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0. PRELIMINARIES ON MODAL LOGIC
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PROPOSITIONAL (NORMAL) MODAL LOGIC

Formulas:
ϕ ::= propositional symbol | ¬ϕ | ϕ ∧ ψ | ♦ϕ

Kripke models:
(W,R, V )

• W is the set of worlds

• R ⊆ W ×W is the accessibility relation

• V : Formulas → 2W is the valuation map, which satisfies

V (ϕ ∧ ψ) = V (ϕ) ∩ V (ψ)

V (¬ϕ) = W \ V (ϕ)

V (♦ϕ) = {x ∈ W | xRy for some y ∈ V (ϕ)}
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ACCESSIBILITY RELATIONS AS UNARY OPERATORS

Given a complete lattice L we denote by Q(L) the set of endomaps of L that
preserve arbitrary joins. This is an example of a quantale.

There is a bijection (in fact an isomorphism of quantales)

2W×W
∼=→ Q(2W )

R 7→ ♦R

given by, for all Y ⊆ W ,

♦R(Y ) = {x ∈ W | xRy for some y ∈ Y }

Hence,

• accessibility relations are equivalent to union preserving operators on 2W

• the third condition on valuation maps is just

V (♦ϕ) = ♦R(V (ϕ))
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ALGEBRAIC SEMANTICS

By a modal (Boolean) algebra will be meant a Boolean algebra B equipped
with a unary operation

♦ : B → B

that satisfies the conditions

♦0 = 0

♦(a ∨ b) = ♦a ∨ ♦b

An algebraic model (B,♦, V ) consists of a modal algebra (B,♦) equipped with a
valuation map

V : Formulas → B

that satisfies

V (ϕ ∧ ψ) = V (ϕ) ∧ V (ψ)

V (¬ϕ) = ¬V (ϕ)

V (♦ϕ) = ♦(V (ϕ))
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LINDENBAUM ALGEBRAS AND EQUIVALENCE

There is an algebraic model (L,♦L, VL) which is universal in the sense that
for any other model (B,♦, V ) there is a unique homomorphism of modal algebras
V such that the following diagram commutes:

Formulas
VL //

V ((QQQQQQQQQQQQQQQ L
V

��

B

The modal algebra (L,♦L) is the Lindenbaum algebra (for propositional normal
modal logic — system K), and models can be identified with homomorphisms

L → B .

Two formulas ϕ and ψ are equivalent , and we write ϕ ≡ ψ, if and only if
VL(ϕ) = VL(ψ) — equivalently, if and only if V (ϕ) = V (ψ) for every algebraic
model (B,♦, V ).

Completeness theorem (for system K). ϕ ≡ ψ if and only if V (ϕ) = V (ψ)
for every Kripke model (W,R, V ).

(This can be regarded as an extension of Stone’s representation theorem.)
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OTHER SYSTEMS OF PROPOSITIONAL MODAL LOGIC

There are similar completeness theorems for the following systems:

System T: The accessibility relations are reflexive, and the modal algebras satisfy

a ≤ ♦a

System S4: The accessibility relations are preorders , and the modal algebras sa-
tisfy

a ≤ ♦a
♦♦a ≤ ♦a

System S5: The accessibility relations are equivalence relations , and the modal
algebras satisfy

a ≤ ♦a
♦♦a ≤ ♦a

a ≤ ¬♦¬♦a
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1. WHY QUANTALES?
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Definition. A unital involutive quantale Q is a complete lattice equipped with
an additional structure of involutive monoid,

(ab)c = a(bc) ae = a = ea a∗∗ = a (ab)∗ = b∗a∗ ,

which is compatible with arbitrary joins:

(
∨

i ai)b =
∨

i aib b(
∨

i ai) =
∨

i bai (
∨

i ai)
∗ =

∨
i a

∗
i .

(In other words, an involutive monoid in the monoidal category of sup-lattices.)

Notation. 1 =
∨
Q 0 =

∨
∅

Example. 2W×W is a unital involutive quantale:

• Multiplication of binary relations is given by (forward) composition:

RS = R;S = S ◦R .

• The multiplicative unit e is the identity relation ∆W = {(x, x) | x ∈ W}.
• The involution is reversal: R∗ = {(y, x) | xRy}.
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Let W be a set, and R ⊆ W ×W a binary relation on W . The domain of R is

domR = {x ∈ W | xRy for some y ∈ W} ,

but we may equivalently define it to be the (subdiagonal) relation

ςR = {(x, x) ∈ W ×W | x ∈ domR} ,

thus turning dom into an operation

ς : 2W×W → 2W×W

We call ςR the support of R.

The image of ς consists of the set 2∆W of subdiagonal relations, which of course is
isomorphic to 2W . We can thus define ♦R as an operation on 2∆W , leading to the
following simple formula for all X ⊆ ∆W :

♦R(X) = ς(R;X) .
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Hence, a Kripke model can be equivalently defined to be a triple (W,R, V ), where
the valuation map

V : Formulas → 2∆W

satisfies

V (ϕ ∧ ψ) = V (ϕ);V (ψ) (note use of ; instead of ∩)

V (¬ϕ) = ∆W \ V (ϕ)

V (♦ϕ) = ς(R;V (ϕ))

If we further replace the second condition by the following two

V (¬ϕ);V (ϕ) = ∅
V (¬ϕ) ∪ V (ϕ) = ∆W

we see that the properties of V are entirely defined in terms of the structure of
unital quantale of 2W×W together with the additional operation ς , which we shall
now study.
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EXAMPLE

An advantage of this redefinition of the semantics lies in its convenience, for
instance when dealing with action logics such as propositional dynamic logic.
There are now programs,

α ::= atomic programs | α; β | α∗ | α ∪ β | ϕ?

(here ϕ is a formula) and each program determines a modality:

ϕ ::= atomic formulas | ¬ϕ | ϕ ∧ ψ | 〈α〉ϕ .

Then a model is a triple
(W,Π, V )

where W is the set of worlds (now called states), the map

Π : Programs → 2W×W

assigns meanings to programs, and V is the valuation map as before:

V : Formulas → 2∆W .
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The conditions that the maps

V : Formulas → 2∆W

Π : Programs → 2W×W

must satisfy are easily stated. For Π we have

Π(α; β) = Π(α); Π(β)

Π(α∗) =
⋃
n∈N

Π(α)n

Π(α ∪ β) = Π(α) ∪ Π(β)

Π(ϕ?) = V (ϕ)

and for V we have the usual propositional conditions plus the modal ones:

V (〈α〉ϕ) = ς(Π(α);V (ϕ)) .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. QUANTALE SEMANTICS OF MODAL LOGIC
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SUPPORTED QUANTALES

Definition. Let Q be a unital involutive quantale. A support on Q is a join
preserving map

ς : Q→ Q

satisfying, for all a ∈ Q,

ςa ≤ e (1)

ςa ≤ aa∗ (2)

a ≤ ςaa (3)

A supported quantale is a unital involutive quantale equipped with a specified sup-
port.

Example. 2W×W . Will see others later.
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Some properties...

• a = ςa = a∗ = a2, for all a ≤ e

• ↓e = ςQ has trivial involution (a∗ = a) and ab = a ∧ b (it is a locale!)

• a ≤ aa∗a (⇒ Q is a Gelfand quantale)

• ςa1 = a1

• the map (−)1 : ςQ→ Q1 is a retraction, split by ς : Q1 → ςQ

(Q1 is the set R(Q) of right-sided elements of Q.)
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Definition. An abstract Kripke model of propositional modal logic is a triple

(Q, r, v)

consisting of

• a supported quantale Q (the “quantale of worlds”)

• an accessibility element r ∈ Q
• a valuation map v : Formulas → ςQ

satisfying:

v(ϕ ∧ ψ) = v(ϕ)v(ψ) [= v(ϕ) ∧ v(ψ)]

v(¬ϕ)v(ϕ) = 0

v(¬ϕ) ∨ v(ϕ) = e

v(♦ϕ) = ς(r v(ϕ))

Or, for intuitionistic logic, replace the two middle conditions by a single one using
the pseudo-complement in ςQ (this is a locale and therefore a Heyting algebra):

v(¬ϕ) = v(ϕ) → 0 .
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EXAMPLES

The following variations on the notion of model have an obvious justification:

T-models: The accessibility element r satisfies e ≤ r.

S4-models: The accessibility element satisfies e ≤ r = r2.

S5-models: The accessibility element satisfies e ≤ r = r2 = r∗.

By a K-model will be meant one for which the accessibility element has no restriction.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

EXAMPLES

Also, going back to propositional dynamic logic, a model is now a triple

(Q, π, v)

where Q is a supported quantale and π and v are maps

v : Formulas → ςQ

π : Programs → Q

that satisfy the conditions:

π(α; β) = π(α)π(β)

π(α∗) =
∨
n∈N

π(α)n

π(α ∪ β) = π(α) ∨ π(β)

π(ϕ?) = v(ϕ)

v(〈α〉ϕ) = ς(π(α) v(ϕ))

etc.

Later we shall also look at temporal logic.
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STABLY SUPPORTED QUANTALES

It is convenient to restrict to a particular class of supported quantales:

Definition. A support is stable if the following (equivalent) conditions hold:

1. ς(ab) = ς(aςb)

2. ς(a1) = ςa

3. the map (−)1 : ςQ→ Q1 is an order isomorphism

4. many others...

A quantale equipped with a stable support is stably supported .

Example. 2W×W
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Theorem.

1. If Q has a stable support ς then it has no other support, and we have

ςa = e ∧ aa∗ = e ∧ a1 .

2. The category of stably supported quantales is a reflective full subcategory of
the category of unital involutive quantales.

Hence,

• Being stably supported is a property of a unital involutive quantale, rather than
additional structure.

• For a stably supported quantale Q the homomorphisms of unital involutive quan-
talesQ→ 2W×W (the relational representations) necessarily preserve the support.
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PROPERTIES OF THE QUANTALE SEMANTICS

From now on we restrict to stably supported quantales.

Theorem. The quantale semantics extends the modal algebra semantics (and
therefore the Kripke semantics) while retaining the same notions of equivalence
of formulas (and the same theorems, etc.):

ϕ ≡ ψ

if and only if v(ϕ) = v(ψ) for all abstract Kripke models (Q, r, v).
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“LINDENBAUM QUANTALES”

For each modal algebra (B,♦) there is a stably supported quantale Q(B), which
can be presented by generators and relations taking as set of generators B ∪ {r}
with r /∈ B, and with relations that make B a modal subalgebra of ςQ(B) with
respect to the modal operator defined on the latter by ♦a = ς(ra). This has a
universal property analogous to that of a Lindenbaum algebra. Contrary to the
situation with modal algebras, however, where the modal operators ♦ (or 〈α〉, etc.)
have to be specified in advance, and have to be preserved by the homomorphisms
(that is, each modal logic gives rise to a particular kind of modal algebra), here the
algebra of unital involutive quantales is common to any of the modal logics we
have seen so far ; that is, the type of modal logic under consideration is encoded as
a theory in the language of unital involutive quantales, making the latter a kind of
“meta modal logic”:



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem. There is a bijective correspondence between abstract Kripke mo-
dels (Q, r, v) (with stably supported Q) and homomorphisms of unital involutive
quantales

Q(L) → Q .

In particular, the usual Kripke models can be identified with the relational re-
presentations of Q(L), i.e., the homomorphisms of unital involutive quantales

Q(L) → 2W×W .

In order to obtain similar facts for other systems, such as T, S4, S5, propositional
dynamic logic, etc., one must define appropriate “Lindenbaum quantales”. For ins-
tance, the “Lindenbaum quantale” for S5 is obtained as before, but in addition the
generator r is subject to the relations

e ≤ r = r2 = r∗ .
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EXAMPLE — PROPOSITIONAL DYNAMIC LOGIC

For propositional dynamic logic all the programs are generators, and the rela-
tions are the obvious ones:

• α; β = αβ

• α ∪ β = α ∨ β
• ϕ? = ϕ

• the iteration α∗ (not involution) equals
∨

n∈N α
n

• 〈α〉ϕ = ς(αϕ)

• etc.
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EXAMPLE — RAMIFIED TEMPORAL LOGIC

ϕ ::= propositional symbol | ¬ϕ | ϕ ∧ ψ
| EXϕ | EFϕ | EGϕ | AXϕ | AFϕ | AGϕ

An abstract model is a triple (Q, r, v) where, as before,

• Q is a supported quantale

• r ∈ Q
• v : Formulas → ςQ

Now the accessibility element r must satisfy a condition that prevents time from
stopping,

ςr = e

and the valuation map v must satisfy the following conditions:
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• The usual propositional conditions

• Additional propositional conditions making AXϕ the complement of EX¬ϕ,
AGϕ the complement of EF¬ϕ, and AFϕ the complement of EG¬ϕ.

(All of this can easily be made intuitionistic.)

• v(EXϕ) = ς(rv(ϕ))

• v(EFϕ) = ς(
∨

n∈N r
nv(ϕ))

(Variants could include having a separate generator instead of
∨

n∈N r
n, subject

to appropriate relations.)

• v(EGϕ) =
∨
{a ≤ v(ϕ) | a ≤ ς(ra)}
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3. GROUPOIDS AND INVERSE SEMIGROUPS
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The notions of groupoid and of inverse semigroup generalize the notion of group.

Groupoids and inverse semigroups allow one to describe more general notions
of symmetry than groups, namely taking into account local symmetries in
differential topology and geometry .
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Definition. An inverse semigroup S is an involutive semigroup,

(ab)c = a(bc)

a∗∗ = a

(ab)∗ = b∗a∗ ,

(a∗ is the inverse of a) satisfying

aa∗a = a ,

and such that all idempotents commute. The set of idempotents is denoted by E(S).

Example. 1. The partial bijections on a set X (the symmetric inverse semigroup
of X).

2. The locally defined homeomorphisms of a topological space (pseudo-group).

3. The locally defined diffeomorphisms of a smooth manifold.

4. Any semigroup of partial isometries on a Hilbert space, or, more generally, of a
C*-algebra.
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The natural order of an inverse semigroup S is defined by

s ≤ t ⇐⇒ s = ft for some f ∈ E(S)

Theorem. Let S be an inverse semigroup. The set L(S) of order ideals of
S is a stably supported quantale. (In fact this yields a functor from inverse
semigroups to stably supported quantales that has a right adjoint.)

Hence, modal logics can be interpreted in any of the structures mentioned before
that yield inverse semigroups!

Furthermore this is not the only construction of a stably supported quantale
from an inverse semigroup:
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Example. Consider the pseudo-group Γ(X) of local homeomorphisms of a topolo-
gical space X with topology Ω(X). The idempotents are the identity maps on open
sets, and therefore we have

Ω(X) ∼= E(Γ(X))

This inverse semigroup is complete in the sense that its natural order has all possible
joins, and if we take the least quotient Q of L(Γ(X)) that forces those joins to be
preserved by the map

Γ(X) → L(Γ(X)) → Q

we obtain a stably supported quantale such that

ςQ ∼= ΩX .

Therefore a model of modal logic on the spaceX can be naturally defined to consist of
an abstract Kripke model whose quantale is Q. In particular, this provides a natural
way in which to define an intuitionistic topological semantics for propositional modal
logics.
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GROUPOIDS

G1×
G0

G1 π1 //

π2

��

G1

r
��

G1 d
//G0

G = G1×
G0

G1 m //G1

i
��

r //

d
//
G0uoo

In Set, Top, Loc, etc...
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EXAMPLES

• Groupoids can be constructed from arbitrary inverse semigroups.

• In particular, groupoids of germs of local homeomorphisms, local diffeo-
morphisms, etc.

• The fundamental groupoid of a topological space.

• The monodromy groupoid of a foliation (a generalization of the previous exam-
ple).

• The holonomy groupoid of a foliation.

• The dual groupoid of a C*-algebra.

All of these are topological groupoids.
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SUPPORTED QUANTALES FROM GROUPOIDS

Example. Let G be a discrete groupoid:

G = G1×
G0

G1 m //G1

i
��

r //

d
//
G0

uoo

Then 2G1 is a stably supported quantale:

UV = {xy | x ∈ U, y ∈ V, r(x) = d(y)}
e = G0

U ∗ = U−1

As particular cases we have the powerset of a discrete group, and the quantale of
binary relations on a set (G1 = W ×W ).
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Example. More generally, any topological groupoid with open unit space G0 and
open multiplication map m has a topology Ω(G1) that is a stably supported sub-
quantale of 2G1. Such groupoids are precisely the étale groupoids.

(In fact localic étale groupoids are equivalent to their quantales.)

⇒ Semantics of (intuitionistic or not) propositional modal logic on any étale
groupoid!

Not all the previous groupoids are étale, for instance the holonomy groupoids,
which however are always weakly equivalent to étale ones.

Ultimately it may be useful to define direct interpretations of modal logic on
the topologies of non-étale groupoids. That requires a generalization of the theory
of supported quantales.
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