The Essence of the ITERATOR Pattern

Bruno Oliveira
Jeremy Gibbons
University of Oxford

e The ITERATOR paftern gives a clean interface for
element-by-element access to a collection.

e Imperative iterations using the paftern have two
simultfaneous aspects: mapping and accumulating.

e INn this work we looked af various functional iteration
models and found that McBride and Paterson’s idioms is
the only model that manages to nicely capture both
aspects of (internal) iterations.

e We also provide fusion laws for iterations and argue that
our iteration model can generalise ITERATORS in some
senses.

INTRODUCTION

INTERNAL ITERATORS IN C#

foreach construct for simplified iteration over collections;
generics for parametric polymorphism.

public static int loop(MyObj) (IEnumerable{ MyObj) coll){
int n = 0;
foreach (MyObj obj in coll){
n=mn+1;
obj.touch ();

}

return n;

}

Parametrically polymorphic in collection elements;
daftatype-generic (ad-hoc polytypic) in collection shape via
IEnumerable interface.

INTERNAL ITERATORS IN C#

A generalization of Monads infroduced by McBride and
Paterson.

class Functor m = Idiom m where
pure::a — m a

(®) =m(a—b)—>ma—mb

Idioms obey the following laws:

pure id @ u = u {-identity -}

pure (0) QU VW =u® (v w) {-composition -}
pure f @ pure x = pure (f x) {-homomorphism -}
u @ pure x = pure (\f — f z) ® u {-interchange -}

IDIOMS (OR APPLICATIVE FUNCTORS) 4

The idiomatic map (traverse) operation can be defined for a
large number of data types.

class Traversable t where
traverse :: Idiom i = (a — 1 b) = t a — i (¢ b)
dist : Idiom i =t (i a) — i (t a)
dist = traverse id
instance Traversable || where
traverse f [] = pure []

traverse f (x :xs) = pure (1) ® f ¢ ® traverse f xs

A number of operations come for free given traverse.

TRAVERSALS

IDENTITY IDIOM - MAPPING

The mapping aspect of ITERATORS can be captured using the
Identity idiom.

newtype Id a = Id{runld :: a}

instance Idiom Id where
pure = Id
f®@xz=1d (runld f $ runld)

tmap :: Traversable t = (a — b) - ta —1tb

tmap f = runld o traverse (Id o f)

IDENTITY IDIOM - MAPPING

MONOIDAL IDIOM - ACCUMULATION

The accumulation aspect of ITERATORS can be captured with
the constant Idiom arising from a Monoid.

class Monoid o where
O o
(®)::0o—0—0
newtype Acc b a = A{runA:: b}

instance Monoid b = Idiom (Acc b) where

pure _ = A ()
fez =A (runA f ® runAd x)

(This idiom does not form a Monad.)

MONOIDAL IDIOM - ACCUMULATION

MONOIDAL IDIOM - ACCUMULATION

traverse specidalized to the constant idiom:

accumulate :: (Monoid b, Traversable t) = (a — b) — t a — b

accumulate f = runA o traverse (A o f)

The crush operation (Meertens, 1996) can be defined for any
Traversable type constructor.

crush :: (Monoid a, Traversable t) =t a — a

crush = accumulate id

MONOIDAL IDIOM - ACCUMULATION

Normally an idiom will do a left-tfo-right fraversal. However, it
IS possible To reverse the direction of traversal for any idiom.,

newtype Backwards i a = B{runB :: i a}

instance Idiom i = Idiom (Backwards i) where
pure = B o pure
f®x =B (pure (flip ($)) ® runB x @ runB f)

There is also a frivial Forwards idiom adapter that has no
effect on the fraversal.

BACKWARDS IDIOM

It is possible to define an adapter based on an idiom
fransformer that can e used to parameterize our traversals

by the direction of the traversal.

data [Adapter m = Vg. Idiom (g m) = [Adapter

(Va. m a — gma) (Va. g m a— m a)
backwards :: Idiom m = IAdapter m
backwards = IAdapter B runB

ptraverse :: (Traversable t, Idiom i) = IAdapter i —
(a —ib)—ta—i(th)

ptraverse (IAdapter w runW) f = runW o traverse (w o f)

The direction of a fraversal is first-class!

IDIOM TRANSFORMERS

10

Accumulations parameterized by direction:
paccum :: (Monoid b, Traversable t) = IAdapter (Acc b) —
(a—b)—>ta—b

paccum d f = runA o ptraverse d (Ao f)

Generalizing Meertens crush, combinator using a monoid
(id, o) of endo-functions.

reducel :: Traversable t = (b - a —b) - b—ta—b

reducel f = flip (runE o paccum forwards (E o flip f))

reduceR :: Traversable t = (a — b —b) - b—ta—b

reduceR [= flip (runE o paccum backwards (E o f))

These tTwo operations, when specialized to lists, correspond to
foldl and foldr.

MORE GENERIC OPERATIONS

11

We know laws about idioms, but what about traverse? Should
the following be a valid instance of Traversable?

data Tree a = Leaf a | Bin (Tree a) (Tree a)

instance Traversable Tree where
traverse f (Leaf x) = pure Leaf ® f x

traverse f (Bin t u) = pure Bin ® traverse f u ® traverse f t
What about this one?

instance Traversable Tree where
traverse f (Leaf x) = pure Leaf ® f x
traverse f (Bin t u) = pure (flip Bin) ® traverse f u ® traverse f t

LAWS OF traverse 12

Distributor dist should be natural in the idiom: for idiom
fransformation ¢:

o::ma—na

ure a = DUTE a
¢ (pure,, a) pure,,

b (Mf @ mz) = ¢ Mf @y ¢ M

we require dist to satisfy the following naturality property:
dist,, o fmap ¢ = ¢ o dist

One conseguence of this naturality property is a ‘purity law’:
traverse pure = pure

This rules out the first definition of traverse in the previous slide
— but not the second one.

NATURALITY 13

The free theorem arising from the type of dist Is:
dist o fmap (fmap k) = fmap (fmap k) o dist

As corollaries, we get the following fwo free theorems of

traverse:.

traverse (g o h) — traverse g o fmap h

traverse (fmap ko f) = fmap (fmap k) o traverse f

FREE THEOREMS

14

Unlike monades, idioms are closed under composition:
newtype Comp m n a = Comp{unComp ::m (n a)}

instance (Idiom m, Idiom n) = Idiom (Comp m n) where
pure x = Comp (pure (pure x))

mf @ mx = Comp (pure (®) ® unComp mf @ unComp mx)

This idiom fogether with the free theorems gives us the
following fusion law:

traverse (Comp o fmap f o g) = Comp o fmap (traverse f) o traverse g

FUSION OF TRAVERSALS 15

Using a monoid (maxBound, min) we can define

tmin :: (Ord a, Bounded a) = a — Writer (Min a) a
tmin a = do {tell (Min a); return a }

trep ::a — Reader a a

trep a = ask

trepmin :: (Ord a, Bounded a) = Tree a — Tree a
trepmin t = let (r, m) = runWriter iteration in runReader r (unMin m)

where iteration = fmap (traverse trep) (traverse tmin t)

REPMIN 16

These two fraversals can be fused using the fusion law of
fraversals.

trepmin :: (Ord a, Bounded a) = Tree a — Tree a
trepmin t = let (r, m) = runWriter iteration in runReader r (unMin m)

where iteration = unComp $ traverse (Comp o fmap trep o tmin) t

REPMIN 17

e |dioms and traverse provide a very nice theory for
itferations. We have axioms and fusion laws.

e The direction of the traversal is first-class.

e |[diomatic traversals are more general than
object-oriented ITERATORS in At least one sense: it is trivial
with our approach to change the type of the collection
elements with a fraversal.

CONCLUSIONS

18

