
Hessian Calculation using AD
Devendra Ghate and Mike Giles

devg@comlab.ox.ac.uk, giles@comlab.ox.ac.uk

Oxford University Computing Laboratory

AD Workshop, Dec. 2006 – p. 1/23

Motivation

Hessian of a functional of interest (J) with respect to design
variables αi

∂2J

∂αi∂αj
,

is used in various applications including optimisation and
uncertainty propagation.

AD Workshop, Dec. 2006 – p. 2/23

Background

Hessian capability in some AD packages using
forward-on-reverse mode

ADOL-C provides driver routines for calculating
Entire hessian
Hessian-vector product

ADIFOR & TAPENADE
forward-on-forward
forward-on-reverse (?)

www.autodiff.org

Very few applications of AD tools for Hessian
calculation listed
Large number of publications on Hessian calculation
in early 90s

AD Workshop, Dec. 2006 – p. 3/23

Background

Research by AD community in

parallel implementation of Hessian calculation (Bücker
et.al., ’06) (forward-on-forward)

efficient sparse Hessian calculation (Verma, ’99)

efficient calculation of Hessian-Vector products for
optimisation applications (many publications)

AD Workshop, Dec. 2006 – p. 4/23

Background

AD community strives to provide a generic Hessian
capability, but “BLACK-BOX” application of AD for Hessian
is too expensive for applications based on fixed-point
iteration.

Since we already have a neatly structured nonlinear code
(HYDRA) with linear and adjoint capabilities, we look for an
algorithm suited for our application.

AD Workshop, Dec. 2006 – p. 5/23

Gradient Calculation

Consider the functional of interest j(α) = J(α,w(α)) where
w is defined by R(α,w) = 0. Here w = {x, u}. Gradient of J

is given by
∂j

∂αi
=

∂J

∂αi
+

∂J

∂w

∂w

∂αi
.

AD Workshop, Dec. 2006 – p. 6/23

Gradient Calculation

Consider the functional of interest j(α) = J(α,w(α)) where
w is defined by R(α,w) = 0. Here w = {x, u}. Gradient of J

is given by
∂j

∂αi
=

∂J

∂αi
+

∂J

∂w

∂w

∂αi
.

Continuing similarly, the Hessian is

∂2j

∂αi ∂αj
=

∂2J

∂αi ∂αj
+

∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

+
∂J

∂w

(

∂2w

∂αi ∂αj

)

AD Workshop, Dec. 2006 – p. 6/23

Gradient Calculation

Consider the functional of interest j(α) = J(α,w(α)) where
w is defined by R(α,w) = 0. Here w = {x, u}. Gradient of J

is given by
∂j

∂αi
=

∂J

∂αi
+

∂J

∂w

∂w

∂αi
.

Continuing similarly, the Hessian is

∂2j

∂αi ∂αj
=

∂2J

∂αi ∂αj
+

∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

+
∂J

∂w

(

∂2w

∂αi ∂αj

)

AD Workshop, Dec. 2006 – p. 6/23

Explicit Calculation

If α ∈ Rn then (forward mode) Hessian calculation requires

Baseline Nonlinear solution

O(n) Linear solutions ∂w
∂αi

O(n2) Second derivative solutions ∂2w
∂αi ∂αj

For explicit functions, this is straightforward.

But flow equations are implicit, which would require
computationally expensive iterative solutions for ∂w

∂αi
and

∂2w
∂αi ∂αj

.

(The linearisation of an iterative process also affects the
cost of forward-on-reverse calculations.)

AD Workshop, Dec. 2006 – p. 7/23

Hessian Calculation

Rearranging, the Hessian of the functional of interest J is

∂2j

∂αi ∂αj
=

∂J

∂w

∂2w

∂αi∂αj
+ D2

i,jJ

where,

D2

i,jJ =
∂2J

∂αi ∂αj
+

∂2J

∂αi∂w

(

∂w

∂αj

)

+
∂2J

∂αj∂w

(

∂w

∂αi

)

+
∂2J

∂w2

(

∂w

∂αi

∂w

∂αj

)

AD Workshop, Dec. 2006 – p. 8/23

Hessian Calculation

Similarly, for the state equation R(α,w) = 0,

∂R

∂w

∂2w

∂αi∂αj
+ D2

i,jR = 0

Substituting,

∂2j

∂αi∂αj
= −

∂J

∂w

(

∂R

∂w

)

−1

D2

i,jR + D2

i,jJ

= vT D2

i,jR + D2

i,jJ.

where v is the usual adjoint variable associated with J .

AD Workshop, Dec. 2006 – p. 9/23

Computational Cost

Suppose we have n design variables and m functions of
interest then

Baseline nonlinear solution (iterative)

n linear solutions (iterative)

m adjoint solutions (iterative)
1

2
n(n + 1) cheap evaluations of D2

i,jR

m × 1

2
n(n + 1) really cheap dot products vT D2

i,jR

m × 1

2
n(n + 1) really cheap evaluations of D2

i,jJ

AD Workshop, Dec. 2006 – p. 10/23

Computational Cost

If cost dominated by iterative solver, then

Method Cost

iterative forward-on-forward O(n2)

iterative forward-on-reverse O(n × m)

iterative forward/reverse
+ residual forward-on-forward O(n + m)

n - # design variables
m - # functions of interest

AD Workshop, Dec. 2006 – p. 11/23

Implementation

Tapenade used twice in forward mode to generate
double differentiated routines

Second order perturbations propagated through various
nonlinear routines

No extra code structuring required

Separate functions written to evaluate D2

i,jR and D2

i,jJ

A makefile written to generate all the double
differentiated routines

AD Workshop, Dec. 2006 – p. 12/23

Implementation

lift_wall (w,J)

lift_wall_d (w,wd,J,Jd)
wd = ∂w

∂αi
, Jd = ∂j

∂αi
.

lift_wall_dd(w,wd0,wd,wdd,J,Jd0,Jd,Jdd)
wd = ∂w

∂αi
, Jd = ∂j

∂αi
,

wd0 = ∂w
∂αj

, Jd0 = ∂j
∂αj

,

wdd = ∂2w
∂αi∂αj

, Jdd = ∂2j
∂αi∂αj

.

Setting wdd = 0 gives Jdd = D2

i,jJ .

AD Workshop, Dec. 2006 – p. 13/23

Actual Implementation

w = {x, u}, where
x - grid variables, and
u - flow variables

∂2x
∂αi∂αj

available

No need for adjoints w.r.t x

Only ∂2u
∂αi∂αj

replaced by the adjoint term

Rest of the analysis remains same

AD Workshop, Dec. 2006 – p. 14/23

Test Case

Three modes of perturbation to NACA0012 airfoil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

0.1

Mode 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0.1
Mode 1

AD Workshop, Dec. 2006 – p. 15/23

Test Case

2D Euler Solver

Freestream mach = 0.4, angle of attack = 3o

Modes Finite Difference Direct

1 - 1 − 3.111203625702499E − 07 −3.111203862791910E − 07

1 - 2 −2.097600811599999E − 06 −2.097600748629300E − 06

1 - 3 −9.959223201885120E − 07 −9.959223212828186E − 07

2 - 1 −2.097600747610895E − 06 −2.097600748629318E − 06

2 - 2 −2.159687423428786E − 04 −2.159687424802269E − 04

2 - 3 −1.746537857481162E − 04 −1.746537859860203E − 04

3 - 1 −9.959222904915369E − 07 −9.959223212828262E − 07

3 - 2 −1.746537861210817E − 04 −1.746537859860204E − 04

3 - 3 −1.970937036569875E − 05 −1.970937034187627E − 05

AD Workshop, Dec. 2006 – p. 16/23

Extrapolation

Comparison between

Nonlinear Solution

Lα = L(x(α), u(α))

Quadratic extrapolation using Hessian

Lα = Lα0
+ ∂L

∂α (α − α0) + 1

2

∂2L
∂α2 (α − α0)

2

Linear extrapolation with adjoint correction

Lα = Lα0
+ ∂L

∂α (α−α0)−v(α0)
TR(x(α), u(α0)+ ∂u

∂α(α−α0))

The difference from a least-squares cubic fit of the
nonlinear solution is plotted.

AD Workshop, Dec. 2006 – p. 17/23

Extrapolation

Low subsonic test case (Freestream mach = 0.4, AOA = 3
o)

2.9 2.92 2.94 2.96 2.98 3 3.02 3.04 3.06 3.08 3.1

−1

−0.5

0

0.5

1

1.5
x 10

−8

α

D
iff

er
en

ce
 in

 li
ft

Low Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

AD Workshop, Dec. 2006 – p. 18/23

Extrapolation

High subsonic test case (Freestream mach = 0.65, AOA = 10
o)

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−10

−8

−6

−4

−2

0

2

4
x 10

−8

α

D
iff

er
en

ce
 in

 li
ft

High Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

AD Workshop, Dec. 2006 – p. 19/23

Extrapolation

High subsonic test case (Freestream mach = 0.65, AOA = 10
o)

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−10

−8

−6

−4

−2

0

2

4
x 10

−8

α

D
iff

er
en

ce
 in

 li
ft

High Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

AD Workshop, Dec. 2006 – p. 19/23

Extrapolation

High subsonic test case (Freestream mach = 0.65, AOA = 10
o)

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−5

α

D
iff

er
en

ce
 in

 li
ft

High Subsonic

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

AD Workshop, Dec. 2006 – p. 20/23

Extrapolation

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

J

J = |sin(x)|

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

x

Jd

Jd=sign(sin(x))*cos(x)

Time-step calculation included term abs(vxdy − vydx)

Sign change in this term at α = 9.995o at one or more
cells

The term modified to
√

(vx dy − vy dx)2 + ε2, where
ε = 0.1 c ds

AD Workshop, Dec. 2006 – p. 21/23

Extrapolation

High subsonic test case (Freestream mach = 0.65, AOA = 10
o)

9.9 9.92 9.94 9.96 9.98 10 10.02 10.04 10.06 10.08 10.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−8

α

D
iff

er
en

ce
 in

 li
ft

High Subsonic with modified timestep calculation

Nonlinear
Quadratic Extrap. with Hessian
Adjoint corrected linear Extrap.

AD Workshop, Dec. 2006 – p. 22/23

Conclusion

A computationally cheap and accurate method for
Hessian calculation is demonstrated

For applications with expensive iterations might be
more efficient than forward-on-reverse calculations,
and simpler to implement

Extrapolation
Linear extrapolation with adjoint correction is more
accurate and robust than the quadratic extrapolation
using Hessian

AD Workshop, Dec. 2006 – p. 23/23

	Motivation
	Background
	Background
	Background
	Gradient Calculation
	Gradient Calculation
	Gradient Calculation

	Explicit Calculation
	Hessian Calculation
	Hessian Calculation
	Computational Cost
	Computational Cost
	Implementation
	Implementation
	Actual Implementation
	Test Case
	Test Case
	Extrapolation
	Extrapolation
	Extrapolation
	Extrapolation

	Extrapolation
	Extrapolation
	Extrapolation
	Conclusion

