHLS09]. Moreover, ¥ = {1,...,n} in Sh(C(A),——). This is a complete
Boolean algebra. We have arrived at the setting of iterated forcing as in set
theory. Iterated forcing in set theory may be presented as follows; see Mo-
erdijk [Moe86, Ex 1.3a. If P is a poset in Sets, and Q is a poset in P,
then P x @ is the poset in Sets of pairs (p,q) with p € P, p I ¢ € Q,
and (p,q) < (p/,¢) iff p < p and plk q < ¢. If £ = Sh(P,——), and Q is
a poset in &, F := Shg(Q,—), then F = Sh(P x Q,——). In other words,
(P,——) x (Q,—) =2 (PxQ,——). If, as in the case of M,,, @ is a ¢cBA in &, then
(Q,—) = Q. So (PxQ,—) 2 (P,——) x Q. We expect similar simplifications
when starting from a Rickart C*-algebra [HLS09c].

A similar ——-transformation can be applied to our Bohrification of OMLs. In
the example studied in [HLS09b], we compute a 17 element Heyting algebra from
an OML. Adding the double negation we obtain a 16 element Boolean algebra.
The function f(0) = 0 and f(i) = 1 is ‘eventually’ equal to the constant function
1. As a result, we obtain the product of 4 Boolean algebras, the spectrum is
the copruduct of the corresponding locales.

5 Conclusions and further research

We have presented a non-commutative generalization of the spectrum motivated
by physical considerations.

We suggest another way to restrict to maximal subalgebras, while preserving
the possibility to compute a unique functional from a global section. Consider a
matrix algebra. Let p € C be a projection and suppose that M +— oy € X(M)
is continuous with respect to the unitary group action. Then o(p) € {0,1},
say it is 0. Since the unitary group is connected and acts transitively on the
maximal subalgebras, o(u*p) = 0 for all u. Suppose that p € My, Ms. Let u
transform M into Ms, but leave p fixed. We see that o(p) = 0 independent of
the choice of maximal subalgebra. By linearity and density, this extends from
projections to general elements: o may be uniquely defined on all elements.
This suggests that, at least for matrix algebras, the independence guaranteed
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by the poset, may also be guaranteed by the group action. We leave this issue
to future research.

Bohrification, i.e. the pM O construction, is not functorial when we equip
C*-algebras with their usual morphisms. The construction s functorial when
we change the notion of morphism [vdBH10]. More work seems to be need for
the MO construction: We have (I3, T) <(C(2),{(0,1), (1,0)}). However, this no
longer holds when we map C(2) into M5. In short, covers need not be preserved
under natural notions of morphism.

Bohrification may be described as a (co)limit [vdBH10]. While technically
different the intuitive meaning is similar: we are only interested in what happens
eventually.
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