Hessian Calculation using AD

Devendra Ghate and Mike Giles

devg@comlab.ox.ac.uk, giles@comlab.ox.ac.uk

Oxford University Computing Laboratory

Motivation

Hessian of a functional of interest (*J*) with respect to design variables α_i

$$\frac{\partial^2 J}{\partial \alpha_i \partial \alpha_j},$$

is used in various applications including optimisation and uncertainty propagation.

Background

Hessian capability in some AD packages using forward-on-reverse mode

- ADOL-C provides driver routines for calculating
 - Entire hessian
 - Hessian-vector product
- ADIFOR & TAPENADE
 - forward-on-forward
 - forward-on-reverse (?)
- www.autodiff.org
 - Very few applications of AD tools for Hessian calculation listed
 - Large number of publications on Hessian calculation in early 90s

Background

Research by AD community in

- parallel implementation of Hessian calculation (Bücker et.al., '06) (forward-on-forward)
- efficient sparse Hessian calculation (Verma, '99)
- efficient calculation of Hessian-Vector products for optimisation applications (many publications)

Background

AD community strives to provide a generic Hessian capability, but "BLACK-BOX" application of AD for Hessian is too expensive for applications based on fixed-point iteration.

Since we already have a neatly structured nonlinear code (HYDRA) with linear and adjoint capabilities, we look for an algorithm suited for our application.

Gradient Calculation

Consider the functional of interest $j(\alpha) = J(\alpha, w(\alpha))$ where w is defined by $R(\alpha, w) = 0$. Here $w = \{x, u\}$. Gradient of J is given by

$$\frac{\partial j}{\partial \alpha_i} = \frac{\partial J}{\partial \alpha_i} + \frac{\partial J}{\partial w} \frac{\partial w}{\partial \alpha_i}.$$

Gradient Calculation

Consider the functional of interest $j(\alpha) = J(\alpha, w(\alpha))$ where w is defined by $R(\alpha, w) = 0$. Here $w = \{x, u\}$. Gradient of J is given by

$$\frac{\partial j}{\partial \alpha_i} = \frac{\partial J}{\partial \alpha_i} + \frac{\partial J}{\partial w} \frac{\partial w}{\partial \alpha_i}.$$

Continuing similarly, the Hessian is

$$\frac{\partial^2 j}{\partial \alpha_i \partial \alpha_j} = \frac{\partial^2 J}{\partial \alpha_i \partial \alpha_j} + \frac{\partial^2 J}{\partial \alpha_i \partial w} \left(\frac{\partial w}{\partial \alpha_j}\right) + \frac{\partial^2 J}{\partial \alpha_j \partial w} \left(\frac{\partial w}{\partial \alpha_i}\right) + \frac{\partial^2 J}{\partial w^2} \left(\frac{\partial w}{\partial \alpha_i} \frac{\partial w}{\partial \alpha_j}\right) + \frac{\partial J}{\partial w} \left(\frac{\partial^2 w}{\partial \alpha_i \partial \alpha_j}\right)$$

Gradient Calculation

Consider the functional of interest $j(\alpha) = J(\alpha, w(\alpha))$ where w is defined by $R(\alpha, w) = 0$. Here $w = \{x, u\}$. Gradient of J is given by

$$\frac{\partial j}{\partial \alpha_i} = \frac{\partial J}{\partial \alpha_i} + \frac{\partial J}{\partial w} \frac{\partial w}{\partial \alpha_i}.$$

Continuing similarly, the Hessian is

$$\frac{\partial^2 j}{\partial \alpha_i \partial \alpha_j} = \frac{\partial^2 J}{\partial \alpha_i \partial \alpha_j} + \frac{\partial^2 J}{\partial \alpha_i \partial w} \left(\frac{\partial w}{\partial \alpha_j}\right) + \frac{\partial^2 J}{\partial \alpha_j \partial w} \left(\frac{\partial w}{\partial \alpha_i}\right) + \frac{\partial^2 J}{\partial w^2} \left(\frac{\partial w}{\partial \alpha_i} \frac{\partial w}{\partial \alpha_j}\right) + \frac{\partial J}{\partial w} \left(\frac{\partial^2 w}{\partial \alpha_i \partial \alpha_j}\right)$$

Explicit Calculation

If $\alpha \in \mathbb{R}^n$ then (forward mode) Hessian calculation requires

- Baseline Nonlinear solution
- O(n) Linear solutions $\frac{\partial w}{\partial \alpha_i}$
- $O(n^2)$ Second derivative solutions $\frac{\partial^2 w}{\partial \alpha_i \partial \alpha_i}$

For explicit functions, this is straightforward.

But flow equations are implicit, which would require computationally expensive iterative solutions for $\frac{\partial w}{\partial \alpha_i}$ and

 $\frac{\partial^2 w}{\partial \alpha_i \ \partial \alpha_j}$

(The linearisation of an iterative process also affects the cost of forward-on-reverse calculations.)

Hessian Calculation

Rearranging, the Hessian of the functional of interest J is

$$\frac{\partial^2 j}{\partial \alpha_i \ \partial \alpha_j} = \frac{\partial J}{\partial w} \ \frac{\partial^2 w}{\partial \alpha_i \partial \alpha_j} + D_{i,j}^2 J$$

where,

$$D_{i,j}^{2}J = \frac{\partial^{2}J}{\partial\alpha_{i} \ \partial\alpha_{j}} + \frac{\partial^{2}J}{\partial\alpha_{i}\partial w} \left(\frac{\partial w}{\partial\alpha_{j}}\right) + \frac{\partial^{2}J}{\partial\alpha_{j}\partial w} \left(\frac{\partial w}{\partial\alpha_{i}}\right) + \frac{\partial^{2}J}{\partial w^{2}} \left(\frac{\partial w}{\partial\alpha_{i}} \ \frac{\partial w}{\partial\alpha_{j}}\right)$$

Hessian Calculation

Similarly, for the state equation $R(\alpha, w) = 0$,

$$\frac{\partial R}{\partial w} \frac{\partial^2 w}{\partial \alpha_i \partial \alpha_j} + D_{i,j}^2 R = 0$$

Substituting,

$$\frac{\partial^2 j}{\partial \alpha_i \partial \alpha_j} = -\frac{\partial J}{\partial w} \left(\frac{\partial R}{\partial w}\right)^{-1} D_{i,j}^2 R + D_{i,j}^2 J$$
$$= v^T D_{i,j}^2 R + D_{i,j}^2 J.$$

where v is the usual adjoint variable associated with J.

Computational Cost

Suppose we have n design variables and m functions of interest then

- Baseline nonlinear solution (iterative)
- *n* linear solutions (iterative)
- *m* adjoint solutions (iterative)
- $\frac{1}{2}n(n+1)$ cheap evaluations of $D_{i,j}^2 R$
- $m \times \frac{1}{2}n(n+1)$ really cheap dot products $v^T D_{i,j}^2 R$
- $m \times \frac{1}{2}n(n+1)$ really cheap evaluations of $D_{i,j}^2 J$

Computational Cost

If cost dominated by iterative solver, then

Method	Cost
iterative forward-on-forward	$O(n^2)$
iterative forward-on-reverse	$O(n \times m)$
iterative forward/reverse	
+ residual forward-on-forward	O(n+m)

n - # design variables m - # functions of interest

Implementation

- Tapenade used twice in forward mode to generate double differentiated routines
- Second order perturbations propagated through various nonlinear routines
- No extra code structuring required
- Separate functions written to evaluate $D_{i,j}^2 R$ and $D_{i,j}^2 J$
- A makefile written to generate all the double differentiated routines

Implementation

lift_wall (w,J)

$$egin{array}{lift_wall_d & (w,wd,J,Jd)\ wd = rac{\partial w}{\partial lpha_i}, & Jd = rac{\partial j}{\partial lpha_i}. \end{array}$$

$$\begin{split} &\text{lift_wall_dd(w,wd0,wd,wdd,J,Jd0,Jd,Jdd)} \\ &\text{wd} = \frac{\partial w}{\partial \alpha_i}, \qquad \text{Jd} = \frac{\partial j}{\partial \alpha_i}, \\ &\text{wd0} = \frac{\partial w}{\partial \alpha_j}, \qquad \text{Jd0} = \frac{\partial j}{\partial \alpha_j}, \\ &\text{wdd} = \frac{\partial^2 w}{\partial \alpha_i \partial \alpha_j}, \qquad \text{Jdd} = \frac{\partial^2 j}{\partial \alpha_i \partial \alpha_j}. \end{split}$$

Setting wdd = 0 gives $Jdd = D_{i,j}^2 J$.

Actual Implementation

$$w = \{x, u\}$$
, where
 x - grid variables, and
 u - flow variables

No need for adjoints w.r.t x

- Only $\frac{\partial^2 u}{\partial \alpha_i \partial \alpha_j}$ replaced by the adjoint term
- Rest of the analysis remains same

Test Case

Three modes of perturbation to NACA0012 airfoil

Test Case

- 2D Euler Solver
- **•** Freestream mach = 0.4, angle of attack = 3°

Modes	Finite Difference	Direct
1 - 1	- 3 . 111203 625702499 E - 07	-3.111203862791910E - 07
1 - 2	-2.097600811599999E - 06	-2.097600748629300E - 06
1 - 3	-9.959223201885120E - 07	-9.959223212828186E - 07
2 - 1	-2.097600747610895E - 06	-2.097600748629318E - 06
2 - 2	-2.159687423428786E - 04	-2.159687424802269E - 04
2 - 3	-1.746537857481162E - 04	-1.746537859860203E - 04
3 - 1	-9.959222904915369E - 07	-9.959223212828262E - 07
3 - 2	-1.746537861210817E - 04	-1.746537859860204E - 04
3 - 3	-1.970937036569875E - 05	-1.970937034187627E - 05

Comparison between

Nonlinear Solution

$$L_{\alpha} = L(x(\alpha), u(\alpha))$$

Quadratic extrapolation using Hessian

$$L_{\alpha} = L_{\alpha_0} + \frac{\partial L}{\partial \alpha} (\alpha - \alpha_0) + \frac{1}{2} \frac{\partial^2 L}{\partial \alpha^2} (\alpha - \alpha_0)^2$$

Linear extrapolation with adjoint correction

$$L_{\alpha} = L_{\alpha_0} + \frac{\partial L}{\partial \alpha} (\alpha - \alpha_0) - v(\alpha_0)^T R(x(\alpha), u(\alpha_0) + \frac{\partial u}{\partial \alpha} (\alpha - \alpha_0))$$

The difference from a least-squares cubic fit of the nonlinear solution is plotted.

Low subsonic test case (Freestream mach = 0.4, AOA = 3°)

- Time-step calculation included term $abs(v_x dy v_y dx)$
- Sign change in this term at $\alpha = 9.995^o$ at one or more cells
- The term modified to $\sqrt{(v_x \, dy v_y \, dx)^2 + \epsilon^2}$, where $\epsilon = 0.1 \, c \, ds$

Conclusion

- A computationally cheap and accurate method for Hessian calculation is demonstrated
 - For applications with expensive iterations might be more efficient than forward-on-reverse calculations, and simpler to implement
- Extrapolation
 - Linear extrapolation with adjoint correction is more accurate and robust than the quadratic extrapolation using Hessian