
BLAS

Christoph Ortner

Stef Salvini

The BLASics

π Basic Linear Algebra Subroutines
ν Building blocks for more complex computations

ν Very widely used

π Level means “number of operations”
ν Level 1: vector-vector operations – O(n) operations

ν Level 2: matrix vector operations – O(n2) operations

ν Level 3: Matrix-Matrix operations - O(n3) operations

π A Flop is any numerical operation
ν Adds, Mults, divisions, square roots (!!!!), etc

π Of course divisions & square roots are more expensive …

ν Loads/stores are not taken into account (history …)

π BLAS provide a good basis to understand performance issues

A Fistful of Flops

π BLAS take off with Vector processors (70s – 80s)

π Level 1 first, then level 2 BLAS
ν Encapsulate expert knowledge

ν Efficient building blocks

ν “Local” optimisation of code enough to increase performance

Level 1 BLAS

π O(n) operands (I.e. load/stores), operations O(n) (flops)

π Vector operations (loved by vector processors)
ν Ratio between load/stores and operations: O(1)
ν E.g. “axpy” : α x + y ◊ y

π Reduction operations (hated by vector processors)
ν Ratio between load/stores and operations: O(n)
ν E.g. dot product: α = xT y

π Available:
ν Single & double precision, real and complex

π Names beginning with S, D, C and Z, respectively

π Axpy: SAXPY, DAXPY, CAXPY, ZAXPY

π Dot Products (SDOT, DDOT, CDOTC, ZDOTC)

Level 2 BLAS

π O(n2) operands, O(n2) operations

π Performance can be understood in terms of Level 1 cache

π Matrix-vector product, matrix updates, solution of a triangular system
of equations, etc

x =

Dot productAnother Dot product

Superscalar takes over

π Technology dictated by
ν Cost

ν Widespread use

ν Relatively small HPC market

π Superscalar here means more than one operation per cycle

π All supercalar architecture (give-or-take)
ν No direct access to memory

π Hierarchical memory layout

π Use of caches to make use of any data locality

ν Rule-of-thumb for performance:
π “Thou shalt not have as many operands as operations”

π In fact: poor performance of Level 1 and 2 BLAS (sometimes horrifyingly so)

π Poor performance for indirect addressing

π FFTs very difficult

The Data View of an SS Architecture

Local Memory

Primary Cache

Registers

Secondary Cache

Global Memory

Data must migrate
through the different
levels of memory in a

very coordinated
fashion

S
p

ee
d

 o
f

d
at

a
ac

ce
ss

S
ize o

f availab
le d

ata sp
ace

For A Few Flops More

π Level 3 BLAS (matrix-matrix operation) to the rescue!

π Why Level 3 BLAS are good (example of matrix-matrix product)
ν Use blocked algorithms to maximise cache reuse

ν O(b2) loads/stores – O(b3) flops

ν Enough operations to “hide” memory traffic costs

x =

Load in CacheOperate on the blocksLoad in cache Keep in cacheOperate on the blocksLoad in Cache

The Good the Bad and the Ugly

π Lots of Packages depend on and benefit from BLAS
ν LAPACK (Linear Algebra)

ν Many Sparse Solvers (using local dense blocks of sparse matrices,
such as SuperLU, MUMPS, etc)

π A Myth
ν BLAS are parallelised by vendors, hence all LAPACK etc is parallel and

scalable – NOT TRUE!
π Level 1 BLAS: NEVER parallelised

π Level 2 BLAS: SOME parallelised

π Level 3 BLAS: ALL parallelised

π Most codes do not contain the nice packed aligned data that BLAS
require (indirect addressing on SS architectures very tough!)

π What about SSE & SSE2 on Intel & AMD architectures
ν They are for multimedia!

π Pack several words (numbers) in register

π Operate simultaneous on all words in register

π Operations crossing low & high in register very expensive! (What about
complex numbers: well, they do not exist for vendors)

Sparse BLAS

Slide Intentionally left
(almost) Blank

Zillions of sparse formats

Efforts to generate sparse BLAS automatically (performance poor – indirect addressing)

Getting the BLAS

π “Model” BLAS
ν Model implementation in Fortran

ν No optimization in source

ν Some compilers can block Level 3-BLAS approaching level of more
sophisticated implementations (only DGEMM)

ν C interface is available

π Vendor BLAS
ν Hand-optimized by vendors (IESSL/IBM, MKL/Intel, ACML/AMD, …)
ν Achieves highest performance on vendors’ platforms.
ν YOU SHOULD USE THIS!

π ATLAS
ν “Automatically Tuned Linear Algebra Software”

ν Brute force optimization
π trying out all possible combinations of memory layout, loop reordering, etc.

ν Competitive performance on Level 3 BLAS

ν Can be generated for virtually all platforms

The “Mythical” Goto BLAS

π BLAS designed by Kazushige Goto

π Optimizes all memory traffic in a very clever way

π Currently beats most commercial libraries

π Only few non-threaded BLAS

π http://www.tacc.utexas.edu/resources/software/

Measuring Performance

π Performance is measured in Mflops/s

π E.g.: multiplication of two square N x N matrices (DGEMM)
ν N3 multiplications and

ν N3 additions

ν = 2 N3 flops

π t seconds for m dgemm calls gives

 Mflops

Benchmarks

π 1. Loop to determine number m of calls to run for T seconds
(say T = 1.0)
ν This loop does many timings which is a significant overhead

π 2. Time m calls

π 3. Repeat step 2 several times and take best timing

The henrici Systems

π Intel® Xeon™ CPU 3.20 GHz

π 512 KB L2 cache

π 2 Processors with hyperthreading

π 2GB main memory

π (theoretical serial peak peformance:
6400 MFLOPs/s)

DDOT

π a = x’ * y;

π double cblas_ddot(const int N, const double *X,
 const int incX, const double *Y, const int incY);

π 2 N operations + 2 N memory accesses

DDOT Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

4 8 16 32 64 128 256 512 1024 2048N

M
fl
o
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

DAXPY

π y = y + alpha * x;

π void cblas_daxpy(const int N, const double alpha,
 const double *X, const int incX,
 double *Y, const int incY);

π 2 N operations + 3 N memory accesses

DAXPY Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

4 8 16 32 64 128 256 512 1024 2048N

M
F
lo
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

DGEMV

π y = alpha * A * x + y;

π void cblas_dgemv(const enum CBLAS_ORDER Order,
 const enum CBLAS_TRANSPOSE TransA, const int M,
 const int N, const double alpha, const double *A,
 const int lda, const double *X, const int incX,
 const double beta, double *Y, const int incY);

π 2 N2 operations + N2 memory accesses

DGEMV Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

4 8 16 32 64 128 256 512 1024 2048N

M
F
lo
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

DSYMV

π y = alpha * A * x + y; % A symmetric

π void cblas_dsymv(const enum CBLAS_ORDER Order,
 const enum CBLAS_UPLO Uplo, const int M,
 const int N, const double alpha, const double *A,
 const int lda, const double *X, const int incX,
 const double beta, double *Y, const int incY);

π 2 N2 operations + N2 / 2 memory accesses

DSYMV Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

4 8 16 32 64 128 256 512 1024 2048
N

M
F
lo
p
s/
s

CBLAS

ATLAS

MKL

DGEMM

π C = alpha * A * B + C;

π void cblas_dgemm(const enum CBLAS_ORDER Order,
 const enum CBLAS_TRANSPOSE TransA,
 const enum CBLAS_TRANSPOSE TransB,
 const int M, const int N, const int K,
 const double alpha, const double *A, const int lda,
 const double *B, const int ldb, const double beta,
 double *C, const int ldc);

π 2 N3 operations + 3 N2 memory accesses

DGEMM Performance

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

4 8 16 32 64 128 256 512 1024 2048
N

M
F
lo
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

Blitz++

π C++ Array Library

π Fully object oriented and templated

π Supports operator overloading

π Level 1 BLAS via Expression Templates

π ‘Lightweight’ classes for small vectors or matrices

π Current Version: 0.9
http://www.oonumerics.org/blitz/

π Similar Package: uBLAS (boost Library)

Expression Templates

π daxpy: y = y + a x

π Expression Templates:
for i = 1:N
 y(i) = y(i) + a * x(i);

π Expression Templates create such loop for any possible operation of
any possible Object (e.g. Arrays of short vectors for explicit codes)

DDOT Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

4 8 16 32 64 128 256 512 1024 2048N

M
fl
o
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

BLITZ++

B++(intel)

DAXPY Performance

0.00

500.00

1000.00

1500.00

2000.00

2500.00

4 8 16 32 64 128 256 512 1024 2048N

M
F
lo
p
s/
s

CBLAS

ATLAS

MKL

MATLAB

BLITZ++

TinyVector, TinyMatrix

π Fully Templated: e.g.

TinyVector<double, 3> x, y, z;
creates 3D-vectors of type double.

π Vector length known at compile time.

π Fully unroll all loops: z = x + y; becomes

z(1) = x(1) + y(1);
z(2) = x(2) + y(2);
z(3) = x(3) + y(3);

TinyVector/Matrix Performance

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 6 8 10N

M
F
L
O
P
s/
s

DDOT(g++)

DAXPY(g++)

DGEMV(g++)

DDOT(icpc)

DAXPY(icpc)

DGEMV(icpc)

Conclusion

π BLAS are essential items in scientific computing

π Standardized interface to basic matrix and vector operations

π Highly optimized BLAS are available

π Many applications/packages/libraries depend dramatically on BLAS
(e.g. dense and sparse solvers, both direct and iterative)

π We recommend you use VENDOR BLAS!

