
Building recursive data
structures in Haskell

Duncan Coutts
4/12/03

Infinite Values

● Haskell allows us to build 'infinite
values' with finite representation

● For example the prelude function
repeat returns an infinite list of the
same element

repeat :: a -> [a]
repeat x = x : x : x : ...

Representation

● recursive
structures can be
represented using
pointers

x

xs=
head tail

Representation

● In traditional imperative languages we
would explicitly use pointers

struct List {
void *head;
List *tail;

}

List* repeat(void *x) {
List *xs = new List;
xs->head = x;
xs->tail = xs; /* close the loop */
return xs;

}

Haskell version using let

● In Haskell we don't have mutable
references but we do have lazy
evaluation and recursive let

repeat :: a -> [a]
repeat x = let xs = x:xs

 in xs

That's nice but how do we build more
complicated structures?

Doubly linked lists

● As a first example of building more
complex cyclic structures we'll look at
doubly linked lists

Doubly linked lists

● The data type
data List a = Node a (List a) (List a)
 | Nil

● Values of this type will not persist well,
we will not be able to build them
incrementally.

● We'll have to build them all in one go

mkList :: [a] -> List a
mkList [] = Nil
mkList (x:xs) = ???

Doubly linked lists

● Some special cases

mkList :: [a] -> List a
mkList [] = Nil
mkList [x] = Node a Nil Nil

mkList [x1, x2] = let node1 = Node x1 Nil node2
 node2 = Node x2 node1 Nil
 in node1

mkList [x1, x2, x3] = let node1 = Node x1 Nil node2
 node2 = Node x2 node1 node3
 node3 = Node x3 node2 Nil
 in node1

Doubly linked lists

● For the general case we add an extra
argument prev which is the previous
node

mkList' :: [a] -> List a -> List a
mkList' [] prev = Nil
mkList' (x:xs) prev = let cur = Node x prev (mkList' xs cur)
 in cur

mkList :: [a] -> List
mkList xs = mkList' xs Nil

Graphs

● Next we'll look at
graphs

● For starters we'll
consider directed
graphs where
each node has
exactly one
outgoing edge

a b

e
d

c

node link

d 2
c 3
b 0
a 3

e 2

Graphs

● The data type
data Graph a = GNode a (Graph a)

● We want a function that builds a Graph
from the table of nodes with explicit
integer links

mkGraph :: [(a, Int)] -> Graph a

Graphs

node link

d 4
c 3
b 2
a 1

e 0

node link

d 2
c 3
b 0
a 3

e 2

● Last time we built the
structure by tracing a
path through it.

● With the graph, the
pattern of links is not
linear or predictable.

● What recursive value
can we name?

Let x = ...x...

Graphs

● We can name the table!
● We can build all the links
'simultaniously' by using a collection

mkGraph :: [(a, Int)] -> Graph a
mkGraph table = table' ! 0
 where table' = listArray (0, length table - 1) $
 map (\(x, n) -> GNode x (table' ! n)) table

This example uses a Haskell array, but any collection
implementation that is lazy in its elements would do.

General Directed Graphs

● We can easily generalise the last
example to general directed graphs

data GGraph a = GGNode a [GGraph a]

mkGGraph :: [(a, [Int])] -> GGraph a
mkGGraph table = table' ! 0
 where table' = listArray (0, length table - 1) $
 map (\(x, ns) ->

GGNode x (map (table' !) ns)) table

Advantages & Disadvantages

● Advantages of cyclic representations
over representations with explicit links

– No need to deal with node names
– Faster structure traversal

● Disadvantages

– Cannot “escape” structure
– Cannot update structure incrementally

Thinking about sharing

● Once we've built one
of these recursive
values does traversing
it really take constant
space?

● Can we be sure that
we're not allocating
new nodes as we
traverse the structure?

a

b

c

a

b

c a

b

a

b

c

Thinking about sharing

● For example, earlier we defined

repeat :: a -> [a]
repeat x = let xs = x:xs

 in xs

● Would this definition be 'the same'?

repeat' x = x:repeat' x

● We can easily prove them equal.

So they're equal but not the same huh?

Thinking about sharing

● I don't know of a useful semantics that
allows one to reason about sharing.
Remember that Haskell is specified as
non-strict, not lazy.

● We can hand wave and make
assumptions about how our compiler
implements things.

● We can experiment by looking inside
the evaluation using Debug.trace

