
The Essence of the ITERATOR Pattern

Bruno Oliveira
Jeremy Gibbons

University of Oxford

1

INTRODUCTION

• The ITERATOR pattern gives a clean interface for
element-by-element access to a collection.

• Imperative iterations using the pattern have two
simultaneous aspects: mapping and accumulating.

• In this work we looked at various functional iteration
models and found that McBride and Paterson’s idioms is
the only model that manages to nicely capture both
aspects of (internal) iterations.

• We also provide fusion laws for iterations and argue that
our iteration model can generalise ITERATORs in some
senses.

INTRODUCTION 2

INTERNAL ITERATORS IN C#

foreach construct for simplified iteration over collections;
generics for parametric polymorphism.

public static int loop〈MyObj 〉 (IEnumerable〈MyObj 〉 coll){

int n = 0;

foreach (MyObj obj in coll){

n = n + 1;

obj .touch ();

}

return n;

}

Parametrically polymorphic in collection elements;
datatype-generic (ad-hoc polytypic) in collection shape via
IEnumerable interface.

INTERNAL ITERATORS IN C# 3

IDIOMS (OR APPLICATIVE FUNCTORS)

A generalization of Monads introduced by McBride and
Paterson.

class Functor m ⇒ Idiom m where

pure :: a → m a

(⊗) :: m (a → b) → m a → m b

Idioms obey the following laws:

pure id ⊗ u = u {-identity -}

pure (◦) ⊗ u ⊗ v ⊗ w = u ⊗ (v ⊗ w) {-composition -}

pure f ⊗ pure x = pure (f x) {-homomorphism -}

u ⊗ pure x = pure (λf → f x) ⊗ u {-interchange -}

IDIOMS (OR APPLICATIVE FUNCTORS) 4

TRAVERSALS

The idiomatic map (traverse) operation can be defined for a
large number of data types.

class Traversable t where

traverse :: Idiom i ⇒ (a → i b) → t a → i (t b)

dist :: Idiom i ⇒ t (i a) → i (t a)

dist = traverse id

instance Traversable [] where

traverse f [] = pure []

traverse f (x : xs) = pure (:) ⊗ f x ⊗ traverse f xs

A number of operations come for free given traverse.

TRAVERSALS 5

IDENTITY IDIOM - MAPPING

The mapping aspect of ITERATORs can be captured using the
Identity idiom.

newtype Id a = Id{runId :: a }

instance Idiom Id where

pure = Id

f ⊗ x = Id (runId f $ runId x)

tmap :: Traversable t ⇒ (a → b) → t a → t b

tmap f = runId ◦ traverse (Id ◦ f)

IDENTITY IDIOM - MAPPING 6

MONOIDAL IDIOM - ACCUMULATION

The accumulation aspect of ITERATORs can be captured with
the constant Idiom arising from a Monoid .

class Monoid o where

∅ :: o

(⊕) :: o → o → o

newtype Acc b a = A{runA :: b}

instance Monoid b ⇒ Idiom (Acc b) where

pure = A ∅

f ⊗ x = A (runA f ⊕ runA x)

(This idiom does not form a Monad .)

MONOIDAL IDIOM - ACCUMULATION 7

MONOIDAL IDIOM - ACCUMULATION

traverse specialized to the constant idiom:

accumulate :: (Monoid b,Traversable t) ⇒ (a → b) → t a → b

accumulate f = runA ◦ traverse (A ◦ f)

The crush operation (Meertens, 1996) can be defined for any
Traversable type constructor.

crush :: (Monoid a,Traversable t) ⇒ t a → a

crush = accumulate id

MONOIDAL IDIOM - ACCUMULATION 8

BACKWARDS IDIOM

Normally an idiom will do a left-to-right traversal. However, it
is possible to reverse the direction of traversal for any idiom.

newtype Backwards i a = B{runB :: i a }

instance Idiom i ⇒ Idiom (Backwards i) where

pure = B ◦ pure

f ⊗ x = B (pure (flip ($)) ⊗ runB x ⊗ runB f)

There is also a trivial Forwards idiom adapter that has no
effect on the traversal.

BACKWARDS IDIOM 9

IDIOM TRANSFORMERS

It is possible to define an adapter based on an idiom
transformer that can be used to parameterize our traversals
by the direction of the traversal.

data IAdapter m = ∀g . Idiom (g m) ⇒ IAdapter

(∀a. m a → g m a) (∀a. g m a → m a)

backwards :: Idiom m ⇒ IAdapter m

backwards = IAdapter B runB

ptraverse :: (Traversable t , Idiom i) ⇒ IAdapter i →

(a → i b) → t a → i (t b)

ptraverse (IAdapter w runW) f = runW ◦ traverse (w ◦ f)

The direction of a traversal is first-class!

IDIOM TRANSFORMERS 10

MORE GENERIC OPERATIONS

Accumulations parameterized by direction:

paccum :: (Monoid b,Traversable t) ⇒ IAdapter (Acc b) →

(a → b) → t a → b

paccum d f = runA ◦ ptraverse d (A ◦ f)

Generalizing Meertens crush combinator using a monoid
(id , ◦) of endo-functions.

reduceL :: Traversable t ⇒ (b → a → b) → b → t a → b

reduceL f = flip (runE ◦ paccum forwards (E ◦ flip f))

reduceR :: Traversable t ⇒ (a → b → b) → b → t a → b

reduceR f = flip (runE ◦ paccum backwards (E ◦ f))

These two operations, when specialized to lists, correspond to
foldl and foldr .

MORE GENERIC OPERATIONS 11

LAWS OF traverse

We know laws about idioms, but what about traverse? Should
the following be a valid instance of Traversable?

data Tree a = Leaf a | Bin (Tree a) (Tree a)

instance Traversable Tree where

traverse f (Leaf x) = pure Leaf ⊗ f x

traverse f (Bin t u) = pure Bin ⊗ traverse f u ⊗ traverse f t

What about this one?

instance Traversable Tree where

traverse f (Leaf x) = pure Leaf ⊗ f x

traverse f (Bin t u) = pure (flip Bin) ⊗ traverse f u ⊗ traverse f t

LAWS OF traverse 12

NATURALITY

Distributor dist should be natural in the idiom: for idiom
transformation φ:

φ :: m a → n a

φ (pure
m

a) = pure
n

a

φ (mf ⊗m mx) = φ mf ⊗n φ mx

we require dist to satisfy the following naturality property:

distn ◦ fmap φ = φ ◦ distm

One consequence of this naturality property is a ‘purity law’:

traverse pure = pure

This rules out the first definition of traverse in the previous slide
— but not the second one.

NATURALITY 13

FREE THEOREMS

The free theorem arising from the type of dist is:

dist ◦ fmap (fmap k) = fmap (fmap k) ◦ dist

As corollaries, we get the following two free theorems of
traverse:

traverse (g ◦ h) = traverse g ◦ fmap h

traverse (fmap k ◦ f) = fmap (fmap k) ◦ traverse f

FREE THEOREMS 14

FUSION OF TRAVERSALS

Unlike monads, idioms are closed under composition:

newtype Comp m n a = Comp{unComp :: m (n a)}

instance (Idiom m, Idiom n) ⇒ Idiom (Comp m n) where

pure x = Comp (pure (pure x))

mf ⊗ mx = Comp (pure (⊗) ⊗ unComp mf ⊗ unComp mx)

This idiom together with the free theorems gives us the
following fusion law:

traverse (Comp ◦ fmap f ◦ g) = Comp ◦ fmap (traverse f) ◦ traverse g

FUSION OF TRAVERSALS 15

REPMIN

Using a monoid (maxBound ,min) we can define

tmin :: (Ord a,Bounded a) ⇒ a → Writer (Min a) a

tmin a = do {tell (Min a); return a }

trep :: a → Reader a a

trep a = ask

trepmin :: (Ord a,Bounded a) ⇒ Tree a → Tree a

trepmin t = let (r ,m) = runWriter iteration in runReader r (unMin m)

where iteration = fmap (traverse trep) (traverse tmin t)

REPMIN 16

REPMIN

These two traversals can be fused using the fusion law of
traversals.

trepmin :: (Ord a,Bounded a) ⇒ Tree a → Tree a

trepmin t = let (r ,m) = runWriter iteration in runReader r (unMin m)

where iteration = unComp $ traverse (Comp ◦ fmap trep ◦ tmin) t

REPMIN 17

CONCLUSIONS

• Idioms and traverse provide a very nice theory for
iterations. We have axioms and fusion laws.

• The direction of the traversal is first-class.

• Idiomatic traversals are more general than
object-oriented ITERATORs in at least one sense: it is trivial
with our approach to change the type of the collection
elements with a traversal.

CONCLUSIONS 18

