

Christoph Ortner Stef Salvini

The **BLASics**

- **π** Basic Linear Algebra Subroutines
 - v Building blocks for more complex computations
 - v Very widely used
- π Level means "number of operations"
 - v Level 1: vector-vector operations O(n) operations
 - v Level 2: matrix vector operations $O(n^2)$ operations
 - v Level 3: Matrix-Matrix operations $O(n^3)$ operations
- π A *Flop* is any numerical operation
 - v Adds, Mults, divisions, square roots (!!!!), etc
 - π Of course divisions & square roots are more expensive ...
 - v Loads/stores are not taken into account (history ...)
- π BLAS provide a good basis to understand performance issues

A Fistful of Flops

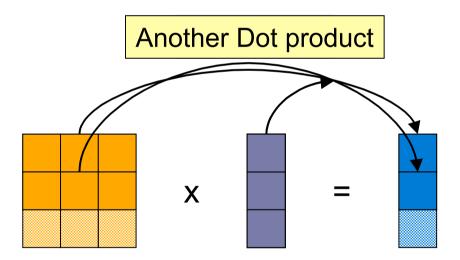
- π BLAS take off with Vector processors (70s 80s)
- π Level 1 first, then level 2 BLAS
 - v Encapsulate expert knowledge
 - v Efficient building blocks
 - v "Local" optimisation of code enough to increase performance

Level 1 BLAS

- π O(*n*) operands (I.e. load/stores), operations O(*n*) (flops)
- π Vector operations (loved by vector processors)
 - v Ratio between load/stores and operations: O(1)
 - v E.g. "axpy" : $\alpha x + y \Diamond y$
- π Reduction operations (hated by vector processors)
 - v Ratio between load/stores and operations: O(n)
 - v E.g. dot product: $\alpha = x^T y$
- π Available:
 - v Single & double precision, real and complex
 - π Names beginning with S, D, C and Z, respectively
 - π Axpy: SAXPY, DAXPY, CAXPY, ZAXPY
 - π Dot Products (SDOT, DDOT, CDOTC, ZDOTC)

Level 2 BLAS

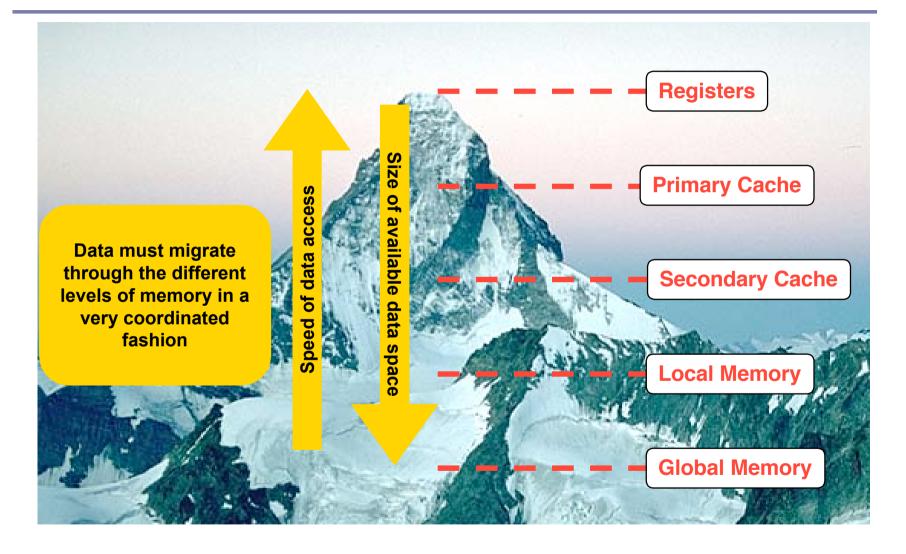
- π O(*n*²) operands, O(*n*²) operations
- π Performance can be understood in terms of Level 1 cache
- Matrix-vector product, matrix updates, solution of a triangular system of equations, etc



Superscalar takes over

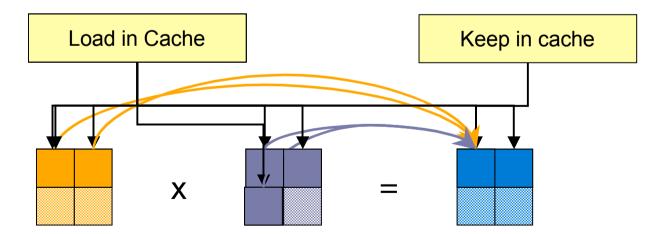
- π Technology dictated by
 - v Cost
 - v Widespread use
 - v Relatively small HPC market
- π Superscalar here means more than one operation per cycle
- π All supercalar architecture (give-or-take)
 - v No direct access to memory
 - π Hierarchical memory layout
 - π Use of caches to make use of any data locality
 - v Rule-of-thumb for performance:
 - *π "Thou shalt not have as many operands as operations"*
 - π In fact: poor performance of Level 1 and 2 BLAS (sometimes horrifyingly so)
 - π Poor performance for indirect addressing
 - π FFTs very difficult

The Data View of an SS Architecture



For A Few Flops More

- π Level 3 BLAS (matrix-matrix operation) to the rescue!
- π Why Level 3 BLAS are *good* (example of matrix-matrix product)
 - $_{\rm v}$ Use blocked algorithms to maximise cache reuse
 - $_{v}$ O(b²) loads/stores O(b³) flops
 - v Enough operations to "hide" memory traffic costs



The Good the Bad and the Ugly

- π Lots of Packages depend on and benefit from BLAS
 - v LAPACK (Linear Algebra)
 - Many Sparse Solvers (using local dense blocks of sparse matrices, such as SuperLU, MUMPS, etc)
- π A Myth
 - BLAS are parallelised by vendors, hence all LAPACK etc is parallel and scalable – NOT TRUE!
 - π Level 1 BLAS: NEVER parallelised
 - π Level 2 BLAS: SOME parallelised
 - π Level 3 BLAS: ALL parallelised
- π Most codes do not contain the nice packed aligned data that BLAS require (indirect addressing on SS architectures very tough!)
- π What about SSE & SSE2 on Intel & AMD architectures
 - v They are for multimedia!
 - π Pack several words (numbers) in register
 - π Operate simultaneous on all words in register
 - π Operations crossing low & high in register very expensive! (What about complex numbers: well, they do not exist for vendors)

Slide Intentionally left (almost) Blank

Zillions of sparse formats

Efforts to generate sparse BLAS automatically (performance poor - indirect addressing)

Getting the BLAS

- π "Model" BLAS
 - v Model implementation in Fortran
 - v No optimization in source
 - Some compilers can block Level 3-BLAS approaching level of more sophisticated implementations (only DGEMM)
 - v C interface is available
- π Vendor BLAS
 - v Hand-optimized by vendors (IESSL/IBM, MKL/Intel, ACML/AMD, ...)
 - v Achieves highest performance on vendors' platforms.
 - V YOU SHOULD USE THIS!
- π ATLAS
 - v "Automatically Tuned Linear Algebra Software"
 - v Brute force optimization
 - π trying out all possible combinations of memory layout, loop reordering, etc.
 - v Competitive performance on Level 3 BLAS
 - v Can be generated for virtually all platforms

The "Mythical" Goto BLAS

- **π** BLAS designed by **Kazushige Goto**
- π Optimizes all memory traffic in a very clever way
- π Currently beats most commercial libraries
- π Only few non-threaded BLAS
- π http://www.tacc.utexas.edu/resources/software/

Measuring Performance

- π Performance is measured in Mflops/s
- π E.g.: multiplication of two square N x N matrices (DGEMM)
 - $v = N^3$ multiplications and
 - $v = N^3$ additions
 - $v = 2 N^3$ flops
- π t seconds for m dgemm calls gives

$$rac{2n^3m}{10^6t}$$
 Mflops

Benchmarks

- π 1. Loop to determine number m of calls to run for T seconds (say T = 1.0)
 - $_{\rm v}$ $\,$ This loop does many timings which is a significant overhead
- π 2. Time **m** calls
- π 3. Repeat step 2 several times and take best timing

The henrici Systems

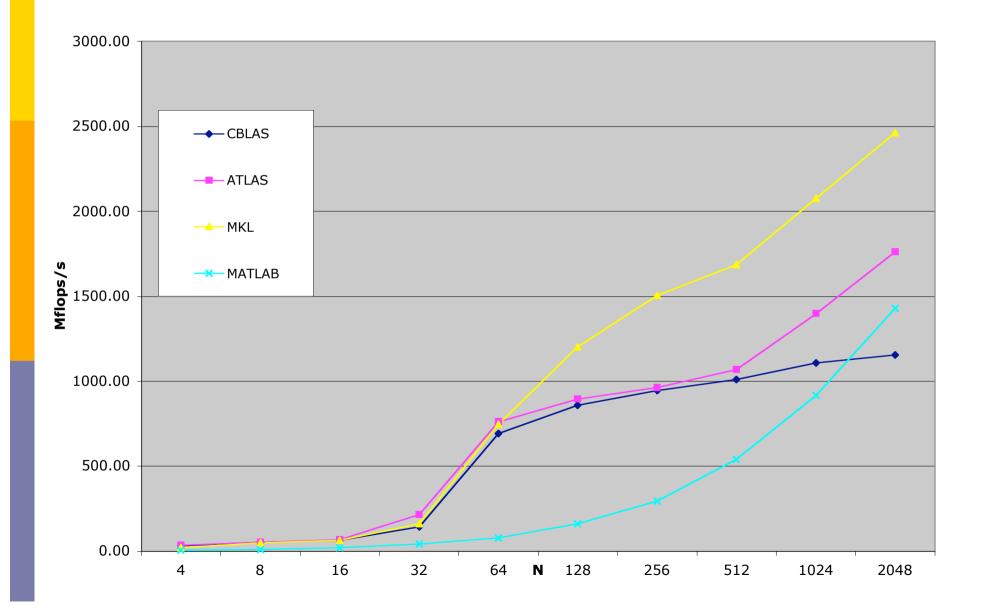
- π Intel® Xeon™ CPU 3.20 GHz
- π 512 KB L2 cache
- π 2 Processors with hyperthreading
- π 2GB main memory
- π (theoretical serial peak peformance:6400 MFLOPs/s)

DDOT

 π a = x' * y;

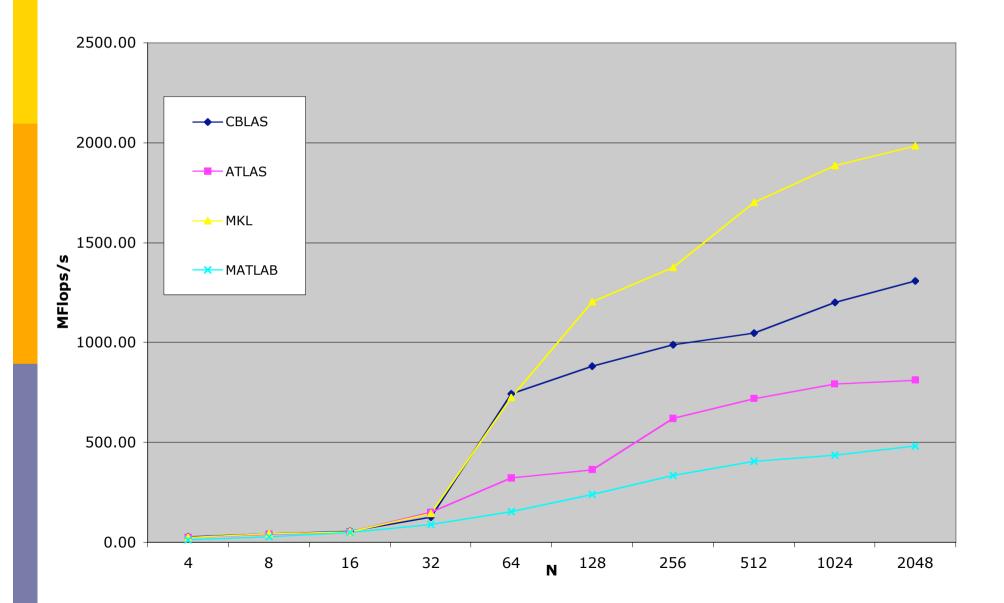
- π double cblas_ddot(const int N, const double *X, const int incX, const double *Y, const int incY);
- π 2 N operations + 2 N memory accesses

DDOT Performance



- π y = y + alpha * x;
- π 2 N operations + 3 N memory accesses

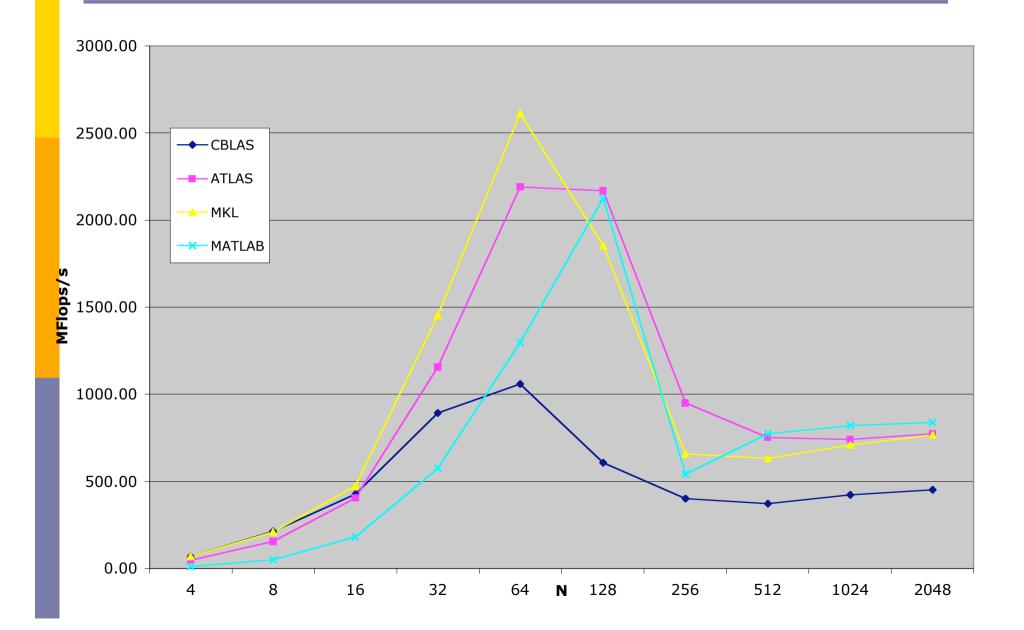
DAXPY Performance



π y = alpha * A * x + y;

- π 2 N² operations + N² memory accesses

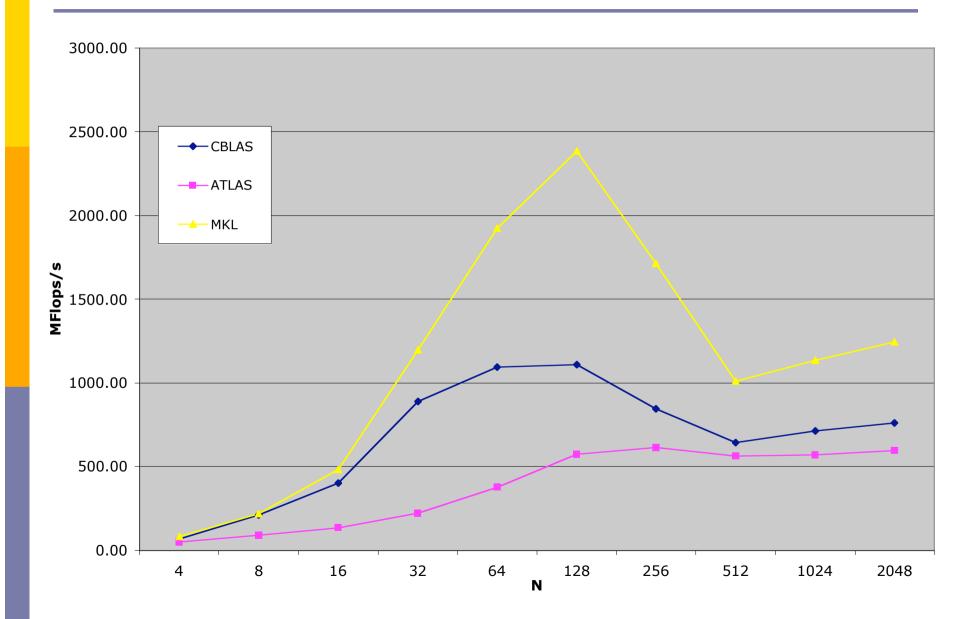
DGEMV Performance



π y = alpha * A * x + y; % A symmetric

 π 2 N² operations + N² / 2 memory accesses

DSYMV Performance

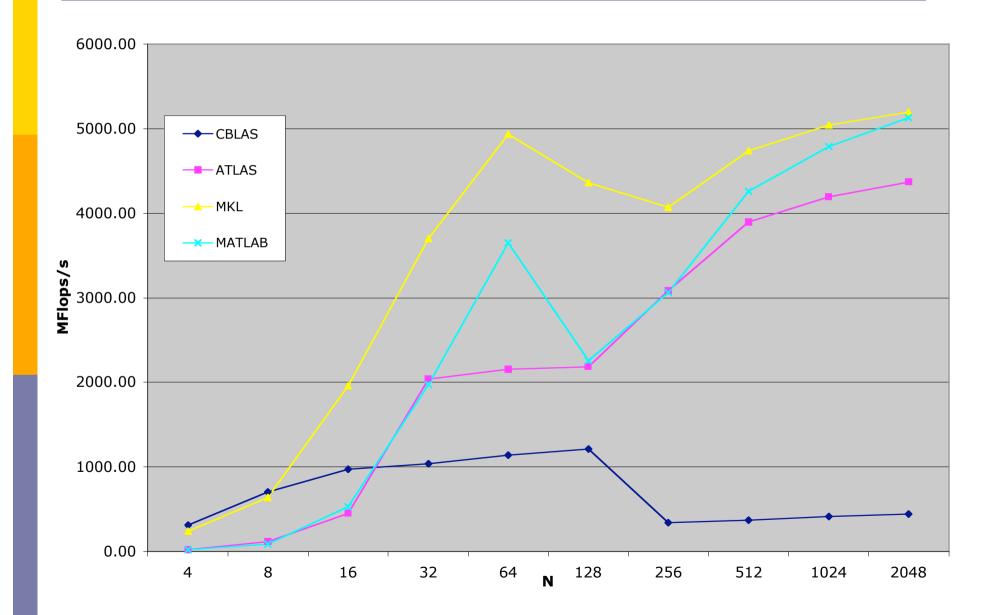


DGEMM

π C = alpha * A * B + C;

- π 2 N³ operations + 3 N² memory accesses

DGEMM Performance



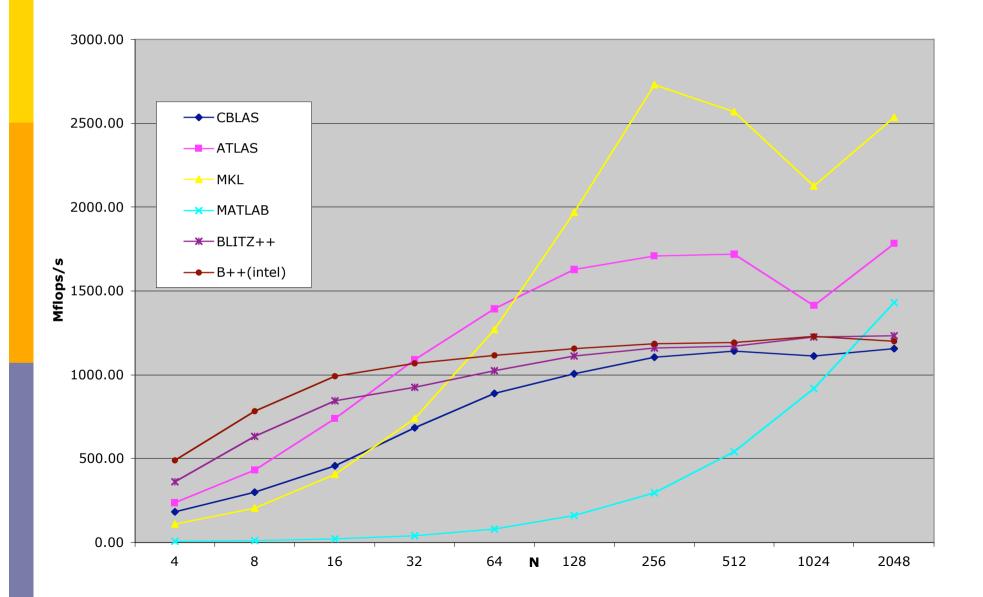
Blitz++

- π C++ Array Library
- π Fully object oriented and templated
- π Supports operator overloading
- π Level 1 BLAS via **Expression Templates**
- π 'Lightweight' classes for small vectors or matrices
- π Current Version: 0.9 http://www.oonumerics.org/blitz/
- π Similar Package: uBLAS (boost Library)

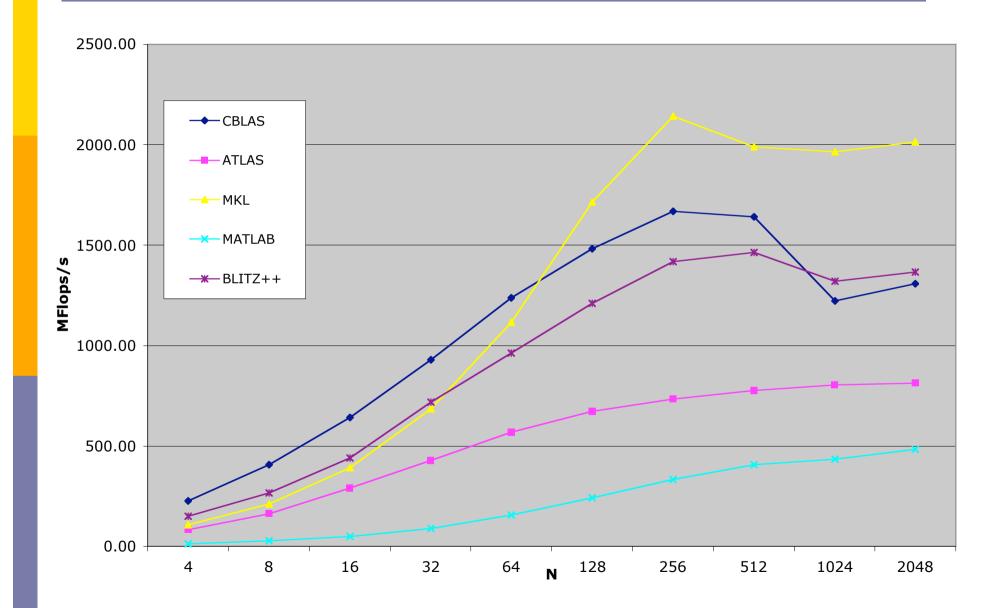
Expression Templates

- π daxpy: y = y + a x
- π Expression Templates: for i = 1:N y(i) = y(i) + a * x(i);
- π Expression Templates create such loop for any possible operation of any possible Object (e.g. Arrays of short vectors for explicit codes)

DDOT Performance



DAXPY Performance



TinyVector, **TinyMatrix**

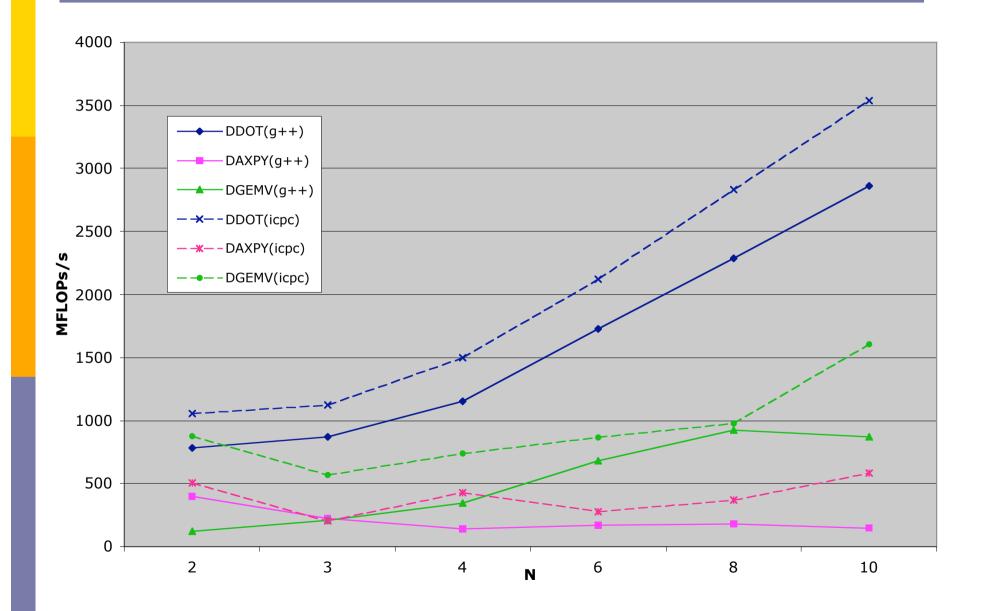
 π Fully Templated: e.g.

TinyVector<double, 3> x, y, z;
creates 3D-vectors of type double.

- π Vector length known at compile time.
- π Fully unroll all loops: z = x + y; becomes

z(1) = x(1) + y(1); z(2) = x(2) + y(2);z(3) = x(3) + y(3);

TinyVector/Matrix Performance



Conclusion

- π BLAS are essential items in scientific computing
- π Standardized interface to basic matrix and vector operations
- π Highly optimized BLAS are available
- Many applications/packages/libraries depend dramatically on BLAS (e.g. dense and sparse solvers, both direct and iterative)
- **π** We recommend you use VENDOR BLAS!