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Abstract

This paper describes a calculus for developing security protocols.
Protocol descriptions are annotated with assertions that state proper-
ties that will be true when the protocol execution reaches that point.
Proof rules are given that allow the assertions to be verified. A novel
feature of the calculus is that the initial development of the proto-
col uses abstract messages that describe the intention of a message,
rather than the concrete implementation; rules are given that allow
these abstract messages to be refined to concrete implementations.
Some properties require global, as opposed to local, reasoning; such
properties are captured as invariants; rules are given for verifying that
invariants hold.

A semantic model of protocol executions is presented. This is
used to give a formal meaning to protocol annotations and to abstract
messages, and to verify annotation rules, message refinement rules,
and invariant rules. The calculus is illustrated with the development
of three well known protocols.
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1 Introduction

Creating security protocols is a difficult task. Numerous security protocols
have been published, only later to be discovered to be flawed; for example, the
Needham Schroeder Public Key Protocol was first published in 1978 [NS78],
and was the subject of several subsequent analyses (e.g. [BAN89]), only to
be found to be flawed in 1995 [Low95].

Various approaches to analysing protocols have been proposed. State ex-
ploration techniques (for example [Low96, Low98, MCJ97, MMS97]) build a
model of the state space of a small instance of the protocol (with a bounded
number of protocol runs), together with a model of the most general at-
tacker who can interact with the protocol, and then use a tool to explore the
state space, looking for insecure states. Theorem provers have been used to
produce machine-assisted proofs of protocols (for example [Pau98, Coh00]).
The NRL Analyzer [Mea96] combines automated theorem proving with state
space analysis techniques. Protocols have been verified directly by hand using
special-purpose logics such as BAN Logic [BAN89], or GNY Logic [GNY90].
The Strand Spaces approach [THG99] builds a special-purpose model of pro-
tocols; the protocols are then either proved by hand, or automatically (for
example using Athena [SBP01]).

All these approaches adopt the Dolev-Yao Model [DY83]. It is assumed
that the network is under the complete control of a malicious agent or in-
truder. The intruder can intercept all messages passing on the network; he
can create new messages from those he has already seen or knew initially, by
encrypting or decrypting with known keys, concatenating or splitting pairs,
or hashing; and he can send messages he creates, possibly claiming to come
from a different agent. However, perfect cryptography is assumed: for ex-
ample, the intruder cannot learn anything from a ciphertext if he does not
know the appropriate decrypting key.

Proving the security of a protocol, with any of these methods, is non-
trivial; further, the proof often gives limited insight into why the protocol
is correct, or why it is designed as it is. Designing a security protocol from
scratch is harder: we have few techniques better than using our experience
or intuition to produce a protocol we believe to be correct, and then proving
it. This is the question we address in this paper. We present a calculus that
allows a protocol to be developed systematically from its requirements, and
simultaneously proved correct; the development helps to document why the
protocol works.

Protocols in our calculus do not take the form of a standard protocol spec-
ification, where each message specifies exactly how it should be implemented.
Instead protocols in our calculus use abstract messages which convey what
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each message is supposed to do. Abstract messages represent requirements
on the corresponding concrete messages, and do not specify how these re-
quirements are achieved. The calculus provides various abstract messages,
each specifying a requirement on the concrete message; these can then be
conjoined to make stronger requirements. Abstract messages help to docu-
ment the protocol, by showing what each message is intended to achieve.

Our calculus adapts the idea of program annotations [Hoa69] from pro-
grams to security protocols. We annotate the protocol description with as-
sertions that state properties that will be true when a protocol reaches that
point. More precisely, each protocol annotation will be from the point of
view of a single participant: each assertion will state properties that are
guaranteed to be true whenever that participant reaches that point in the
protocol. We write

{
pre

}
e
{
post

}
to mean that if the sequence of events e

is executed, starting from a state where the precondition pre holds, then it
can be guaranteed that the postcondition post will hold in the final state.

We present proof rules that allow assertions to be verified. The calculus
thus allows protocols to be synthesised and simultaneously proved correct.
It also allows partial annotations to be composed, by matching the final
assertion of one with the initial assertion of the next. We also present rules
to refine abstract messages into concrete messages.

It turns out that such locally-based reasoning works well with certain
properties, particularly authentication-like properties; however, it works less
well with others, particularly secrecy-like properties, that are more global in
their nature, and thus require one to reason about the protocol as a whole.
We tend to capture the latter type of properties as an invariant of the pro-
tocol, i.e. a property that is true in all states. We provide separate rules for
showing that such invariants are maintained.

In order to explain precisely the meaning of the constructs of the calculus,
and to verify the proof rules, we provide a semantic model. In particular, we
present semantics for the abstract messages.

To help the reader understand the various elements involved in this cal-
culus, we give a simple worked example in Section 2. In Section 3 we outline
the semantic model upon which the calculus is based.

We formalise the meaning of annotations in Section 4, verify some struc-
tural annotation rules, and define some useful macros for use in annotations.
In Section 5 we define a particular property enjoyed by some protocols,
namely disjoint encryption [GTF00]: that different encrypted components
within the protocol have distinct forms; we prove a theorem, concerning
agreement, which is later useful in verifying message refinement rules.

We study abstract messages in more detail in Section 6: for each abstract
message, we present a semantic definition, rules to allow it to be used in
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annotations, and rules to refine it to a concrete message. In Section 7 we
give rules that can be used to verify that certain common forms of invariant
are, indeed, maintained.

In Section 8 we look at three larger examples, namely the Adapted
Needham Schroeder Public Key Protocol [Low95], the Otway Rees Proto-
col [OR87a], and the Yahalom Protocol [BAN89]; we derive each protocol
using the rules presented earlier. Finally, in Section 9, we sum up and dis-
cuss related work and future directions for the research.

2 Example

In order to illustrate the main features of the calculus, we will use it to develop
a small protocol. The entire annotation will be from the point of view of an
agent a. The protocol will make use of a nonce challenge to provide fresh
authentication guarantees for the agent b, and to establish a shared secret.
In a more realistic example, we would do an additional annotation from the
point of view of b.

We begin by specifying precisely what we require our protocol to do,
defining both the assumptions we will make at the start, and the properties
we need to hold at the end. Most of these properties are captured by the
invariant of the protocol.

The main clause of the invariant states that only a and b should learn na:

honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}.

The macro knows(na) represents the set of participants who know na;
defined(na) means that na exists, i.e. a value has been generated for this
variable; and honest(b) means that b is honest, i.e. follows the protocol.
Here we specify that once na has been generated, if b is honest, then only a
and b may learn it; it doesn’t make sense to talk about who knows na before
it is generated; and if b is dishonest, then there is nothing preventing him
from passing na on to third parties.

We will also assume that a and b are different agents. We therefore define
the following invariant:

I =̂ a 6= b ∧
(
honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}

)
.

We would like to reach a state in which agent a can be certain that,
assuming b is honest, agent b has a session running, with the correct value
for na:

honest(b) ⇒ session(b; na).

3



The predicate session(b; na) states that the agent b is participating in a
session of the protocol, and agrees with the local agent a on the value of the
variable na; i.e. b’s value for na is the same as a’s value for na.

The initial specification for the protocol is shown below:

Initiator(a; b) =̂{
a 6= b

}
{
I
}

. . .{
I ∧ (honest(b) ⇒ session(b; na))

}

We annotate protocols in a style similar to Hoare triples [Hoa69]. The anno-
tations specify statements that are guaranteed to hold when the participant
involved reaches that point in the protocol. In this example, we assume that
initially a 6= b; this represents the precondition of the protocol. At the end of
the protocol the invariant and (honest(b) ⇒ session(b; na)) must hold; this
represents the postcondition of the protocol. The ellipses (“. . .”) represent
the part of the protocol that we still need to develop. The first line specifies
that the protocol is being run by a, and that the variable b is initially defined
in a’s state. The string “Initiator” simply names this role.

The assertion “I ” follows from the fact that a 6= b ⇒ I , since initially
na is not defined. Formally, we have used the following rule, strengthen
precondition (the “a :” indicates that the annotation relates to role a):

a : {pre}e{post}
pre ′ ⇒ pre

a : {pre ′}e{post}

We will tend to write the resulting annotation as a : {pre ′}{pre}e{post}. For
completeness we also present the complimentary rule, weaken postcondition:

a : {pre}e{post}
post ⇒ post ′

a : {pre}e{post ′}

We will tend to write the resulting annotation as a : {pre}e{post}{post ′}.
We now arrange for a to generate the nonce, as follows:

Initiator(a; b) =̂{
a 6= b

} {
I
}

new na
{
I
}

. . .{
I ∧ (honest(b) ⇒ session(b; na))

}
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The new na event creates a new nonce and binds it to na in the local state.
Afterwards the invariant will still hold: indeed, only a will know na. Later
we will give a rule (Annotation Rule 41) that justifies this step.

We will often concatenate several events; for example, in the above an-
notation, the new na is concatenated with the part of the protocol still to be
developed. The following proof rule, sequential composition, formalises this.

a : {pre}e1{mid}
a : {mid}e2{post}

a : {pre}e1 e2{post}

We write the resulting annotation, corresponding to the consequence of this
rule, as a :

{
pre

}
e1

{
mid

}
e2

{
post

}
.

We now arrange for the local agent a to send a message:

Initiator(a; b) =̂{
a 6= b

} {
I
}

new na
{
I
}

send maintains I ∧ contains na
{
I
}

. . .{
I ∧ (honest(b) ⇒ session(b; na))

}

The message is formed as the conjunction of two abstract messages:

• maintains I is an abstract message that specifies that I must be main-
tained, i.e., the invariant should hold after the message, assuming it
held before; this justifies the following assertion of I .

• contains na is an abstract message that specifies that the message
should contain na, the intention being that b learns na from this mes-
sage; this does not lead to any extra assertions, but helps to document
the intention of the design.

We next arrange for a to receive a message that shows her that someone
knows na; from that and the other conditions that hold, we can deduce that
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in fact it can only be b that knows na:

Initiator(a; b) =̂{
a 6= b

} {
I
}

new na
{
I
}

send maintains I ∧ contains na
{
I
}

receive maintains I ∧ provesKnowledgeOfNR(na, id = b){
I ∧ ∃B 6= a • session(b ; B ; na)

}
{
I ∧ (honest(b) ⇒ session(b; na))

}

This message centres around provesKnowledgeOfNR(na, id = b), which in-
forms the receiver a that somebody, say B , knows the value of na; that
participant B is taking the role of b in the protocol (the “id = b” clause);
further, B is not a herself: this extra clause ensures that messages are
not reflected (the “NR” stands for “not reflected”). This gives us the
∃B 6= a • session(b ; B ; na) assertion. The message also maintains the
invariant.

If b is honest, we can deduce that the only people who know na are a
and b. Therefore, we can deduce that B , who has na in his state, must be b.
This establishes the required postcondition.

The abstract messages do not specify how their requirements should be
met, merely what properties they must achieve. We now seek to refine the
abstract messages to concrete ones.

We write m v m ′ if message m ′ meets the requirements of m; typically,
m will be an abstract message, and m ′ a concrete implementation. In some
cases, a refinement will hold only in the context of the protocol Π in ques-
tion, perhaps depending upon some other property that is invariant for the
protocol; we sometimes write m vΠ m ′ to stress this dependence.

We now make a design step, by deciding how to keep na secret. We will
assume that the agents share a secret key k , which will be used to encrypt na
in the first message. We strengthen the invariant to specify that if b is honest
then k remains secret:

I =̂ a 6= b ∧
(honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}) ∧
(honest(b) ⇒ knows(k) ⊆ {a, b}).

The annotation above remains unchanged, except the first line is changed
to Initiator(a; b, k), reflecting that a has k in her initial state, and the pre-
condition is changed to include the clause honest(b) ⇒ knows(k) ⊆ {a, b}.
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Of course, strengthening I changes the meaning of the maintains I abstract
message.

We can refine the first abstract message to {na}k . It is intuitively obvious
that this does not reveal k . Further, since only a and b know k , it does not
reveal na to anyone else. Therefore, it maintains the invariant. We will give
rules to formally justify this later.

Similarly the second abstract message can be refined by hashing na with
the identity of the sender: hash(na, b); the agent a will not accept the mes-
sage if the identifier b included in the hash is not as expected. It is then rea-
sonably clear that this maintains the invariant, and refines provesKnowledge-
OfNR(na, id = b).

This gives us the concrete protocol below:

new na; send{na}k ; receive hash(na, b).

It turns out that we will have to slightly strengthen the initial assumptions
in order to formally justify these refinements: the additional assumptions are
necessary, but not obvious, and come out directly from the refinement rules.
We will discuss this further when we present those rules, in Sections 6 and 7.

Of course, the above is not the only possible refinement of the abstract
messages. For example, we could have implemented the first message by
encrypting na with b’s public key ({na}PK (b)), under suitable assumptions,
such as b’s secret key being known only to b.

3 Protocol semantics

In this section we build a semantic model of protocol executions; in later
sections we build on this to give a semantics to annotations, give a semantics
to abstract messages, and prove annotation and refinement rules.

We begin, in Section 3.1 be defining the types of messages and message
templates. In Section 3.2 we define abstract messages. We define the local
states of agents in Section 3.3, and give an operational semantics. In Sec-
tion 3.4 we consider what it means for a protocol to be feasible for a particular
agent. We describe the model of the intruder in Section 3.5. We combine
these in Section 3.6 to give the model of a global state, lift the operational
semantics for individual agents to the global level, and define the traces of a
protocol. The notation introduced is summarised in Appendix A.
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3.1 Messages

We begin by defining the type of actual messages. It is important to distin-
guish between message templates1 and actual messages: the former contain
free variables, and are used in the definition of a protocol; the latter have all
the variables instantiated with values, and are what are actually sent across
the network.

We assume disjoint types Var of variables and Val of atomic values. We
use variables for two purposes within our model: to represent fields within a
protocol definition, and as program variables storing values in agents’ states.
We use the convention of representing variables by small letters and val-
ues by capitals. We also assume the existence of a special value ⊥ 6∈ Val ,
representing an undefined value.

We assume two inverse functions:

−1var : Var 7→ Var and −1val : Val 7→ Val

between variables and values. If K is a value representing a key then mes-
sages encrypted with K can be decrypted with K −1val , and vice versa. If k
is a variable representing a key then it is intended that k−1var holds the cor-
responding decrypting key. We assume that (k−1var )−1var = k , and similarly
for values. We will drop the val and var subscripts where that will not cause
confusion.

We define actual messages and message templates by the grammars:

Msg ::= Val | (Msg ,Msg) | {Msg}Val | hash(Msg),

Template ::= Var | Val | (Template,Template) |
{Template}Var | hash(Template).

Messages and templates are built up from atomic values by pairing, encryp-
tion and hashing2. We omit parentheses where appropriate. Note that an
actual message can be obtained from a template by substituting or instanti-
ating all the free variables with values. We use the convention of representing
templates by small letters and actual messages by capitals.

We define three submessage relations for later use. We write M � M ′ if
M is textually included within M ′:

M � M ′ ⇐ M = M ′,

M � (M1,M2) ⇐ M � M1 ∨ M � M2,

M � {M ′}K ⇐ M � M ′,

M � hash(M ′) ⇐ M � M ′.

1We use the term “template” in a different sense from [DDMP04].
2We assume a single hash function, but it is straightforward to extend the model to

multiple hash functions.
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We define a similar relation over message templates:

m � m ′ ⇐ m = m ′,

m � (m1,m2) ⇐ m � m1 ∨ m � m2,

m � {m ′}k ⇐ m � m ′,

m � hash(m ′) ⇐ m � m ′.

We also define submessage relations, over both messages and templates,
that include both encryption and decryption keys as submessages:

M � M ′ ⇐ M = M ′,

M � (M1,M2) ⇐ M � M1 ∨ M � M2,

M � {M ′}K ⇐ M � M ′ ∨ M � K ∨ M � K−1,

M � hash(M ′) ⇐ M � M ′,

m � m ′ ⇐ m = m ′,

m � (m1,m2) ⇐ m � m1 ∨ m � m2,

m � {m ′}k ⇐ m � m ′ ∨ m � k ∨ m � k−1,

m � hash(m ′) ⇐ m � m ′.

Note in particular that the decrypting key is a submessage of an encryption.
We extend the submessage relation (over messages) to take a set of messages
on the right:

M � B ⇔ ∃M ′ ∈ B • M � M ′.

It will also be useful to talk about direct submessages: those submessages
that can be obtained without performing any decryption:

m � m ′ ⇐ m = m ′,

m � (m1,m2) ⇐ m � m1 ∨ m � m2,

M � M ′ ⇐ M = M ′,

M � (M1,M2) ⇐ M � M1 ∨ M � M2.

We will make the strong typing assumption: i.e. that each honest agent
will accept a value received only if it is of the expected type. See [HLS03]
for an implementation of this assumption.

We assume a set TypeName of names of atomic types (e.g. Nonce,
PublicKey , AgentIdentity , . . . ). We then define a datatype of types of mes-
sages by

Type ::= TypeName | (Type,Type) | {Type}Type | hash(Type).
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For example, {(Nonce,AgentIdentity)}PublicKey represents the type of nonces
and agent identities encrypted with public keys.

We assume a function

typevar : Var → Type

giving the intended types of all variables in the system. Note that this means
that if the definitions of two roles in the protocols make use of the same
variable name, then they must both give the same type to that variable. We
also assume a function

typeval : Val → Type.

That gives the types of atomic values. We lift the functions to message
templates and messages

typetemplate : Template → Type,

typemsg : Msg → Type

in the obvious way. We’ll drop the subscripts from the type∗ functions where
that will not cause confusion.

3.2 Abstract messages

In this section we briefly describe the ideas behind abstract messages, and
how they are modelled formally. We postpone some of the details to Section 6.

The idea behind abstract messages is that most protocol designers know
what they are trying to achieve, but have to write concrete message tem-
plates which may have other meanings, or which do not entirely capture the
intended meaning. The abstract messages provide the designer with a means
to express what the message should do, not how to implement it. The con-
crete implementation of the abstract message can be determined later, and
in fact there may be several possible concrete implementations of the same
abstract message.

We consider abstract messages defined by the grammar

AbsMsg ::= Template | AbsMsg ∧ AbsMsg | maintains P |
contains x | provesKnowledgeOfNR(Var , id = Var) | . . . .

We have left the grammar open, as we will introduce more abstract messages
in Section 6, and we suspect that the study of further example developments
will suggest yet more useful abstract messages. Note in particular that a
concrete message template is considered to be an abstract message.
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We define the semantics of an abstract message to be the set of all the
concrete message templates that meet the desired property. The semantics
may be dependent upon the protocol: for instance, in one protocol a message
may prove knowledge of a value x — and so be an implementation of proves-
KnowledgeOfNR(x ) — by revealing a different value y that was previously
encrypted with x ; however, this won’t be the case in all protocols. For this
reason we use a semantic function that takes the abstract message and the
particular protocol in question, and returns the semantics (set of possible
concrete message templates) for that abstract message. We write [[m]]Π for
the semantics of abstract message m in protocol Π:

[[ ]] : AbsMsg × Protocol → PTemplate.

In Section 6 we will give the semantics of each form of abstract message,
together with rules for using those abstract messages in annotations, and
refining them to concrete messages. However, it is worth giving the semantics
of a concrete message template here: it is simply the singleton set containing
that concrete template:

[[m]]Π = {m}, for m ∈ Template.

Recall also that we write am v am ′ if abstract message am can be im-
plemented by am ′; formally, the protocol is an argument of this relation:

am vΠ am ′ ⇔ [[am]]Π ⊇ [[am ′]]Π,

We drop the explicit mention of the protocol when it is clear from the context.
Note that there are two degrees of freedom within an abstract message:

the choice (made during the design of the protocol) of concrete message
template with which to implement it; and the choice (made at run-time)
of values to instantiate the free variables: abstract messages are refined to
templates, and templates are instatiated to messages.

It is worth considering the implications of the fact that the refinement
relation is parameterised by the protocol Π. There are two scenarios to
consider:

• The final protocol is known, and a rational construction or verification
is being performed. In this case, each refinement step can be verified
against the protocol in question.

• The final protocol is not known, but is being developed. Some of the
refinement rules we give later will include conditions on the protocol Π
(such as the disjoint encryption property: that different encrypted com-
ponents in the protocol have textually distinct forms). If such a refine-
ment rule is used, the conditions need to be checked against the part
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of the protocol developed so far, and borne in mind for the remainder
of the development, or checked at the end.

3.3 Local states

Our global state will comprise a number of honest agents, or nodes, together
with an intruder, which communicate together. In this section we describe
how we model the local states of honest agents. The model includes the
program defining how the agent acts, and the binding of variables to values.
We give an operational semantics showing how the local state evolves as
events are performed.

3.3.1 Protocol templates

Part of the state of an honest agent will be a definition of the (finite) se-
quence of events that it should perform. As with messages, we distinguish
between templates for events (using abstract messages), and the actual events
themselves (described below in Section 3.3.4).

We consider four types of event templates performed by protocol partici-
pants:

send The event template send m represents the sending of a message de-
scribed by the abstract message m;

receive The event template receive m represents the receipt of a message de-
scribed by the abstract message m;

new The event template new x represents the fresh generation of a value to
be stored in the variable x ;

newpair The event template newpair(x , y) represents the fresh generation of
an asymmetric key pair to be stored in the variables x and y ; we specify
that x and y should be inverses in this case: y = x−1var .

Note that we generate both members of a key pair together; to enforce this,
we will ban the use of the construct new x for x an asymmetric key (i.e. where
x ∈ dom −1 ∧ x−1 6= x ). We will not use the newpair construct within any
examples, and so do not give any rules concerning it; we include it here, to
allow for such extensions in future.

Formally, event templates are defined by the grammar

EventTemplate ::= send AbsMsg | receive AbsMsg |
new Var | newpair(Var ,Var).
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Note that event templates use abstract messages, because annotations use
abstract messages. However, the program followed by an honest agent will
use templates containing concrete message templates:

Prog =̂ {prog : EventTemplate∗ |
∀m | send m in prog ∨ receive m in prog • m ∈ Template}.

We lift the refinement relation from abstract messages to event templates
in the obvious way:

send m vΠ send m ′ ⇔ m vΠ m ′,

receive m vΠ receive m ′ ⇔ m vΠ m ′,

new x vΠ new x ,

newpair(x , y) vΠ newpair(x , y).

We lift the notion of refinement from event templates to programs point-
wise:3

prog vΠ prog ′ ⇔ length prog = length prog ′ ∧
∀ i ∈ 1 . . length prog • prog(i) vΠ prog ′(i).

We write vars(m) for the set of variables appearing in message tem-
plate m. We lift this to event templates and to programs in the obvious
way.

3.3.2 Bindings

Part of the local state of each honest agent will record the values of variables.
We model this by a partial mapping, or binding :

Binding =̂ Var 7→ Msg .

We will write ρ for a typical binding. Note that ρ(x ) need not be an atomic
value: it could be a compound value; this will be the case in a protocol where
an agent receives an encrypted message that he is expected to simply forward
on to another agent (e.g. the Otway-Rees Protocol [OR87b], or the Yahalom
Protocol [BAN89]).

If as is a set of variables, it is convenient to define ρ(as) as a shorthand
for {ρ(a) | a ∈ as}.

The operational semantics we give, below, will ensure that variables in
the bindings are well-typed, in the sense that if ρ(x ) = X then typevar (x ) =
typemsg(X ).

3prog(i) represents the ith element of the sequence prog .
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If ρ is a binding and m a message template, then we write m[ρ] for the
corresponding actual message, where each variable x is replaced by ρ(x ). If
x 6∈ dom ρ, then we define x [ρ] = ⊥.

Similarly, if P is a predicate, we write P [ρ] for the result of the corre-
sponding substitution.

3.3.3 Local states

We will represent the local state of an agent by a triple (prog , ρ, id) : Prog ×
Binding × Var , where prog is the remaining sequence of event templates it
needs to perform, ρ is a binding, and id ∈ dom ρ is a distinguished variable
that represents the local agent’s identity. Given a local state s, we will
write “s.prog”, “s.ρ” and “s.id” to refer to the three components. We use
the convention that the selection operator “.” binds tighter than all other
operators, including function application, so for example s.ρ(x ) = (s.ρ)(x ).

Note that s.id is the variable that represents the agent’s identity, not the
value of that identity, which is stored in s.ρ(s.id). We assume that an agent
will use the same value of s.ρ(s.id) in all of his nodes, i.e. he uses the same
identity in all his runs.

3.3.4 Operational semantics

We now give operational semantics for local states.
We consider four types of events performed by protocol participants, anal-

ogous to event templates, and defined by the following grammar:

Event ::= send Msg | receive Msg | new Val | newpair(Val ,Val).

Note that events deal with actual concrete messages and values.

We write s
E

−→ s ′ to mean that from local state s, the event E can be
performed to reach local state s ′. The −→ relation is defined as follows:

• If the next event template in the program is of the form new x , then
the agent can perform the event new X for a value X of the same type
as x ; the binding is updated to bind x to X :

(〈new x 〉 a prog , ρ, id)
new X
−→ (prog , ρ ⊕ {x 7→ X }, id),

provided typeval(X ) = typevar (x ), x 6∈ dom −1 ∨ x−1 = x .

We will ensure later that the value X generated is fresh.
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• The semantics of newpair is very similar, except two values, which must
be inverses, are involved:

(〈newpair(x , y)〉 a prog , ρ, id)
newpair(X ,Y )

−→
(prog , ρ ⊕ {x 7→ X , y 7→ Y }, id),

provided typeval(X ) = typevar (x ), typeval (Y ) = typevar (y),
X−1 = Y .

• If the next event template in the program is of the form send m, then
the agent can perform the event send m[ρ], i.e. where variables are in-
stantiated according to the current binding:

(〈send m〉 a prog , ρ, id)
send m[ρ]
−→ (prog , ρ, id).

• If the next event template in the program is of the form receive m, then
the agent can perform the event receive m[ρ′], and update its binding
to ρ′ for a suitable binding ρ′; more precisely, the new binding must:
(1) extend ρ by giving values to the new variables received in m; (2) re-
spect the types of variables; (3) respect inverses:

(〈receive m〉 a prog , ρ, id)
receive m[ρ′]

−→ (prog , ρ′, id),
provided ρ′ ⊇ ρ, dom ρ′ = dom ρ ∪ vars(m),

∀ x ∈ dom ρ′ • typevar (x ) = typemsg(ρ
′(x )),

∀ x , y ∈ dom ρ′ • x−1 = y ⇒ ρ′(x )−1 = ρ′(y).

Note, in particular, that if a variable has had a value bound to it
already, and a message using that variable is received, then only the
previous value will be accepted: this means that the value received
must be checked against the value stored. We will ensure later that we
consider only protocols that are feasible, i.e. where the agent really is
able to unpack every message he receives to obtain the value for each
variable.

We adopt standard shorthands concerning the transition relation; for

example, we write s −→ s ′ for ∃E ∈ Event • s
E

−→ s ′.
The following lemma captures some properties of the operational seman-

tics.

Lemma 1. If (prog aprog ′, ρ, id) −→∗ (prog ′, ρ′, id ′) then ρ ⊆ ρ′ ∧ dom ρ′ =
dom ρ ∪ vars(prog) ∧ id ′ = id .
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We say that a binding is well-typed if the type of every variable agrees
with the type of the value stored in it, and variables that represent inverses
of one another store values that are inverses of one another:

wellTyped(ρ) =̂ ∀ x ∈ dom ρ • typevar (x ) = typemsg(ρ(x )) ∧
∀ x , y ∈ dom ρ • x−1 = y ⇒ ρ(x )−1 = ρ(y).

The property of being well-typed is preserved by the operational seman-
tics:

Lemma 2. wellTyped(ρ) ∧ (prog , ρ, id)
E

−→ (prog ′, ρ′, id) ⇒ wellTyped(ρ′).

3.4 Feasible protocols

Recall that a concrete program contains no abstract messages. In this section,
we consider the circumstances under which a concrete program is feasible,
in the sense that every variable is bound before it is used. We will use the
initial binding to store the initial knowledge of the agent in question, i.e. the
initial binding will contain those values that it needs to run the protocol,
bound to suitable variables. We make this precise below.

We define a predicate canUnpack such that canUnpack(xs,ms) means
that an agent who has appropriate values for the set of variables xs can
unpack the set of templates ms so as to obtain all the variables within it,
and also verify that all hashes that are received are as expected. canUnpack
is defined to be the smallest predicate such that:

canUnpack(xs, {}),

canUnpack(xs, {v} ∪ ms) ⇐ canUnpack(xs ∪ {v},ms),
for v ∈ Var ,

canUnpack(xs, {(m1,m2)} ∪ ms) ⇐ canUnpack(xs, {m1,m2} ∪ ms),

canUnpack(xs, {{m}k} ∪ ms) ⇐ k−1 ∈ xs ∧
canUnpack(xs, {m} ∪ ms),

canUnpack(xs, hash(m) ∪ ms) ⇐ vars(m) ⊆ xs ∧ canUnpack(xs,ms).

Definition 3. We define LocalState to be the set of all triples (prog , ρ, id) :
Prog × Binding × Var such that:

1. The variable id , representing the agent’s identity, is bound:

id ∈ dom ρ.
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2. Whenever the agent is supposed to send a message described by tem-
plate m, the agent is able to produce the message from his initial knowl-
edge (dom ρ) and the variables bound subsequently (vars(prog ′) below):

∀ prog ′ a 〈send m〉 ≤ prog • vars(m) ⊆ dom ρ ∪ vars(prog ′).

3. Whenever the agent is supposed to receive a message described by tem-
plate m, the agent is able to unpack the message from his initial knowl-
edge and the variables bound subsequently:

∀ prog ′ a 〈receive m〉 ≤ prog •
canUnpack(dom ρ ∪ vars(prog ′), {m}).

4. Whenever the agent is supposed to generate a new value for a variable,
that variable it not already bound:

∀ prog ′ a 〈new x 〉 ≤ prog • x 6∈ dom ρ ∪ vars(prog ′) ∧
∀ prog ′ a 〈newpair(x , y)〉 ≤ prog • x , y 6∈ dom ρ ∪ vars(prog ′).

We say that a protocol is feasible if it is a member of LocalState. The goal
of a protocol development will always be to end up with a feasible protocol,
and from now on we will assume that all concrete protocols we deal with are
indeed feasible.

The following lemma shows that being an element of LocalState is pre-
served by the operational semantics.

Lemma 4. If (prog , ρ, id) ∈ LocalState and (prog , ρ, id) −→∗ (prog ′, ρ′, id),
then (prog ′, ρ′, id) ∈ LocalState.

3.5 The intruder

We model the intruder by simply recording the set of messages that he knew
initially or has seen subsequently. We capture this formally when we discuss
global states, below.

We will need to capture the way the intruder can produce new messages
from messages he already knows. We write B ` M if the message M can
be obtained from the set of messages B by the intruder. The relation ` is
defined by the following six rules.

member M ∈ B ⇒ B ` M ;

pair B ` M1 ∧ B ` M2 ⇒ B ` (M1,M2);
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split B ` (M1,M2) ⇒ B ` M1 ∧ B ` M2;

encrypt B ` M ∧ B ` K ⇒ B ` {M }K ;

decrypt B ` {M }K ∧ B ` K−1 ⇒ B ` M ;

hash B ` M ⇒ B ` hash(M ).

Below we write “intruder” for the identity of the intruder4.

3.6 Global states

A global state is a collection of local states of honest agents, together with
the state of the intruder. We model this by a function σ with domain 0 . . n
for some n: σ(0) will represent the state of the intruder; σ(1), . . . , σ(n) will
represent the states of the honest agents. Formally:

GlobalState =̂ {σ : N 7→ (LocalState ∪ PMessage) |
∃ n : N • domσ = 0 . . n ∧ σ(0) ∈ PMessage ∧

∀ i ∈ 1 . . n • σ(i) ∈ LocalState}.

Note that several different nodes may have the same identity variables, rep-
resenting that several nodes are running the same role in the protocol. Fur-
ther, several different nodes may have the same value (in the binding) for
the identity variables, representing that a particular honest agent may run
the protocol multiple times, possibly with different roles.

In our examples and informal discussions, we will tend to assume that
all of the roles in the global state belong to the same protocol. However,
this is not necessary: our model includes the possibility of roles from several
different protocols, modelling the case of several protocols operating in the
same environment. Recall that some of our message refinement rules will
be dependent upon the protocols in question; typically, the rules will place
restrictions, such as disjoint encryption, upon the protocols; when we are con-
sidering an enviroment containing several protocols, these restrictions apply
to all of those protocols. We briefly return to this point in the conclusion.

Below we will write σ0 for the initial global state, and n for the number
of honest nodes. We take a system running a protocol to be defined by σ0

together with the typing environment provided by typevar , typeval ,
−1var and

−1val .

4It is straightforward to extend the model so as to give the intruder multiple identities,
or equivalently to allow several intruders with different identities to work together.
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We assume that the intruder’s identity intruder is distinct from the iden-
tities of all the other nodes:

∀ i ∈ 1 . . n • σ0(i).ρ(σ0(i).id) 6= intruder .

In most annotations, we will assume that the programs of different nodes
are consistent in the sense that they use the same variable name for variables
that are intended to be equal. For example, if an agent has a send event
send m that is intended to be received in the event receive m ′, then m and m ′

will be defined using the same variables, so will in fact be syntactically equal.
Further, if two nodes have the same identity variables, they will be running
the same program: σ0(i).id = σ0(j ).id ⇒ σ0(i).prog = σ0(j ).prog .

3.6.1 Operational semantics

We now give operational semantics for global states. We write σ
i :E
−→ σ′ to

represent that from global state σ, node i can perform the event E causing
the global state to evolve to σ′. The operational semantics is defined by the
four rules below. We arrange for all communications to go via the intruder,
rather than having honest agents synchronise directly; so a send event by an
honest agent simply causes the corresponding message to be added to the
intruder’s knowledge; and a receive event can happen provided the intruder
can produce the corresponding message.

We consider first new X events. We need to specify that the value X that
results from this event really is a new value; this is captured by the following
predicate:

isNew(X )(σ) =̂ X 6� σ(0) ∧ ∀ i > 0; y ∈ dom σ(i).ρ • X 6� σ(i).ρ(y).

The event i : new X can occur if: (1) the node i can do the corresponding
new X event; (2) no other node changes its state; and (3) the value X is new:

σ(i)
new X
−→ σ′(i)

∀ j ∈ 0 . . n | j 6= i • σ(j ) = σ′(j )
isNew(X )(σ)

[ i > 0 ]
σ

i :new X
−→ σ′

The semantics of newpair events is very similar:

σ(i)
newpair(X ,Y )

−→ σ′(i)
∀ j ∈ 0 . . n | j 6= i • σ(j ) = σ′(j )
isNew(X )(σ) ∧ isNew(Y )(σ)

[ i > 0 ]

σ
i :newpair(X ,Y )

−→ σ′
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The event i : send M can occur if: (1) the node i can do the corresponding
send M event; (2) M is added to the intruder’s knowledge; and (3) no other
node changes its state:

σ(i)
send M
−→ σ′(i)

σ′(0) = σ(0) ∪ {M }
∀ j ∈ 1 . . n | j 6= i • σ(j ) = σ′(j )

[ i > 0 ]
σ

i :send M
−→ σ′

The event i : receive M can occur if: (1) the node i can do the corre-
sponding receive M event; (2) the intruder is able to produce the message M
to send it (possibly faked) to i ; and (3) no other node changes its state:

σ(i)
receiveM
−→ σ′(i)

σ(0) ` M
∀ j ∈ 0 . . n | j 6= i • σ(j ) = σ′(j )

[ i > 0 ]
σ

i :receiveM
−→ σ′

3.6.2 Protocol traces

A system trace is an alternating sequence of the form

〈σ0, i1:E1, σ1, i2:E2, σ2, . . . , σn〉,

where each σj is a global state, each ij is a node index, and each Ej is an
event, such that

σ0
i1:E1−→ σ1

i2:E2−→ σ2 . . . σn .

This trace represents a protocol run in which the initial state is σ0, then event
i1 : E1 occurs and the state evolves into σ1, and so on. We write traces(Π)
for the set of all traces that can be observed of Π. We define States(Π) to
be all the reachable states, i.e. states appearing in some trace of Π.

If tr is a sequence of events, then we write tr � i for the restriction of tr
to the events performed by node i :

〈〉 � i = 〈〉,

(〈j : E 〉 a tr) � i = 〈E 〉 a (tr � i), if j = i ,
tr � i , otherwise.
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4 Annotations

In this section we consider annotations in more detail. In Section 4.1 we
formally define the meaning of an annotation and of an invariant. In Sec-
tion 4.2 we give some structural annotation rules. In Section 4.3 we give
formal definitions of the annotation macros we have used, together with a
few annotation rules using them. Finally in Section 4.4 we give an annotation
rule for the new x construct.

4.1 Correctness of annotations and invariants

Consider an assertion P that is intended to hold for a node i > 0 in some
state σ. The free variables within P refer to the values within i ’s binding
(σ(i).ρ) and so need to be substituted with those values; the resulting pred-
icate is then interpreted with respect to σ: P [σ(i).ρ](σ). We abbreviate this
to P(σ)[i ], pronounced “P in σ for i”:

P(σ)[i ] =̂ P [σ(i).ρ](σ).

For example

(knows(x ) = {a, b})(σ)[i ] ≡ knows(X )(σ) = {A,B}
where X = σ(i).ρ(x ), A = σ(i).ρ(a), B = σ(i).ρ(b).

Similarly, if pka is a’s public key then the assertion knows(pka−1) = {a}
specifies that only a knows the corresponding secret key; this is interpreted
as follows:

(knows(pka−1) = {a})(σ)[i ] ≡ knows(PKA−1)(σ) = {A}
where PKA = σ(i).ρ(pka), A = σ(i).ρ(a).

(The “ −1” is the inverse operation over Val , i.e. −1val .) Recall that if
x 6∈ dom σ(i).ρ, then the effect of the substitution on x is to produce ⊥.

Note that we need to be careful with the substitution, for not every
occurrence of a variable x within P refers to i ’s value for x : some may refer
to a different node’s value for x . In such cases, we define the substitution
to “do the right thing”; we make this more precise when we discuss relevant
macros, below, specifically the session macro.

We can now define invariants of protocols:

Definition 5. Predicate P is an invariant of protocol Π for node i if it
holds in all states:

∀ σ ∈ States(Π) • P(σ)[i ].
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Predicate P is an invariant of protocol Π for role a if P is invariant for every
node with identity a:

∀ σ ∈ States(Π); i ∈ 1 . . n | σ(i).id = a • P(σ)[i ].

Suppose σ0(i).prog = es0
a es1; then to say that i can be sure that

predicate P holds after es0 means that for every state σ where i has remaining
program es1, it must be the case that P holds in σ for i :

∀ σ ∈ States(Π) | σ(i).prog = es1 • P(σ)[i ].

We now formally define the annotation a :
{
pre

}
es
{
post

}
, where es is a

sequence of abstract message templates. Roughly speaking, we want to say
that the annotation is correct if post holds just after es is performed, assum-
ing pre always holds just before es. Recall, however, that the annotation
may use abstract messages within es, whereas the actual system will use
concrete messages; we therefore consider all executions resulting from event
templates that are refinements of es. More precisely, if σ(i).id = a and
σ0(i).prog = es0

a es ′ a es1 where es ′ w es, then the annotation is correct if
post always holds after es0

a es ′, assuming pre always holds after es0.

Definition 6.

a :
{
pre

}
es
{
post

}
=̂

∀ i ∈ 1 . . n | σ0(i).id = a •
∀ es0, es1, es

′ | σ0(i).prog = es0
a es ′ a es1 ∧ es ′ w es •

(∀ σ ∈ States(Π) | σ(i).prog = es ′ a es1 • pre(σ)[i ])
⇒
(∀ σ′ ∈ States(Π) | σ′(i).prog = es1 • post(σ′)[i ]).

The following lemma relates annotations to invariants.

Lemma 7. If

∀ i ∈ 1 . . n | σ0(i).id = a •

P(σ0)[i ] ∧ ∀ e in σ(i).prog • a :
{
P
}

e
{
P
}

then P is an invariant of the protocol for a.

Note that we will often have to assume that the invariant holds in the initial
state.
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4.2 Structural annotation rules

We now prove some of the structural annotation rules that we used ear-
lier. Within these rules, we blur the distinction between single events and
sequences of events.

Annotation Rule 8 (Strengthen precondition).

a : {pre}e{post}
pre ′ ⇒ pre

a : {pre ′}e{post}

Proof: Suppose

σ0(i).id = a ∧ σ0(i).prog = es0
a e ′ a es1 ∧ e ′ w e ∧

∀ σ ∈ States(Π) | σ(i).prog = e ′ a es1 • pre ′(σ)[i ].

Then by the second hypothesis,

∀ σ ∈ States(Π) | σ(i).prog = e ′ a es1 • pre(σ)[i ].

So by the first hypothesis,

∀ σ′ ∈ States(Π) | σ′(i).prog = es1 • post(σ′)[i ],

and so a : {pre ′}e{post} as required. 2

The proofs of the following rules are very similar.

Annotation Rule 9 (Weaken postcondition).

a : {pre}e{post}
post ⇒ post ′

a : {pre}e{post ′}

Annotation Rule 10 (Sequential composition).

a : {pre}e1{mid}
a : {mid}e2{post}

a : {pre}e1e2{post}

We also give a rule concerning conjunctions of postconditions; this rule allows
us to verify conjuncts of a postcondition separately.

Annotation Rule 11 (Conjunction of postconditions).

a : {pre}e{post1}
a : {pre}e{post2}

a : {pre}e{post1 ∧ post2}
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4.3 Annotation macros

In this section we give semantics to several annotation macros.

4.3.1 knows

The macro knows(x ) returns the set of participants who know the value of x .
Recall that assertions are interpreted with respect to a particular state, say
state σ, and a particular node, say node i ; therefore the value of x in question
is σ(i).ρ(x ). This value is obtained via the substitution:

knows(x )(σ)[i ] = knows(x )[σ(i).ρ](σ) = knows(σ(i).ρ(x ))(σ).

We therefore define the meaning of knows with respect to a value X (as
opposed to a variable).

The value X is known by the agent of honest node i if σ(i).ρ(y) = X for
some y ; X is known by the intruder if σ(0) ` X .

knows(X )(σ) =̂ {σ(i).ρ(σ(i).id) | i ∈ 1 . . n ∧ ∃ y • σ(i).ρ(y) = X }
∪
(if σ(0) ` X then {intruder} else {}).

Note that the value of knows(X ) cannot, in general, be relied upon to stay the
same from one state to another, even if the agent currently being considered
does not perform any events: messages sent elsewhere may cause new agents
to learn X . However, the value of knows(X ) cannot decrease as an execution
progresses.

4.3.2 holds

It is useful to define a macro holds(X ) that gives the identities of those agents
who have the atomic value X as a submessage of one of the messages they
know:

holds(X )(σ) =̂ {σ(i).ρ(σ(i).id) | ∃ y • X � σ(i).ρ(y)}
∪
(if ∃M ∈ σ(0) • X � M then {intruder} else {}).

Note that hold(X ) includes those agents who hold X as a submessage, by
contrast with knows(X ) where X must equal all of a message stored by the
agent. We have knows(X )(σ) ⊆ holds(X )(σ).

The following lemma shows that A can acquire X by freshly generating
it, by receiving a message including X , or, if A is the intruder, by another
agent sending it.
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Lemma 12. Suppose A aquires X from event j : E :

σ
j :E
−→ σ′ ∧ A 6∈ holds(X )(σ) ∧ A ∈ holds(X )(σ′).

Let B = σ(j ).ρ(σ(j ).id). Then

(E = new X ∨ ∃Y • E = newpair(X ,Y ) ∨ E = newpair(Y ,X )) ∧
A = B

∨
∃M • E = send M ∧ A = intruder ∧ X � M
∨
∃M • E = receive M ∧ A = B ∧ X � M .

4.3.3 session

If B is an honest agent then the notation

session(b ; B ; x1 ; X1, . . . , xk ; Xk )(σ)

means that for some node j , the variable representing the agent’s identity
is b, that b is bound to B , and each xl is bound to Xl . If B is dishonest then
the notation means that B knows each of the Xl : a dishonest agent is not
forced to bind values to variables in any predictable way.

session(b ; B ; x1 ; X1, . . . , xk ; Xk )(σ) =̂
∃ j > 0 • σ(j ).id = b ∧ σ(j ).ρ(b) = B ∧ ∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl

∨
B = intruder ∧ ∀ l ∈ 1 . . k • σ(0) ` Xl .

Recall that an assertion P is interpreted with respect to a particular node,
say node i , via the substitution P(σ)[i ] = P [σ(i).ρ](σ). In the case of the
session macro, we define this substitution to be performed only on variables
on the right hand side of ; symbols, not those on the left hand side. For
example,

session(b ; c; x ; y)(σ)[i ] =
session(b ; σ(i).ρ(c); x ; σ(i).ρ(y))(σ),

i.e. the other node’s b variable is bound to the value of node i ’s c variable,
and the other node’s x variable is bound to the value of node i ’s y variable.
We will extend this convention — that substitution does not apply on the
left of ; symbols — to other annotation macros later.
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Often the value of a variable, x say, in one agent’s state, say B ’s state,
will match the value of the variable of the same name in the current scope;
if the current annotation is from the point of view of agent A, then this
means that A’s value of x is the same as B ’s value of x . In such cases we
simplify the binding “x ; x” to just “x”, representing that from A’s point
of view, B has x bound to the correct value. We adopt the same convention
with the identity variable. For example,

session(b; x )(σ)[i ] ≡ session(b ; b; x ; x )(σ)[i ]

≡ session(b ; σ(i).ρ(b); x ; σ(i).ρ(x ))(σ).

The session macro does not talk about recentness of sessions: if an agent a
has a postcondition of the form session(b; . . .), then that does not neces-
sarily guarantee that b’s session was recent. Further it does not guarantee
a 1-1 relationship between the runs of a and those of b, the so-called injec-
tivity property [Low97]; this property is important, for example, in financial
protocols. However, if a has a postcondition of the form session(b; x , . . .)
where x is freshly generated by a, then clearly b’s session is indeed recent,
and there is a 1-1 relationship between a’s and b’s sessions.

The following lemma relates the session and knows macros.

Lemma 13.
(
session(a ; b; x ; y) ⇒ b ∈ knows(y)

)
(σ)[i ].

The following lemma relates the session macro to invariants. If an anno-
tation for a includes a term of the form session(b; . . .), then a’s annotation
can, roughly speaking, be strengthened with b’s invariant.

Lemma 14. Suppose I is invariant for role b, and let the free variables
of I be a subset of {b, x1, . . . , xk , y1, . . . , ym}. Then the following assertion is
invariant for all nodes:

session(b; x1, . . . , xk) ∧ honest(b) ⇒ ∃ y1, . . . , ym • I

Proof: Pick a state σ and a node identifier i . We need to show
(
session(b; x1, . . . , xk) ∧ honest(b) ⇒ ∃ y1, . . . , ym • I

)
(σ)[i ].

Let B = σ(i).ρ(b), and Xl = σ(i).ρ(xl) for l = 1, . . . k . Suppose
(session(b; x1, . . . , xk) ∧ honest(b))(σ)[i ], i.e.,

session(b ; B ; x1 ; X1, . . . , xk ; Xk)(σ) ∧ honest(B)(σ).

Then for some j > 0, σ(j ).ρ(b) = B and σ(j ).ρ(xl) = Xl for each l . Now,
from the invariance of I we have I (σ)[j ] which implies (∃ y1, . . . , ym • I )(σ)[j ].
But σ(i).ρ and σ(j ).ρ agree on all the free variables of ∃ y1, . . . , ym • I , and
so (∃ y1, . . . , ym • I )(σ)[i ] also holds, as required. 2
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4.3.4 honest

The predicate honest(X ) asserts that the set of participants in X are honest
in the sense that they do not deviate from the protocol definition:

honest(X ) =̂ intruder 6∈ X .

Note that if honest(X ) holds, then it will hold throughout an execution as
an invariant. We simplify notation and write, for example, honest(a, b) as a
shorthand for honest({a, b}).

4.3.5 defined

We say that a value X is defined if it is not the special value ⊥:

defined(X ) =̂ X 6= ⊥.

Note that

defined(x )(σ)[i ] ≡ x ∈ dom(σ(i).ρ).

4.3.6 associatedWith

We will sometimes want to say that particular values are associated with
one another, so that if an agent receives one, then he must also receive the
others (one could say that the values are bound together; we avoid that term
because we are using the word “binding” in a different sense). We write
associatedWithx;X (y1 ; Y1, . . . , yn ; Yn)(b) to indicate that if agent b has
X stored in variable x , then he has Y1, . . . ,Yn stored in variables y1, . . . , yn :

associatedWithx;X (y1 ; Y1, . . . , yn ; Yn)(b)(σ) =̂
∀ j > 0 | σ(j ).id = b •

σ(j ).ρ(x ) = X ⇒ σ(j ).ρ(y1) = Y1 ∧ . . . ∧ σ(j ).ρ(yn) = Yn .

We drop the “b” to indicate that the association holds for all roles:

associatedWithx;X (y1 ; Y1, . . . , yn ; Yn)(σ) =̂
∀ b • associatedWithx;X (y1 ; Y1, . . . , yn ; Yn)(b)(σ).

Within annotations, we will use the shorthand

associatedWithx (y1, . . . , yn) =̂
associatedWithx;x (y1 ; y1, . . . , yn ; yn).

Recall the convention that substitution does not apply on the left of the
; symbol; hence associatedWithx (y1, . . . , yn)(σ)[i ] means that if any other
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node j has x bound to the same value as i does, then j also has y1, . . . , yn

bound to the same values as i does; in other words, i ’s value for x is insep-
arably associated with its values for y1, . . . , yn . If i does not have x in its
state, then associatedWithx (ys)(σ)[i ] holds vacuously: the left hand side of
the implication becomes σ(j ).ρ(x ) = ⊥, which is false.

The following lemma relates associatedWith to the session macro:

Lemma 15.

(
session(b ; B ; x ; X , y1 ; Y1, . . . , ym ; Ym) ∧
honest(B) ∧ associatedWithx;X (z1 ; Z1, . . . , zn ; Zn)

)
⇒

session(b ; B ; x ; X , y1 ; Y1, . . . , ym ; Ym ,
z1 ; Z1, . . . , zn ; Zn).

4.3.7 uniquelyBound

The annotation macro uniquelyBound(x ; X ) means that the (proper)
value X is bound only to the variable x , and is not a proper submessage
of any variable:

uniquelyBound(x ; X )(σ) =̂
X 6= ⊥ ∧
∀ j > 0; y ∈ Var • (σ(j ).ρ(y) = X ⇒ y = x ) ∧ X 6� σ(j ).ρ(y),

where � is the strict version of the submessage relation �. Note that
uniquelyBound(x ; ⊥)(σ) is false.

We define the standard shorthand:

uniquelyBound(x ) =̂ uniquelyBound(x ; x ).

Recall the convention that substitution does not apply on the left of the ;

symbol; hence uniquelyBound(x )(σ)[i ] means that i ’s value for x is bound
only to the variable x in other nodes.

We also define the shorthand

uniquelyBound(x−1) =̂ uniquelyBound(x−1var ; x−1val ),

so that (uniquelyBound(x−1))(σ)[i ] means uniquelyBound(y ; X −1)(σ)
where y = x−1 and X = σ(i).ρ(x ), i.e. the inverse of the value X held
in node i ’s variable x is only stored in other nodes’ variable y = x−1.

Note that uniquelyBound(x )(σ)[i ] implies x ∈ dom σ(i).ρ, and uniquely-
Bound(x−1)(σ)[i ] implies x ∈ dom σ(i).ρ.
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4.4 new x

In this section we give a proof rule for new x .

Annotation Rule 16 (New). If pre refers only to state variables then

a :
{
pre

}
new x

{
knows(x ) = {a} ∧ (∃X0 • pre[X0/x ])

}

where X0 is a fresh identifier.

Note that the restriction on pre is necessary to prevent preconditions such
as #ρ = 3, which would not be preserved by the creation of a new variable
within ρ. Note also that if x is not free in pre then the second conjunct of
the postcondition simplifies to pre.
Proof: Following the definition of annotations, suppose

σ0(i).id = a ∧ σ0(i).prog = es0
a e ′ a es1 ∧ e ′ w new x ∧

∀ σ ∈ States(Π) | σ(i).prog = e ′ a es1 • pre(σ)[i ].

Then e ′ = new x . Suppose σ′ is such that σ′(i).prog = es1, and let σ be
the state immediately before the new x event. Then pre(σ)[i ] and σ ′(i).ρ =
σ′(i) ⊕ {x 7→ X } for some fresh X . Let σ′′ be the global state immediately
after the transition, which might not be the same as σ′ at nodes other than i ;
then:

σ
i :new X
−→ σ′′ −→∗ σ′ ∧ σ′′(i) = σ′(i) ∧

isNew(X )(σ) ∧ ∀ j 6= i • σ(j ) = σ′′(j ).

We consider the two conjuncts of the postcondition separately. For the
first conjunct, we need to show (knows(x ) = {a})(σ ′)[i ], i.e., knows(X )(σ′) =
{A} where A = σ(i).ρ(a). Clearly (knows(X ) = {A})(σ ′′) because X is fresh:

isNew(X )(σ) ⇒ ∀B • B 6∈ holds(X )(σ)
⇒ ∀B 6= A • B 6∈ holds(X )(σ′′).

But node i sends no messages between σ′′ and σ′, and so

∀B 6= A • B 6∈ holds(X )(σ′)

from Lemma 12 and a simple case analysis. Hence knows(X )(σ ′) = {A}.
For the second conjunct, we need to show (∃X0 • pre[X0/x ])(σ′)[i ]. Let

σ̂ = σ′ ⊕ {i 7→ σ(i)}. Then it is clear that σ̂ ∈ States(Π), reachable via the
same trace that reached σ′ except excluding the i : new X event. Further,
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σ̂(i).prog = 〈new x 〉 a es1. Hence by the hypothesis of the rule, pre(σ̂)[i ].
But

pre(σ̂)[i ]

≡
〈
definition

〉

pre[σ̂(i).ρ](σ̂)

⇒
〈
predicate calculus

〉

(∃X0 • pre[X0/x ])[σ̂(i).ρ](σ̂)

≡
〈
x not free in ∃X0 • pre[X0/x ]

〉

(∃X0 • pre[X0/x ])[σ′(i).ρ](σ̂)

≡
〈
x not free in ∃X0 • pre[X0/x ]; pre refers only to state variables

〉

(∃X0 • pre[X0/x ])[σ′(i).ρ](σ′)

≡
〈
definition

〉

(∃X0 • pre[X0/x ])(σ′)[i ].

2

We believe a similar rule holds for newpair; verifying it is left as future
work.

5 Disjoint encryption

In this section we define the disjoint encryption property [GTF00]: that
different encrypted components within the protocol have distinct forms. We
then prove a theorem that follows from it: under certain circumstances, a
particular value X will be bound to only a single variable x within different
agents’ states.

We start by extending the submessage relation to Template ↔ Event-
Template in the obvious way:

m � send m ′ ⇔ m � m ′,

m � receive m ′ ⇔ m � m.

We now capture the disjoint encryption assumption.

Definition 17 (Disjoint encryption). Suppose in the initial state σ0, the
j1th message of the program at node i1 and the j2th message of the program
at node i2 both contain encrypted submessages that have the same type:

{m1}k1
� σ0(i1).prog(j1) ∧ {m2}k2

� σ0(i2).prog(j2) ∧
type({m1}k1

) = type({m2}k2
).
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Then these two encrypted components are, in fact, syntactically equal com-
ponents:

{m1}k1
= {m2}k2

.

Guttman and Thayer [GTF00] consider the idea of disjoint encryption
in the context of two protocols operating in the same environment: their
property specified that the protocols should not have encrypted components
of the same form (i.e. type); they prove that in this case the two protocols are
independent, i.e. there are no interactions between them. Our condition is
slightly weaker, and in a slightly different context: two encrypted components
may have the same form, but if they do, they should use the same variables.
Theirs is an inter-protocol property; ours is an intra-protocol property.

We now prove a result that shows that, under certain circumstances, all
occurrences of a value X in honest agents’ states are bound to the same
variable x .

We will need the following lemma which says that if the intruder can
deduce a message containing {M }K , then either he knows both M and K
(so can perform the encryption), or he knows a message containing {M }K :

Lemma 18. If B ` M ′ ∧ {M }K � M ′ then B ` M ∧ B ` K or {M }K � B .

We now prove the result alluded to above.

Theorem 19. Suppose:

1. The protocol satisfies the disjoint encryption property.

2. The intruder did not initially hold any message containing X :

X 6� σ0(0).

3. Any honest agent who held X initially had it bound to x :

uniquelyBound(x ; X )(σ0).

4. Trace tr ends in state where the intruder does not know X :

(last tr)(0) 6` X .

5. If X is generated in a new or newpair event, then it is generated to
instantiate x :

∀ tr ′ a 〈σ, i : new X , σ′〉 ≤ tr • σ(i).prog = 〈new x 〉 a σ′(i).prog
∧
∀ tr ′ a 〈σ, i : newpair(X ,Y ), σ′〉 ≤ tr •

∃ y • σ(i).prog = 〈newpair(x , y)〉 a σ′(i).prog
∧
∀ tr ′ a 〈σ, i : newpair(Y ,X ), σ′〉 ≤ tr •

∃ y • σ(i).prog = 〈newpair(y , x )〉 a σ′(i).prog .
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Then any honest agent who holds X does so with it bound to the variable x :

uniquelyBound(x ; X )(last tr). (1)

Note that this theorem really concerns two quite different scenarios:

• If an honest agent does hold X initially (necessarily bound to x ), then
no new or newpair events for X can occur (because of the freshness
condition on such events), and so assumption 5 holds vacuously.

• If no honest agent holds X initially, then it must be introduced (if at
all) by a new x , newpair(x , y) or newpair(y , x ) event. The theorem then
gives a result about all values X that could be introduced for x . Note
that in this case, assumptions 2, 3 and 5 are automatically satisfied.

Proof: Suppose, for a contradiction, that the result does not hold. Consider
the shortest counter-example trace tr . By assumption 3, tr is not the trivial
trace 〈σ0〉. So consider the last event of tr , and perform a case analysis:

• Case i : new Y . new events change bindings only for the node and
variable in question. Hence the only way that equation (1) can be
falsified by this event is if it is a new X event for a variable y 6= x . But
this contradicts assumption 5.

• Case i : newpair(Y ,Z ). This is very similar to the previous case.

• Case i : send M . send events do not change any bindings, so cannot
falsify equation (1).

• Case i : receive M . Let σ1 be the final state, last tr . The intruder does
not know X in σ1, so it cannot appear as plaintext in M ; a variable is
bound to X as a result of the event, and no variables are bound as the
result of hashes, so X cannot occur only within a hash; hence X must
appear encrypted in M , instantiating a variable other than x .

Consider the smallest encrypted component of M containing the occur-
rence of X that gets mis-bound, say {M1}K , with X � M1, instanti-
ating template {m1}k . Now σ1(0) 6` M1 because σ1(0) 6` X . Hence by
Lemma 18, {M1}K � σ1(0).

Now consider the earliest point in the trace at which {M1}K � σ(0).
This was not true in the initial state by assumption 2. Hence it must
have come about as the result of an event j : send M ′ with {M1}K �
M ′. Now, j cannot have had {M1}K stored within a variable in the
initial state by assumption 3; and cannot have stored {M1}K within a
variable as the result of a receive event, for no earlier event has included
{M1}K ; hence j must have constructed this encrypted component, say
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to instantiate template {m ′

1}k ′. By the presumed minimality of the
counterexample tr , node j has X bound only to x in this state, so X
instantiates only x in {m ′

1}k ′.

Then type({m1}k) = type({m ′

1}k ′), so by the disjoint encryption as-
sumption, {m}k = {m ′}k ′. Hence X must instantiate the same vari-
ables of {m}k in the receive M event as it does of {m ′}k ′ in the send M ′

event, namely just x . This gives a contradiction.

2

6 Abstract messages

In this section we consider abstract messages in more detail.
Recall that the semantics of an abstract message am in protocol Π is

the set of message templates that could be used to implement am, written
[[am]]Π.

Recall also that we consider concrete messages to be a particular type
of abstract message. The semantics of a concrete message is simply the
singleton set containing the concrete message:

[[m]]Π =̂ {m}, for m ∈ Template.

We begin by considering refinement in more detail, and prove an anno-
tation rule using refinement. In Section 6.2 we consider the conjunction of
abstract messages; in Sections 6.3, 6.4 and 6.5 we consider, respectively, the
abstract messages contains x , maintains P , and provesKnowledgeOf and its
variants. For each such type of abstract message, we give a formal semantics,
annotation rules governing how it can be used in annotations, and refinement
rules showing how it can be refined to a concrete message.

6.1 Refinement

Recall that we write am vΠ am ′ if abstract message am can be implemented
by am ′ in the context of protocol Π:

am vΠ am ′ ⇔ [[am]]Π ⊇ [[am ′]]Π.

We drop the subscript Π when it is clear from the context.
The following lemma follows directly from the definition.

Lemma 20. Refinement is a preorder.
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The following rule shows how refinement can be used within annotations:
refining a sent or received message preserves the correctness of an annota-
tion.

Annotation Rule 21 (Refine message).

a : {pre} send m{post}
m vΠ m ′

a : {pre} send m ′{post}

b : {pre} receive m{post}
m vΠ m ′

b : {pre} receive m ′{post}

Proof: We prove just the rule for sent messages. Suppose

σ0(i).id = a ∧ σ0(i).prog = es0
a e ′ a es1 ∧ e ′ w send m ′ ∧

∀ σ ∈ States(Π) | σ(i).prog = e ′ a es1 • pre(σ)[i ].

Then e ′ w send m by the second hypothesis. So by the first hypothesis,

∀ σ′ ∈ States(Π) | σ′(i).prog = es1 • post(σ′)[i ],

Hence a : {pre} send m ′{post}. 2

6.2 Conjunction

Abstract messages can be combined by conjunction: the conjoined abstract
message represents the conjunction of the requirements of the components.

The semantics of a conjunction is the intersection of the semantics of the
two components:

[[m1 ∧ m2]]Π =̂ [[m1]]Π ∩ [[m2]]Π.

It is worth considering the case where [[m1 ∧ m2]]Π = {}, which is the case
when m1 and m2 represent incompatible requirements. Such a specification
is infeasible: it suggests that the protocol designer has made an error, leaving
too many requirements in one abstract message.

The following lemma follows directly from the definition.

Lemma 22. Conjunction represents the least upper bound relation with
respect to refinement.

The following two rules relate conjunction to refinement.

Refinement Rule 23 (Refinement by conjunction).
m v m ∧ m ′.

34



Refinement Rule 24 (Conjunction of requirements).

m1 v m
m2 v m

m1 ∧ m2 v m

From these and earlier rules, we can deduce the following corollary.

Annotation Rule 25 (Conjunction of messages).

{pre} send m1{post1}
{pre} send m2{post2}

{pre} send m1 ∧ m2{post1 ∧ post2}

{pre} receive m1{post1}
{pre} receive m2{post2}

{pre} receive m1 ∧ m2{post1 ∧ post2}

6.3 contains

The abstract message contains x represents those messages that contain the
variable x as a submessage:

[[contains x ]]Π =̂ {m | x � m}.

This abstract message is used for documenting the intention of a design,
rather than for part of the security analysis. Therefore we do not give any
annotation rules for it.

The following refinement rule is very obvious:

Refinement Rule 26 (contains). contains x vΠ m provided x � m.

6.4 maintains

The abstract message maintains P represents the set of messages that main-
tain the property P : if such a message is sent or received in a state σ that
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satisfies P , then all subsequent states σ′, before this node performs another
event, must also satisfy P .

[[maintains P ]]Π =̂
{m | ∀ tr a 〈σ, i : send m[σ(i).ρ]〉 a tr ′ a 〈σ′〉 ∈ traces(Π) •

tr ′ � i = 〈〉 ∧ P(σ)[i ] ⇒ P(σ′)[i ]
∧
∀ tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉 ∈ traces(Π) •

P(σ)[i ] ⇒ P(σ′)[i ]
∧
∀ tr a 〈σ, i : receive m[σ′′(i).ρ], σ′′〉 a tr ′ a 〈σ′〉 ∈ traces(Π) •

tr ′ � i = 〈〉 ∧ P(σ)[i ] ⇒ P(σ′)[i ]}.

(The first conjunct deals with send events; the second clause deals with receive

events and the immediately succeeding state; the third clause deals with
receive events and subsequent states: unfortunately the latter two clauses
cannot be easily combined.)

The following rule shows how maintains P can be used to prove the main-
tenance of P :

Annotation Rule 27 (maintains).

{
P
}

send maintains P
{
P
}

{
P
}

receive maintains P
{
P
}

We will use the maintains P abstract message as a kind of magic, par-
ticularly for the maintenance of invariants: we will use it to specify that the
invariant is maintained, without specifying the mechanism used to maintain
it. Our experience is that reasoning about invariants requires reasoning about
the protocol as a whole and so is best done separately from the annotation
of a single role.

6.5 provesKnowledgeOf

The abstract message provesKnowledgeOf(x ) proves to the recipient of the
message that some agent knows the recipient’s value of x , and, if that agent
is not the intruder, he has that value bound to his own variable x . This
allows the receiver to verify state information about the sender concerning
the variable x . This is most useful when the recipient can be sure that the
intruder does not know x .

provesKnowledgeOf specifies nothing about who may learn data from this
message.
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6.5.1 Semantics

The semantics of provesKnowledgeOf(x ) is the set of messages m that if an
instantiation is received by some node i (the instantiation in state σ ′ will be
m[σ′(i).ρ]), then in the previous state σ, either the intruder knew i ’s value X
for x , or some other honest node j had its x variable bound to X :

[[provesKnowledgeOf(x )]]Π =̂
{m | ∀ tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉 ∈ traces(Π) •

σ(0) ` X ∨
∃ j > 0 • j 6= i ∧ σ(j ).ρ(x ) = X
where X = σ′(i).ρ(x )}.

The following is an obvious extension:

[[provesKnowledgeOf(x1, . . . , xk)]]Π =̂
{m | ∀ tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉 ∈ traces(Π) •

(∀ l ∈ 1 . . k • σ(0) ` Xl ) ∨
∃ j > 0 • j 6= i ∧ ∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl

where Xl = σ′(i).ρ(xl) for l ∈ 1 . . k}.

Note that the abstract message provesKnowledgeOf(x1, . . . , xk) is not the
same as provesKnowledgeOf(x1) ∧ . . . ∧ provesKnowledgeOf(xk): in the latter
abstract message, it might be different agents who know the different xl .

It is useful to define an extension of provesKnowledgeOf where the re-
cipient receives evidence of the role played by the other agent; the abstract
message provesKnowledgeOf(x1, . . . , xk , id = b) tells the recipient that the
other agent was following a role with identity variable b:

[[provesKnowledgeOf(x1, . . . , xk , id = b)]]Π =̂
{m | ∀ tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉 ∈ traces(Π) •

(∀ l ∈ 1 . . k • σ(0) ` Xl ) ∨
∃ j > 0 • j 6= i ∧ σ(j ).id = b ∧ ∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl

where Xl = σ′(i).ρ(xl) for l ∈ 1 . . k}.

The provesKnowledgeOfNR abstract messages are slightly stronger, as
they give the recipient the additional guarantee that the message was not
replayed from himself: the other node j has an identity different from the
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receiving node i :

[[provesKnowledgeOfNR(x1, . . . , xk)]]Π =̂
{m | ∀ tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉 ∈ traces(Π) •

(∀ l ∈ 1 . . k • σ(0) ` Xl ) ∨
∃ j > 0 • σ(j ).ρ(σ(j ).id) 6= σ(i).ρ(σ(i).id) ∧

∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl

where Xl = σ′(i).ρ(xl) for l ∈ 1 . . m},

[[provesKnowledgeOfNR(x1, . . . , xk , id = b)]]Π =̂
{m | ∀ tr a 〈σ, i : receive m, σ′〉 ∈ traces(Π) •

(∀ l ∈ 1 . . k • σ(0) ` Xl ) ∨
∃ j > 0 • σ(j ).id = b ∧ σ(j ).ρ(b) 6= σ(i).ρ(σ(i).id) ∧

∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl

where Xl = σ′(i).ρ(xl) for l ∈ 1 . . k}.

6.5.2 Annotation rules

The following proof rule shows how provesKnowledgeOf can be used in an-
notations.

Annotation Rule 28 (provesKnowledgeOf.1).

a :
{
true

}

receive provesKnowledgeOf(x1, . . . , xk){
∃ b ∈ Var ; B ∈ Val • session(b ; B ; x1, . . . , xk)

}

Proof: Suppose

σ0(i).id = a ∧ σ0(i).prog = es0
a e ′ a es1 ∧

e ′ w receive provesKnowledgeOf(x1, . . . , xk) ∧
∀ σ ∈ States(Π) | σ(i).prog = e ′ a es1 • true(σ)[i ].

Let σ′ be such that σ′(i).prog = es1, and let σ be the state immediately before
the event corresponding to e ′. Let Xl = σ′(i).ρ(xl) for l ∈ 1 . . k . Then, from
the semantics of provesKnowledgeOf(x ), there are two possibilities:

• Case ∀ l ∈ 1 . . k • σ(0) ` Xl , so ∀ l ∈ 1 . . k • σ′(0) ` Xl . Then, for
arbitrary b ∈ Var ,

session(b ; intruder ; x1 ; X1, . . . , xk ; Xk)(σ
′)

from the definition of session. So

(∃ b,B • session(b ; B ; x1 ; x1, . . . , xk ; xk))(σ
′)[i ],

as required.
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• Case for some j > 0, j 6= i ∧ ∀ l ∈ 1 . . k • σ(j ).ρ(xl) = Xl . Let
b = σ(j ).id and B = σ(j ).ρ(b). Then session(b ; B ; x1 ; X1, . . . ,
xk ; Xk)(σ) and so

(∃ b,B • session(b ; B ; x1 ; x1, . . . , xk ; xk))(σ
′)[i ].

2

The following three rules show how the variants of provesKnowledgeOf
give the recipient extra information about the other agent.

Annotation Rule 29 (provesKnowledgeOf.2).

a :
{
true

}

receive provesKnowledgeOf(x1, . . . , xk , id = b){
∃B ∈ Val • session(b ; B ; x1, . . . , xk)

}

Annotation Rule 30 (provesKnowledgeOfNR.1).

a :
{
true

}

receive provesKnowledgeOfNR(x1, . . . , xk){
∃ b ∈ Var ; B ∈ Val • session(b ; B ; x1, . . . , xk) ∧ B 6= a

}

Annotation Rule 31 (provesKnowledgeOfNR.2).

a :
{
true

}

receive provesKnowledgeOfNR(x1, . . . , xk , id = b){
∃B ∈ Val • session(b ; B ; x1, . . . , xk) ∧ B 6= a

}

6.5.3 Refinement rules

We now state and prove some refinement rules for provesKnowledgeOf. We
begin by showing that, subject to some provisos, if an encrypted message con-
tains all the elements of xs, either as direct sub-messages or as the encrypting
key, then that message refines provesKnowledgeOf(xs). For example, subject
to the provisos

provesKnowledgeOf(x , y , z ) v {x , y}z .

Further, any message containing such an encrypted component, possibly with
additional fields, will refine the same abstract message. We will need the
following lemma.5

Lemma 32. If B ` M ∧ M ′ � M then B ` M ′.

5Recall that M ′ � M means that M ′ is a submessage of M that can be obtained
from M simply by splitting pairs, i.e. without performing any decryption.
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Refinement Rule 33. Suppose message template m is such that for some
encrypted message template m ′ = {m ′′}y � m,

∀ x ∈ xs • x � m ′′ ∨ x = y .

Then

provesKnowledgeOf(xs) vΠ m,

provided:

1. the protocol satisfies the disjoint encryption property;

2. no role sends and then receives message templates that both contain m ′;
and

3. either (a) at least one field of m ′ is freshly generated by the recipient;
or (b) the intruder does not initially hold any instantiation of m ′ unless
he also knows the direct submessages and the encrypting key.

Proof: Let xs = {x1, . . . , xk}. Following the definition of provesKnowledgeOf,
consider a trace

tr a 〈σ, i : receive m[σ′(i).ρ], σ′〉.

Let M ′ = m ′[σ′(i).ρ], and let Xl = σ′(i).ρ(xl) for l ∈ 1 . .k . Consider the first
message of the trace that contains M ′ (which might be the above message):

• Case j : send M . Suppose this event occurs from state σ ′′. Then by the
disjoint encryption property, the component of M that equals M ′ must
itself instantiate m ′, so

M ′ = m ′[σ′(i).ρ] = m ′[σ′′(j ).ρ].

Then by the assumptions concerning m ′, σ′(i).ρ and σ′′(j ).ρ must agree
on each of the xl and on y :

∀ l ∈ 1 . . k • Xl = σ′(i).ρ(xl) = σ′′(j ).ρ(xl) = σ(j ).ρ(xl ) ∧
σ′(i).ρ(y) = σ′′(j ).ρ(y) = σ(j ).ρ(y).

Finally, j 6= i by assumption 2 of the rule. Hence the second disjunct
in the definition of provesKnowledgeOf(xs) is satisfied.

• Case j : receive M . Suppose this event occurs from state σ ′′. We consider
two cases.
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– Case M ′ � σ0(0). This cannot hold if part (a) of assumption 3
holds. If part (b) holds, then all the direct submessages and the
encrypting key are also known initially; i.e.

∀ l ∈ {1 . . k} • σ0(0) ` Xl

because of the assumption about the form of the message. Hence

∀ l ∈ {1 . . k} • σ(0) ` Xl .

– Case M ′ 6� σ0(0). Then M ′ 6� σ′′(0), since no subsequent mes-
sage contains M ′, by assumption. Hence by Lemmas 18 and 32, the
intruder knows all the direct subcomponents of M ′ and the encrypt-
ing key. So by the assumption about the form of m ′, the intruder
knows the values instantiating each of the xl :

∀ l ∈ {1 . . k} • σ′′(0) ` Xl .

Hence

∀ l ∈ {1 . . k} • σ(0) ` Xl .

In both cases, the first disjunct in the definition of provesKnowledge-
Of(xs) is satisfied.

Hence we have shown m ∈ [[provesKnowledgeOf(xs)]]Π, and so

provesKnowledgeOf(xs) vΠ m.

2

Note that it is important that the elements of xs are direct subcomponents
(or the encrypting key). For example {x , {y}w}z does not refine proves-
KnowledgeOf(x , y): the intruder could form this message by taking a message
of the form {y}w for which he does not know y , and then building the message
using his own value for x ; then no single agent knows both x and y .

The following rule extends Refinement Rule 33 to deal with the proves-
KnowledgeOf(xs, id = b) abstract message.

Refinement Rule 34. Suppose the conditions of Refinement Rule 33 are
satisfied, and in addition only role b ever sends messages containing m ′, i.e.:

∀ j ∈ 1 . . n •
(∃m • send m in σ0(j ).prog ∧ m ′ � m) ⇒ σ0(j ).id = b.

Then

provesKnowledgeOf(xs, id = b) vΠ m.

41



The following two rules extend Refinement Rule 33 to deal with the
provesKnowledgeOfNR abstract message.

Refinement Rule 35. Suppose the conditions of Refinement Rule 33 are
satisfied, and in addition, for some a, b:

4. only role b ever sends messages containing m ′;

5. only role a ever receives the message m in question;

6. a 6= b is an invariant for a;

7. either (a) b � m ′, or (b) for some x ∈ xs, associatedWithx (b)(b) is an
invariant for a.

Then

provesKnowledgeOfNR(xs, id = b) vΠ m.

Condition 7(b) could, under reasonable assumptions, be satisfied by taking
x to be a shared secret or b’s secret key, for example.

Refinement Rule 36. Suppose the conditions of Refinement Rule 35 are
satisfied, except assumptions 6 and 7 are replaced by:

6′. a 6= b is an invariant for b;

7′. either (a) a � m ′, or (b) for some x ∈ xs, associatedWithx (a)(b) is an
invariant for a.

Then

provesKnowledgeOfNR(xs, id = b) vΠ m.

Condition 7′(b) could, under reasonable assumptions, be satisfied by taking
x to be a’s public key, for example.

For each of the above rules, there is a corresponding rule that gives a
refinement to a hashed message; we give just the analogue of Refinement
Rule 35:

Refinement Rule 37. Suppose message template m is such that for some
hashed message template m ′ = hash(m ′′) � m,

∀ x ∈ xs • x � m ′′.

Then

provesKnowledgeOfNR(xs, id = b) vΠ m,

provided:
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1. the protocol satisfies the disjoint encryption property;

2. no role sends and then receives message templates that both contain m ′;

3. the intruder does not initially hold any instantiation of m ′ unless he
also knows the direct submessages;

4. only role b ever sends messages containing m ′;

5. only role a ever receives the message m in question;

6. a 6= b is an invariant of the protocol for a;

7. b � m ′.

Note that the above rule justifies the refinement

provesKnowledgeOfNR(na, id = b) v hash(na, b)

from the introductory example.

7 Maintaining invariants

In this section we state and prove some rules that can be used for verifying
that an invariant is maintained. In particular, we give rules for showing
that three particular classes of invariants are maintained: invariants dealing
with long-term secrets that are not sent in the protocol; invariants dealing
with short-term, freshly-generated secrets; and invariants dealing with the
association between values.

7.1 Non-transmitted secrets

We give here a rule that can be used for verifying that the values of particular
variables remain secret. More precisely, it deals with values that are never
sent in any messages, such as long-term keys in most protocols. For such
values x , we are interested in properties of the form

honest(as) ⇒ knows(x ) ⊆ as,

i.e., x is known only by the agents in as, assuming they are honest; of course,
if one of as is dishonest then we can deduce nothing: the intruder may pass
on the value of x to other agents.

Invariant Rule 38. Consider some node i . Suppose

1. The protocol satisfies the disjoint encryption property.
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2. No agent sends a message m such that x � m.

3. Assuming as is honest, initially x is held only by as, and is uniquely
bound:

(
honest(as) ⇒ holds(x ) ⊆ as ∧ uniquelyBound(x )

)
(σ0)[i ].

Then honest(as) ⇒ holds(x ) ⊆ as is an invariant for i , and hence
honest(as) ⇒ knows(x ) ⊆ as is also an invariant.

Proof: Recall that uniquelyBound(x )(σ0)[i ] implies that either x or x−1 is
in dom σ0(i). If x ∈ dom σ0(i).ρ then let X =̂ σ0(i).ρ(x ); otherwise, let
X =̂ (σ0(i).ρ(x−1))−1. Let As =̂ σ0(i).ρ(as). If ¬ honest(As) then the result
holds trivially, so assume honest(As).

We begin by showing that the intruder does not learn X ; more precisely,
we show intruder 6∈ holds(X ) in all states. This is true initially by assump-
tion 3. Suppose, for a contradiction, that the intruder does come to hold X ;
then this will necessarily be from a send event, so suppose

tr a 〈σ, j : send M , σ′〉 ∈ traces(Π),

with intruder ∈ holds(X )(σ′) − holds(X )(σ). Then necessarily X � M .
But in σ, the conditions of Theorem 19 hold, so uniquelyBound(x ; X )(σ).
Hence X must instantiate x in M , which contradicts assumption 2. Hence
the intruder never learns X .

Finally, no agent other than those in As learns X : X cannot be learnt
from a new or newpair event, since such events generate fresh values; and
since the intruder never holds X , we must have X 6� M for all messages M
that are received. 2

We can use the above rule to verify the invariant

honest(b) ⇒ knows(k) ⊆ {a, b}

from the introductory example of Section 2. This introduces an extra initial
assumption, corresponding to Assumption 3, above:

honest(a, b) ⇒ holds(k) ⊆ {a, b} ∧ uniquelyBound(k).

Both of these conjuncts turn out to be necessary; suppose the local node
is i , and let A =̂ σ(i).ρ(a), B =̂ σ(i).ρ(b) and K =̂ σ(i).ρ(k), and assume
honest(A,B):
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• Suppose the intruder initially knows K encrypted with some value that
he subsequently learns; then clearly he will also subsequently learn K ;
this is not prevented by the assumption knows(k) ⊆ {a, b}, but is
prevented by the additional assumption holds(k) ⊆ {a, b}.

• Suppose either A or B has some other role, c say, in which K is bound
to some other variable, k ′ say, and suppose in the role c, k ′ is sent as
plaintext; then the value K of k would not remain secret; the uniquely-
Bound(k) condition prevents this.

We also show that the invariant of Invariant Rule 38 is maintained by
new events; this is necessary for use in annotations.

Annotation Rule 39. For y 6= x :

{
honest(as) ⇒ knows(x ) ⊆ as

}

new y{
honest(as) ⇒ knows(x ) ⊆ as

}

Note that we are assuming that x is in the initial state of the agent in
question, so there cannot be new x events. This rule follows directly from
Annotation Rule 16.

7.2 Transmitted secrets

We now prove a rule that is useful for verifying the secrecy of values that
are transmitted by the protocol. For such values x , we are interested in
properties of the form

defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as.

It does not make sense to talk about who knows x before it is generated.
In essence, the rule below says that if the value x is always hashed, or

encrypted with a key whose decrypting key remains secret, then x itself
remains secret. However, the rule is slightly more complicated than one
might expect. Consider the following protocol, which is intended to keep na
secret:

Message 1. a → b : a, {na}PK (b)

Message 2. b → a : {b, na}PK (a)

Suppose honest(a, b). Then, from a’s perspective, na is encrypted with
either PK (a) or PK (b), both of whose decrypting keys are, presumably,
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secret. However, the intruder can replace a’s identity in message 1 with
his own, and thereby receive na encrypted with his own public key in the
subsequent message 2, and so learn na.

The rule below avoids the problem exhibited above by insisting that the
identities of the agents to whom the secret may be disclosed are associ-
ated with the secret itself (the associatedWithx (as

′) condition in assump-
tion 3).

Invariant Rule 40. Consider some node i with role a, and some set of
roles as. Suppose

1. The protocol satisfies the disjoint encryption property.

2. Either (a) initially only the agents as hold x , and do so well-bound:

(holds(x ) ⊆ as ∧ uniquelyBound(x ))(σ0)[i ],

or (b) role a generates x freshly.

3. Every occurrence of x in a message, say sent by role b, satisfies one of
the following:

(a) x is encrypted by some k such that for some set of roles as ′ ⊆ as:

honest(as ′) ⇒ knows(k−1) ⊆ as ′ is invariant for b,
and
honest(as) ⇒ associatedWithx (as

′)(b) is invariant for i .

(b) x is within a hash.

Then defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as is an invariant for i .

In assumption 3, we will normally take as ′ = {a} if the encryption is with a’s
public key, or as ′ = {a, b} if the encryption is with a symmetric key shared
by a and b.

Note that Invariant Rule 38 is a special case of this; assumption 3 holds
vacuously under the assumptions of that rule.
Proof: Let X =̂ σ(i).ρ(x ) (either the value held initially, or the value gener-
ated by i , depending upon which case of assumption 2 holds), A = σ0(i).ρ(a),
and As =̂ σ0(i).ρ(as). The result holds vacuously if ¬ honest(As), so sup-
pose honest(As).

We begin by showing that the intruder does not learn X . More precisely,
for every state σ, we show the following:

Every occurrence of X within σ(0) is either (a) encrypted by some
key K such that K−1 is invariably unknown by the intruder (i.e.,
σ′(0) 6` K−1 for every σ′ such that σ −→∗ σ′); or (b) hashed.
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This is true initially by assumption 2. The only way it can become false
subsequently is via a send event, so suppose for a contradiction

tr a 〈σ, j : send M , σ′〉 ∈ traces(Π), with σ(j ).id = b,

and the above statement is true in σ but false in σ′. Then it must be that X �

M , not encrypted or hashed as above. But in σ, the conditions of Theorem 19
hold, so uniquelyBound(x ; X )(σ), so, in particular, σ(j ).ρ(x ) = X . Hence,
by assumption 3, every occurrence of X in M satisfies one of the following:

(a) X is encrypted by some key K instantiating k such that (knows(k−1) ⊆
as ′) holds as an invariant for b, and associatedWithx (as

′)(b)(σ)[i ]. Then
σ(j ).ρ(as ′) = σ(i).ρ(as ′) ⊆ σ(i).ρ(as) = As; hence knows(K−1) ⊆ As
invariably, so the intruder cannot learn K−1, giving a contradiction.

(b) X is hashed; the result is immediate in this case.

Hence the intruder never learns X , so we can use Theorem 19, again, to
deduce that uniquelyBound(x ; X ) holds in all states. Further, because
every occurrence of X is encrypted by some K such that knows(K −1) ⊆ As,
or hashed, only members of As can learn X , by the assumption that the
protocol is feasible. Hence knows(X ) ⊆ As is an invariant, and so we deduce
that defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as is an invariant for i . 2

We can apply the above rule to the example from Section 2 to show that

honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}

is invariant. Note that the message {na}k satisfies condition 3(a): because
a herself sends this message, the associatedWith condition is automatically
satisfied. The message hash(na, b) satisfies condition 3(b).

We also show that the invariant of Invariant Rule 40 is maintained by
new events.

Annotation Rule 41.

1. If a ∈ as then

a :
{
defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as

}

new x{
defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as

}

2. For y 6= x :

a :
{
defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as

}

new y{
defined(x ) ∧ honest(as) ⇒ knows(x ) ⊆ as

}
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Note that in the first case, defined(x ) will be false initially, so the precondition
will be trivially true.

7.3 A rule for associatedWith

We now prove a rule that allows us to prove that certain associatedWithx(ys)
properties hold as invariants. More precisely, we are interested in properties
of the form

honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx(ys).

Of course, if a dishonest agent learns the value of x , he can replay it to cause
another agent to associate it with incorrect values for ys.

The main condition of the rule below is that whenever a role receives x
for the first time, it must also receive each of ys, in an inseparable way.

Invariant Rule 42. Suppose that

1. The protocol satisfies the disjoint encryption property;

2. x is freshly generated by role a, in a state where it already has the
variables ys bound;

3. Whenever a role b receives x for the first time, it is within a mes-
sage template m such that for some encrypted message template m ′ =
{m ′′}k � m,

∀ y ∈ ys ∪ {x} • y � m ′′ ∨ y = k−1. (2)

and if x = k , then it is a symmetric key.

Then

honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx(ys)

is an invariant for a.

The following rule is a generalisation of the above rule: each variable y is
replaced in the component m ′ by some variable ŷ such that ŷ is associated
with y .

Invariant Rule 43. Suppose that conditions 1 and 2 of Invariant Rule 42
hold, and in addition

3. Suppose a role b receives x for the first time, in a message template m
created by a role c. Then there is some encrypted message template
m ′ = {m ′′}k � m, such that

x � m ′′ ∨ x = k = k−1
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And for each y ∈ ys, there is a variable ŷ such that

∀ y ∈ ys • ŷ � m ′′ ∨ ŷ = k−1,

and associatedWithŷ(y)(b) is an invariant for c.

Then

I =̂ honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx(ys)

is an invariant for a.

Rule 43 implies Rule 42 by taking ŷ = y ; the associatedWithŷ(y) clause then
holds trivially.
Proof: Consider some node i with role a. We prove I is invariant for i
by induction on the length of the trace. I holds before x is generated. By
assumption 2, I holds immediately after x is generated.

So suppose I holds in state σ. Let X = σ(i).ρ(x ) and As = σ(i).ρ(as).
By the fact that send events do not change bindings, and the definition of
associatedWith, we need only show that I is maintained by receive events
that cause x to become bound to X .

So suppose event j : receive M leads from state σ to state σ ′, and causes x
to be bound to X for j . By assumption 3, j must receive X in this mes-
sage within an instantiation of m ′, namely M ′ = m ′[σ′(j ).ρ]. Suppose
(honest(As) ∧ knows(X ) ⊆ As)(σ′) (or else the result is immediate). Then
the intruder does not know X in state σ, so by Lemma 18, M ′ must have
been created by some honest node, say node l . By the disjoint encryption
assumption, M ′ must have been created to instantiate m ′. So σ′(l).ρ(x ) = X .
Hence, by the inductive hypothesis, σ′(l).ρ(y) = σ′(i).ρ(y), for each y ∈ ys.
Also, σ′(l).ρ(ŷ) = σ′(j ).ρ(ŷ) since m ′ contains ŷ , by assumption 3. Hence,
by the associatedWithŷ(y)(b) assumption, σ′(l).ρ(y) = σ′(j ).ρ(y). Putting
the results together, we get σ′(j ).ρ(y) = σ′(i).ρ(y), as required. 2

We also show that the above invariant is maintained by new events. The
rules require ys to be defined before x .

Annotation Rule 44.
{
defined(ys) ∧ (honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx (ys))

}

new x{
honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx (ys)

}

For y 6= x and y ∈ ys:
{
¬ defined(x ) ∧ (honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx(ys))

}

new y{
honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx (ys)

}
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For z 6∈ {x} ∪ ys:

{
honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx (ys)

}

new z{
honest(as) ∧ knows(x ) ⊆ as ⇒ associatedWithx (ys)

}

Comment Note that Invariant Rule 40, for knows, has a premise that talks
about associatedWith; and conversely Invariant Rule 42, for associatedWith,
has a premise that talks about knows. Can these two rules be used to-
gether, or would that constitute circular reasoning? The proof of the rule
for associatedWith requires that the secrecy condition holds in one state in
order for the association to hold in the next state; and similarly, the proof of
the rule for knows requires the association to hold in one state in order for
the secrecy condition to hold in the next state. So if both hold, in one state,
then they will both hold in the following state, and so on inductively. Hence
the two rules may be used together.

8 Examples

We illustrate the calculus by applying it to three well-known protocols, the
Adapted Needham Schroeder Public Key Protocol, the Otway Rees Protocol,
and the Yahalom Protocol.

8.1 The Needham Schroeder Public Key Protocol

In this section we give a derivation of the Adapted Needham Schroeder Public
Key Protocol [Low95], as in Figure 3. We give derivations for both roles of
the protocol.

The protocol works by combining two public-key encrypted nonce chal-
lenges. Identity information is included to ensure that the nonces are asso-
ciated with the correct identities, to avoid man-in-the-middle attacks.

The protocol makes use of public keys. Below, we will write pka and pkb
for a’s and b’s public keys, and ska and skb for the corresponding secret keys,
so ska = pka−1 and skb = pkb−1.

We start by considering the perspective of agent a. The protocol will
make use of an invariant that says that a and b are distinct agents, and
assuming b is honest, only the appropriate agents know the secret keys, that
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only a and b learn na, and that na is associated with a:

Ia =̂ a 6= b ∧
knows(ska) = {a} ∧
(honest(b) ⇒ knows(pkb−1) = {b}) ∧
(honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}) ∧
(honest(b) ⇒ associatedWithna(a)).

(Note that a’s state does not include b’s secret key skb, so the invariant
talks about pkb−1 instead.) We assume that the first three conjuncts of the
invariant hold initially; na is not defined initially, so the last two conjuncts
hold vacuously:

prea =̂ a 6= b ∧ knows(ska) = {a} ∧ (honest(b) ⇒ knows(pkb−1) = {b}).

Initiator(a; b, pka, ska, pkb) =̂{
prea

} {
Ia
}

new na
{
Ia
〈
Annotation Rules 39, 41 and 44

〉}

send maintains Ia ∧ contains na
{
Ia
}

receive maintains Ia ∧ provesKnowledgeOf (na, nb, b, id = b){
Ia ∧ ∃B • session(b ; B ; na, nb, b)

〈
Annotation Rule 29

〉}





Ia ∧ (honest(b) ⇒ session(b; na, nb, a))〈
if honest(b) then knows(na) ⊆ {a, b} so B 6= intruder , above;
associatedWithna(a) from invariant; Lemma 15

〉




send maintains Ia{
Ia ∧ (honest(b) ⇒ session(b; na, nb, a))

}

Figure 1: The Adapted Needham Schroeder Public Key Protocol: a’s per-
spective

An annotation of the protocol for agent a is shown in Figure 1; justifica-
tions are given in angle brackets. The main step is that a sends a message
that contains na, and then receives a message that proves knowledge of na,
nb and b, from somebody in role b. Because only a and b know na, we can
deduce that it must be b who has the corresponding session. Because na is
associated with a, we can deduce that b’s session must be with a; without the
associatedWithna(a) clause of the invariant, we would not be able to make
this latter deduction, and we would end up with a much weaker authentica-
tion guarantee. Note that b’s session must be recent, and correspond to a
single session of a, because of the agreement on the fresh variable na.
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For b’s perspective, the invariant is very similar to that for a:

Ib =̂ honest(a) ⇒ knows(pka−1) = {a} ∧
knows(skb) = {b} ∧
honest(a) ∧ defined(nb) ⇒ knows(nb) ⊆ {a, b} ∧
honest(a) ⇒ associatedWithnb(b, na),

We assume the first two conjuncts of the invariant:

preb =̂ (honest(a) ⇒ knows(pka−1) = {a}) ∧ knows(skb) = {b}

The protocol from b’s perspective is shown in Figure 2. The main step is
that b sends a message that contains nb, and receives a message that proves
knowledge of nb in role a; because only a and b know na, we can deduce that
it must be a who has the corresponding session; because of the association,
we can deduce that that session involves b and na. Note that a’s session must
be recent, and correspond to a single session of b, because of the agreement
on the fresh variable nb.

Responder(b; a, pkb, skb, pka) =̂{
preb

} {
Ib
}

receive maintains Ib
{
Ib
}

new nb
{
Ib
}

send maintains Ib ∧ contains nb
{
Ib
}

receive maintains Ib ∧ provesKnowledgeOfNR(nb, id = a){
Ib ∧ ∃A • session(a ; A; nb ; nb) ∧ A 6= b

〈
Annotation Rule 31

〉}





Ib ∧ (honest(a) ⇒ session(a; nb, na, b))〈
if honest(a) then knows(nb) ⊆ {a, b} so A = a above;
associatedWithnb(b, na) from invariant; Lemma 15

〉




Figure 2: The Adapted Needham Schroeder Public Key Protocol: b’s per-
spective

We can strengthen the postconditions in the two annotations, using
Lemma 14. Recall that

honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b}

is invariant for a. Hence we can use Lemma 14 to deduce that

session(a; b, na, nb) ∧ honest(a) ⇒
(honest(b) ∧ defined(na) ⇒ knows(na) ⊆ {a, b})
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is invariant for b. Combining with b’s postcondition, and simplifying, we see
that

honest(a) ⇒ knows(na) ⊆ {a, b}

is a postcondition for b. Likewise, we may add

honest(b) ⇒ knows(nb) ⊆ {a, b}

to the postcondition in the annotation for a.
Putting the two annotations together, we may refine the protocol to ob-

tain the normal definition, as in Figure 3. We have a number of proof obli-
gations in order to justify this.

Message 1. a → b : {a, na}pkb

Message 2. b → a : {b, na, nb}pka

Message 3. a → b : {nb}pkb .

Figure 3: The Adapted Needham Schroeder Public Key Protocol: concrete
version

Firstly, we can use Invariant Rule 38 to show that each message maintains
the parts of the invariants dealing with the secret keys. This introduces the
following additional initial assumptions for a:

holds(ska) ⊆ {a} ∧ uniquelyBound(ska) ∧
honest(b) ⇒ holds(pkb−1) ⊆ {b} ∧ uniquelyBound(pkb−1),

and symmetric assumptions for b. (Recall that uniquelyBound(pkb−1) means
that the inverse of the value of a’s variable pkb is stored only in other nodes’
variable skb.)

Next, we can use Invariant Rule 40 to show that each message maintains
the part of a’s invariant concerning knows(na). In message 1, na is encrypted
by pkb, whose inverse skb is known only to b; clearly na is associated with b in
a’s state. In message 2, na is encrypted by pka, whose inverse ska is known
only to a; na is associated with a in b’s state because of the associated-
Withna(a) clause of a’s invariant.

We can show that each message maintains the part of b’s invariant con-
cerning knows(nb) in a very similar way.

Next we can use Invariant Rule 42 to show that

honest(a, b) ∧ knows(na) ⊆ {a, b} ⇒ associatedWithna(a)
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is invariant for a, in particular, because a is included in the encrypted com-
ponent of message 1, where b first receives na. Hence

honest(b) ⇒ associatedWithna(a)

is invariant, because of the earlier invariant about na.
We can similarly use Invariant Rule 42 to show that

honest(a) ⇒ associatedWithnb(b, na)

is invariant for b, because b and na are included in the encrypted component
of message 2, where a first receives nb.

Next, we can show

provesKnowledgeOf (na, nb, b, id = b) v {b, na, nb}pka

using Refinement Rule 34, noting that na is freshly generated by the recipi-
ent a. We can similarly show

provesKnowledgeOfNR(nb, id = a) v {nb}pkb

using Refinement Rule 36, noting that nb is freshly generated by the recipi-
ent b, that a 6= b is an invariant for a, and that associatednb(b) is an invariant
for b.

Of course, that’s not the only way to refine the abstract protocol. For
example, one can also refine it to:

Message 1. a → b : {1, na}pkb, hash(a, na)

Message 2. b → a : {2, nb}pka , hash(na, nb, b)

Message 3. a → b : hash(nb)

The “1” and “2” are message tags, to enforce disjoint encryption6. (To verify
this refinement, one would need an extension of Invariant Rule 42 dealing
with hash functions.)

It is worth considering how the development would proceed if we were
developing the standard Needham Schroeder Public Key Protocol [NS78],
which does not contain a b inside the encryption of message 2. In this case, in
b’s invariant, the associatedWith statement would be replaced by associated-
Withnb(b, na); the B = b clauses are then removed from the subsequent
assertions, and the final session assertion becomes session(a; nb, na): in
other words, b can be sure that a is running a session using the nonces nb

6In order to make this fit our definition of disjoint encryption, we need to assume that
typeval (1) 6= typeval(2).
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and na, but cannot be sure that a associates that session with him. Further,
we wouldn’t be able to prove that the messages keep nb secret, because nb is
not associated with b, and so b would receive no guarantee that nb remains
secret. Both of these correspond to the well-known attack [Low95].

8.2 The Otway Rees Protocol

We now give a derivation of a variant of the Otway Rees Protocol [OR87a].
We vary the protocol slightly, so as to enforce the disjoint encryption condi-
tion: see Figure 7.

The protocol aims to establish a shared key kab between two agents, a
and b, with the help of a trusted third party s, with whom a and b share
long-term keys kas and kbs, respectively. Each of a and b creates a fresh
nonce, na and nb, respectively, which stands for the other’s identity in the
key delivery message. a creates a second nonce, m, which acts as a run
identifier.

We begin by considering the invariant from a’s perspective. The long-
term key kas is a secret shared between a and s. Further, it is necessary to
keep na secret, in order that it can stand for b’s identity in the key delivery
message. Finally, na is associated with a, b and m.

Ia =̂ honest(s) ⇒ knows(kas) = {a, s} ∧
honest(s) ∧ defined(na) ⇒ knows(na) ⊆ {a, s} ∧
honest(s) ⇒ associatedWithna(a, b,m),

prea =̂ honest(s) ⇒ holds(kas) = {a, s} ∧ uniquelyBound(kas).

We will use Invariant Rule 38 to prove the secrecy of kas; the precondition
anticipates that, by assuming one of the conditions of that rule. Note that
the uniquelyBound clause implies that a particular value can never be used
to instantiate both kas and kbs, even in different local states; in particular,
this means that a different key should be used by a particular agent in the a
and b roles. We do not believe this condition is strictly necessary, and could
be avoided by a generalisation of Invariant Rule 38 that talks about multiple
variables; we leave this to future work.

The annotation for a is in Figure 4. The main step is that a receives a
message that proves knowledge of kab and na; a can deduce that s has a
session, in which he associates kab with a and b.

b’s perspective is very similar to a’s, so we simply sketch the details. The
invariant and precondition are as follows:

Ib =̂ honest(s) ⇒ knows(kbs) = {b, s} ∧
honest(s) ∧ defined(nb) ⇒ knows(nb) ⊆ {b, s} ∧
honest(s) ⇒ associatedWithnb(a, b,m),
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Initiator(a; b, s, kas) =̂{
prea

} {
Ia
}

new na,m
{
Ia
}

send maintains Ia ∧ contains na ∧ contains m
{
Ia
}

receive maintains Ia ∧ provesKnowledgeOfNR(na, kab, id = s){
Ia ∧ ∃ S 6= a • session(s ; S ; na, kab)

〈
Annotation Rule 31

〉}





Ia ∧ (honest(s) ⇒ session(s; a, b, na,m, kab))〈
if honest(s) then knows(na) ⊆ {a, s} so S = s;
associatedWithna(a, b,m) from Ia ; Lemma 15

〉




Figure 4: The Otway Rees Protocol: a’s perspective

preb =̂ honest(s) ⇒ holds(kbs) = {b, s} ∧ uniquelyBound(kbs).

The annotation is in Figure 5. Compared with a, b has an extra initial
receive and final send; these are mainly for forwarding messages in the final
protocol.

Responder(b; a, s, kbs) =̂{
preb

} {
Ib
}

receive maintains Ib
{
Ib
}

new nb
{
Ib
}

send maintains Ib ∧ contains nb
{
Ib
}

receive maintains Ib ∧ provesKnowledgeOfNR(nb, kab, id = s){
Ib ∧ ∃ S 6= b • session(s ; S ; nb, kab)

}
{
Ib ∧ session(s; a, b, nb,m, kab)

}

send maintains Ib{
Ib ∧ session(s; a, b, nb,m, kab)

}

Figure 5: The Otway Rees Protocol: b’s perspective

We now consider the perspective of s. The long-term keys are secrets, as
above. The session key kab is a secret shared between a, b and s.

Is =̂ honest(a) ⇒ knows(kas) ⊆ {a, s} ∧
honest(b) ⇒ knows(kbs) ⊆ {b, s} ∧
honest(a, b) ∧ defined(kab) ⇒ knows(kab) ⊆ {a, b, s},
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pres =̂ honest(a) ⇒ holds(kas) = {a, s} ∧ uniquelyBound(kas) ∧
honest(b) ⇒ holds(kbs) = {b, s} ∧ uniquelyBound(kbs).

The annotation is in Figure 6. s receives a message authenticating a
and b, and sends a message that contains the session key kab.

Server(s; a, b, kas, kbs) =̂{
pres

} {
Is
}

receive maintains Is ∧ provesKnowledgeOfNR(b, kas, na,m, id = a)
∧ provesKnowledgeOfNR(a, kbs, nb,m, id = b){

Is ∧ ∃A 6= s • session(a ; A; b, kas, na,m) ∧
∃B 6= s • session(b ; B ; a, kbs, nb,m)

}

{
Is ∧ session(a; b, kas, na,m) ∧ session(b; a, kbs, nb,m)

}

new kab
send maintains Is ∧ contains kab{
Is ∧ session(a; b, kas, na,m) ∧ session(b; a, kbs, nb,m)

}

Figure 6: The Otway Rees Protocol: s’s perspective

We can now apply Lemma 14 to s’s invariant to strengthen the postcon-
ditions for a and b with the condition

honest(a, b, s) ⇒ knows(kab) ⊆ {s, a, b},

i.e., a and b receive a guarantee of secrecy.
We now refine the abstract messages, to obtain the concrete protocol

described in standard notation in Figure 7.

Message 1. a → b : m, a, b, {na,m, a, b}kas

Message 2. b → s : m, a, b, {na,m, a, b}kas , {a, b, nb,m}kbs

Message 3. s → b : m, {na, kab}kas , {kab, nb}kbs

Message 4. b → a : m, {na, kab}kas

Figure 7: The Otway Rees Protocol: concrete version

Note that message 1 contains an encrypted component that the recipient,
b, is unable to decrypt, but which is simply forwarded to s in the following
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message; and likewise with message 3. In our language of protocols (Prog),
b’s role would be written as:

receive m, a, b, x
new nb
send m, a, b, x , {a, b, nb,m}kbs

receive m, y , {kab, nb}kbs

send m, y

The variables x and y get bound to the encrypted components in a normal
run.

We have rearranged the order of the fields in the second encrypted com-
ponents of messages 2 and 3 to enforce the disjoint encryption property, in
particular to ensure that those components have a different form from the
other components in the same messages.

We have a number of proof obligations. Firstly, we can use Invariant
Rule 38 to show that each message maintains the parts of the invariants
dealing with the secrecy of kas and kbs.

Next, we can use Invariant Rule 40 to show that each message satis-
fies the part of s’s invariant dealing with the secrecy of kab. Note that
each message that contains kab is sent by s, and encrypted with kas
or kbs. We have knows(kas) ⊆ {a, s} is invariant for s, and clearly
associatedWithkab({a, s})(s) is invariant for s; and likewise for kbs.

We can similarly use Invariant Rule 40 to show that each message keeps
na secret, from a’s perspective. Each message that contains na is encrypted
with kas. We have knows(kas) ⊆ {a, s} is invariant for both a and s. Also,
associatedWithkas({a, s})(a) clearly holds as an invariant for a. However, the
proof reveals an additional initial assumption for a:

associatedWithkas({a, s})(s),

i.e., for any instance i of the role a, any instance of s that has its kas variable
bound to the same as i ’s kas variable, also has its a variable bound to the
same as i ’s a variable — s uses the right long-term keys with the right agents!

The proof that each message keeps nb secret is identical, and reveals a
corresponding initial assumption for b:

associatedWithkbs({b, s})(s).

Next we can use Invariant Rule 42 to show that

honest(s) ⇒ associatedWithna(a, b,m)
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is invariant for a, in particular, from the component {na,m, a, b}kas . We can
similarly use Invariant Rule 42 to show that

honest(s) ⇒ associatedWithnb(a, b,m)

is invariant for b, from the component {a, b, nb,m}kbs .
We can use Refinement Rule 35 to show that message 2 refines proves-

KnowledgeOfNR(b, kas, na,m, id = a), in particular from the component
{na,m, a, b}kas (for condition 3(b) of Refinement Rule 33, we need to assume
that the intruder does not initially know any such component, in particular
any such component encrypted with the value of kas in question; otherwise
he could immediately fake such a component). We can similarly show that
message 2 refines provesKnowledgeOfNR(a, kbs, nb,m, id = b).

Finally, we can show that message 4 refines provesKnowledgeOf NR(na,
kab, id = s) using Refinement Rule 35; note that condition 4(b) is satisfied,
because associatedWithna(b) is an invariant for a. Similarly, message 3 refines
provesKnowledgeOfNR(nb, kab, id = s).

8.3 The Yahalom Protocol

We now consider the Yahalom Protocol, as described in Figure 8. Our deriva-
tion of the protocol is more complicated than those of the previous two pro-
tocols, because of some subtleties of the protocol. Several variables are used
in place of agents’ identities at various points in the protocol: nb is used to
stand for a, from b’s point of view, in the second component of message 4;
kas is used to stand for a and/or s at various points in the protocol; and
likewise kbs is used to stand for b and/or s. These associations need to be
captured within the invariants. Further, the need for several parts of the
invariants only becomes apparent in later parts of the proof: coming up with
the correct invariants was very much an iterative process.

Message 1. a → b : a, na

Message 2. b → s : b, {a, na, nb}kbs

Message 3. s → a : {b, kab, na, nb}kas , {a, kab}kbs

Message 4. a → b : {a, kab}kbs , {nb}kab

Figure 8: The Yahalom Protocol: concrete version

We begin by considering a’s perspective. The invariant states that kas is a
shared secret between a and s, and that s associates kas with a. Anticipating
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a use of Invariant Rule 38, the precondition assumes one of the conditions of
that rule.

Ia =̂ honest(s) ⇒ knows(kas) ⊆ {a, s} ∧
associatedWithkas(a)(s),

prea =̂ honest(s) ⇒ holds(kas) ⊆ {a, s} ∧ uniquelyBound(kas) ∧
associatedWithkas(a)(s).

The annotation from a’s perspective is in Figure 9. The main step is
that a receives a message that proves knowledge of b, kab, na, nb, kas;
a can deduce that the message came from s, because of the use of the shared
secret kas; further, a can deduce that s is in a session with a, because of the
associatedWithkas(a)(s) assumption.

Initiator(a; b, s, kbs) =̂
{
prea

} {
Ia
}

new na
{
Ia
}

send maintains Ia ∧ contains na
{
Ia
}

receive maintains Ia ∧ provesKnowledgeOfNR(b, kab, na, nb, kas, id = s){
Ia ∧ ∃ S 6= a • session(s ; S ; b, kab, na, nb, kas)〈
Annotation Rule 31

〉
}





Ia ∧ (honest(s) ⇒ session(s; a, b, kab, na, nb, kas))〈
if honest(s) then knows(kas) ⊆ {a, s} so S = s;
associatedWithkas(a)(s) from Is

〉




send maintains Ia{
Ia ∧ (honest(s) ⇒ session(s; a, b, kab, na, nb, kas))

}

Figure 9: The Yahalom Protocol: a’s perspective

The invariant for b says: that b and s are distinct agents; that kbs is a
shared secret between b and s; that s associates kbs with b and s7; that nb is
a shared secret between a, b and s; and that all agents who hold nb associate

7This association means that an agent cannot act in both the roles b and s , using the
same key for kbs in each case; if this assumption is not made then there is an attack
against the protocol.
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it with a, b and s:

Ib =̂ b 6= s ∧
honest(s) ⇒ knows(kbs) ⊆ {b, s} ∧
associatedWithkbs(b)(s) ∧ associatedWithkbs(s)(s) ∧
honest(a, s) ∧ defined(nb) ⇒

knows(nb) ⊆ {a, b, s} ∧ associatedWithnb(a, b, s),

preb =̂ b 6= s ∧
honest(s) ⇒ holds(kbs) ⊆ {b, s} ∧ uniquelyBound(kbs) ∧
associatedWithkbs(b)(s) ∧ associatedWithkbs(s)(s).

The annotation for b is as in Figure 10. The crucial step is that b receives
a message that shows there is a session of s using a and kab; and also shows
that there is a session of somebody, A say, in the role of a using nb and kab:
the fact that nb is associated with a allows us to deduce that A is a.

Responder(b; a, s, kbs) =̂
{
preb

} {
Ib
}

receive maintains Ib
{
Ib
}

new nb
{
Ib
}

send maintains Ib ∧ contains nb
{
Ib
}

receive maintains Ib ∧ provesKnowledgeOfNR(a, kab, kbs, id = s)
∧ provesKnowledgeOf (nb, kab, id = a)




Ib ∧ ∃ S 6= b • session(s ; S ; a, kab, kbs) ∧
〈
Annotation Rule 31

〉

∃A • session(a ; A; nb, kab)
〈
Annotation Rule 29

〉








Ib ∧
honest(s) ⇒ session(s; a, b, kab, kbs) ∧〈

if honest(s) then knows(kbs) ⊆ {b, s}, so S = s;
associatedWithkbs(b)(s) so b ; b

〉

honest(a, s) ⇒ session(a; nb, kab)〈
if honest(a, s) then associatedWithnb(a) so A = a

〉





Figure 10: The Yahalom Protocol: b’s perspective

The invariant for s says: s is distinct from a and b; kas, kbs and kab
are shared secrets between the appropriate agents; and that a associates kas
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with a and s:

Is =̂ a 6= s ∧ b 6= s ∧
honest(a) ⇒ knows(kas) ⊆ {a, s} ∧
honest(b) ⇒ knows(kbs) ⊆ {b, s} ∧
associatedWithkas(s)(a) ∧ associatedWithkas(a)(a)
honest(a, b) ∧ defined(kab) ⇒ knows(kab) ⊆ {a, b, s},

pres =̂ a 6= s ∧ b 6= s ∧
honest(a) ⇒ holds(kas) ⊆ {a, s} ∧ uniquelyBound(kas) ∧
honest(b) ⇒ holds(kbs) ⊆ {b, s} ∧ uniquelyBound(kbs) ∧
associatedWithkas(s)(a) ∧ associatedWithkas(a)(a).

The annotation is as in Figure 11. The crucial step is that s receives a
message which he can deduce came from b, using a, na and nb.

{
pres

} {
Is
}

receive maintains Is ∧ provesKnowledgeOfNR(a, na, nb, kbs, id = b){
Is ∧ ∃B 6= s • session(b ; B ; a, na, nb, kbs)

}

{
Is ∧ (honest(b) ⇒ session(b; a, na, nb, kbs))〈
if honest(b) then knows(kbs) ⊆ {b, s} so B = b

〉
}

new kab
send maintains Is ∧ contains kab{
Is ∧ (honest(b) ⇒ session(b; a, na, nb, kbs))

}

Figure 11: The Yahalom Protocol: s’s perspective

We can now apply Lemma 14 to s’s invariant to strengthen the postcon-
ditions of a and b with

honest(a, b, s) ⇒ knows(kab) ⊆ {a, b, s}.

We now refine the abstract messages to obtain the concrete protocol of
Figure 8.

We use Invariant Rule 38 to verify the parts of the invariants dealing with
the secrecy of kas and kbs: condition 3 is satisfied because of the precondi-
tions.

We then use Invariant Rule 40 to verify the part of s’s invariant dealing
with the secrecy of kab: condition 3 is satisfied because only s sends messages
containing kab, and they are encrypted with kas or kbs, which satisfy the
relevant conditions.
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We can likewise use Invariant Rule 40 to verify the part of b’s invariant
dealing with the secrecy of nb; we check each message containing nb in turn:

• nb is encrypted with kbs in message 2; honest(b, s) ⇒ knows(kbs) ⊆
{b, s} is invariant for b; associatedWithnb(b, s)(b) is invariant for b.

• nb is encrypted with kas in message 3; honest(a, s) ⇒ knows(kas) ⊆
{a, s} is invariant for s; associatedWithnb(a, s)(s) is invariant for b.

• nb is encrypted with kab in message 4; honest(a, b, s) ⇒ knows(kab) ⊆
{a, b, s} is invariant for a; associatedWithnb(a, b, s)(a) is invariant for b.

The various associatedWithkas and associatedWithkbs clauses hold because
they hold initially, and kas and kbs never get rebound.

We can use Invariant Rule 43 to verify that the associatedWithnb(a, b, s)
clause of b’s invariant is maintained:

• When s first receives nb, in message 2, it is in an encrypted component,
created by b, that contains a, and is encrypted with kbs (kbs stands as
an alias for b and s; using the notation of Rule 43, take â = a, and b̂ =
ŝ = kbs); note that the side conditions hold: associatedWithkbs(b)(s)
and associatedWithkbs(s)(s) are invariant for b.

• When a first receives nb, in message 3, it is in an encrypted message,
created by s, that contains b, and is encrypted by kas (kas stands as
an alias for a and s); note that the side conditions hold: associated -
Withkas(s)(a) and associatedWithkas(a)(a) are invariant for s.

Finally, we can prove that the provesKnowledgeOf abstract messages are
suitably refined:

• Message 3 (specifically the first component) refines provesKnowledge-
OfNR(b, kab, na, nb, kas, id = s) for a, by Refinement Rule 36: note
that associatedWithkas(a)(s) is invariant for a, as required by condi-
tion 7′.

• Similarly, message 4 (specifically the first component) refines proves-
KnowledgeOfNR(a, kab, kbs, id = s) for b, by Refinement Rule 36: note
that associatedWithkbs(b)(s) is invariant for b.

• Further, message 4 (specifically the second component) refines proves-
KnowledgeOf (nb, kab, id = a) for b, by Refinement Rule 34.

• Finally, message 2 refines provesKnowledgeOfNR(a, na, nb, kbs, id = b)
for s, by Refinement Rule 36: note that associatedWithkbs(s)(b) is in-
variant for s.
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9 Conclusions

We have created a calculus for protocol development, based upon the idea of
annotating protocols: we add assertions to the protocol description, stating
properties that will be true when that point in the protocol is reached. A
novel feature of our calculus is the idea of abstract messages, which state
what a message is intended to achieve, rather than giving a concrete imple-
mentation.

We have presented proof rules that can be used to justify assertions,
and refinement rules that allow abstract messages to be implemented. We
have produced a semantic model, and used it to formalise the meaning of
annotations, and to verify the rules. We have illustrated the calculus by
using it to develop three protocols.

An essential ingredient in proving many of our message refinement rules
was Theorem 19, which said, roughly, that under the disjoint encryption as-
sumption, secret values remain uniquely bound. This seems to be a powerful
result, which we have not seen stated previously, and which might be of use
in other formalisms.

Recall that our model of a global state admits the possibility of mul-
tiple protocols operating in the same environment. When we use message
refinement rules that place restrictions upon the protocol, those restrictions
apply to all protocols in the environment. Most of those restrictions are
about the way that particular variables are used; if we use different vari-
able names in different protocols, then such restrictions will automatically
be satisfied by all protocols other than the primary one. The one time that
it is not possible to use different variable names is when long-term values,
typically long-term keys, are shared between protocols and have to satisfy a
uniquelyBound condition; however, such values normally have very similar
requirements in different protocols. The remaining condition is that of dis-
joint encryption; in order for this to be satisfied, we should arrange for the
other protocols to have no messages of the same textual form as those in the
primary protocol: this is very similar to the result of [GTF00].

9.1 Future Work

We intend to undertake more case studies in protocol development. A goal
would be to produce developments of a significant number of protocols, per-
haps most of those from Clark and Jacob’s library [CJ97]. These case studies
might help us to identify additional useful abstract messages and proof rules.
However, we believe that we have most of the abstract messages and rules
that we need: we did not need any additional abstract messages for the
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second and third case studies we undertook (the Otway Rees and Yahalom
Protocols) over those we needed for the first (the Needham Schroeder Public
Key Protocol); we needed very few additional rules for the latter case studies,
and those we did need were extensions of existing rules (for example, with
Invariant Rule 43 extending Rule 42).

These case studies will also help us to develop techniques and experience,
showing the best way to approach a protocol development. Based on the
examples we have carried out so far, we would offer the following suggestions:

• Proving the secrecy of a fresh value seems to be easier when one argues
from the point of view of the agent that generates that value; secrecy
of other values can be proven at the end using Lemma 14.

• A development does not seem to be a linear process: it is often necessary
to add initial assumptions, or to add conditions to the invariant, in
order to refine the abstract messages to concrete messages. This was
particularly true in our development of the Yahalom protocol, where
several parts of the invariant only became evident during the message
refinement stage.

The main case studies we have looked at in the current paper have been
existing protocols: we have attempted a rational reconstruction of them. For
brevity, we have presented the invariants in one go, rather like a rabbit out
of a magician’s hat. When using the calculus to develop a new protocol, we
would suggest that a two-stage approach would be more appropriate, similar
to the approach in Section 2:

• In the first stage, aim to achieve the authentication requirements, typ-
ically via a nonce challenge; this will often necessitate noting that cer-
tain values should be kept secret, but will not necessitate deciding how
they will be kept secret.

• In the second stage, decide how to achieve the secrecy requirements,
by deciding what keys to use for encryption.

It would be interesting to use the calculus to study the relationship be-
tween different protocols: we conjecture that several different protocols could
correspond to the same annotation at a high level of abstraction, correspond-
ing to the first stage, above.

In [GT00a, GT00b], Guttman and Thayer introduce the idea of authen-
tication tests, capturing various patterns whereby an agent may be authenti-
cated. An outgoing authentication test is where an agent a sends out a fresh
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value x such that only b can extract it, and then receives back a message
that proves knowledge of x ; this is captured as an annotation as follows:

I =̂ honest(b) ∧ defined(x ) ⇒ knows(x ) ⊆ {a, b}
new x
send maintains I ∧ contains x
receive maintains I ∧ provesKnowledgeOfNR(x , id = b){
session(b; x )

}

We have seen this pattern in each of our case studies.
An incoming authentication test is where a sends out a fresh value x , and

receives it back in a form that only b could have created. An unsolicited
authentication test is where a receives a message that only b could have
created. We would like to capture these latter two patterns as annotations.

We would like to provide tool support, both for the initial annotation of
the protocol, and for the refinement of abstract messages to concrete mes-
sages. A prototype tool has been developed for the latter stage (although
this is not consistent with the current refinement rules). Most of the proofs
are not difficult, but involve checking lots of details: a tool could help keep
track of the proof obligations, and discharge many of them automatically.

Most of our invariant and refinement rules assumed that the protocol
satisfies disjoint encryption. It is interesting to ask whether we can do away
with this assumption. Say that two variables x and y are directly-confusable
if there are two encrypted components in the protocol that have the same
type but have, respectively, x and y in a particular position. Say that two
variables are confusable if they are related by the transitive closure of the
above relation. We conjecture that Theorem 19 can be extended to say that,
under similar circumstances, the value of a variable x can become bound to
another variable y only if x and y are confusable. The proof rules that build
on Theorem 19 could be similarly extended.

Our language of security protocols is currently slightly limited. It would
be useful to extend the model with functions, such as the functions that
return an agent’s public or secret key, or the key shared between two agents.
It would also be useful to allow tests performed by agents on data that they
receive, where the agent aborts if the test fails. Further, our model does not
include timestamps.

Our session(b; . . .) predicates say nothing about how far b has progressed
in the session; it would be useful to be able to capture this fact. Doing so
would allow us to obtain stronger results about protocols in some cases. For
example, in the analysis of the Yahalom Protocol from Section 8.3, a had a
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postcondition of the form

honest(s) ⇒ session(s; a, b, na, nb, . . .).

Further, s had a postcondition of the form

honest(b) ⇒ session(b; a, na, nb, . . .).

Can we strengthen a’s postcondition with

honest(b, s) ⇒ session(b; a, na, nb) ?

Using the present rules, the answer is no: the postcondition we proved for a
does not show that s actually completed his run; and the postcondition we
proved for s only refers to the case where he has completed the run. However,
looking at the protocol, we can see that a is assured that s progressed to
at least message 3; and s receives a guarantee about b’s session as soon as
s receives message 2; hence the above postulated postcondition is indeed
true. It would be useful to be able to formalise this argument, via a suitable
strengthing of Lemma 14.

9.2 Related Work

Datta et al. [DDMP03, DDMP05] investigate the derivation of protocols from
smaller, well-used ideas, such as Diffie-Hellman key exchange, and authen-
tication using a signed nonce challenge. They use development techniques
such as composition of protocols, refinements (changing the form of particu-
lar messages) and transformations (changing the structure of the protocol).
They informally develop a family of protocols using these techniques. They
then formally verify the development of one of them, using a logic, founded
on the cord calculus [DMP01]. Like us, their logic annotates protocols with
assertions; however, whereas our logic concentrates on the states of agents,
particularly the values stored in variables, their logic concentrates upon the
events performed, and in particular their relative order: their authentica-
tion requirements are typically expressed in terms of matching conversa-
tions [DvOW92]. They place emphasis on composition and refinement of
protocols, whereas we have chosen to concentrate on development of com-
plete protocols.

These ideas are extended in [DDMP04]. The authors consider protocols
containing function variables, which are intended to represent some cryp-
tographic operation. They then prove properties of the protocol under as-
sumptions about the function variables. Finally they instantiate the function
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variables with actual cryptographic operations, prove that the cryptographic
operations satisfy the assumptions about the function variables, and hence
deduce properties about the resulting protocol. There is a clear analogy be-
tween their function variables and our abstract messages: however, we have
chosen to consider a small number of particular abstract messages, and to
prove annotation and refinement rules about them, whereas they consider
arbitrary function variables.

The logic is adapted in a different direction in [DDM+05, DDMW06],
namely to deal with computational soundness. The logic is given a proba-
bilistic polynomial-time semantics, and is proved sound with respect to this
semantics.

Säıdi [Sai02] investigates the synthesis of protocols from a specification
based on BAN Logic; he derives the Needham-Schroeder Public Key protocol
by applying simple inference rules.

Canetti and Krawczyk [CK02] also develop a composable notion of key
exchange leading to secure channels; this allows for individual components
such as key exchange to be separated from a single protocol, and so be reused
by many protocols.
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[THG99] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D.
Guttman. Strand spaces: Proving security protocols correct.
Journal of Computer Security, 7(2, 3):191–230, 1999.

A Index of notation

Notation Description Section

` Message derivation relation; B ` M means that
the intruder can produce M from the set of
messages B .

3.5
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� Operator projecting a sequence of events onto
those performed by a particular node.

3.6

v Message refinement relation. 3.2

� Submessage relation; M � M ′ if M is textually
included within M ′.

3.1

� Submessage relation, including encrypting and
decrypting keys as submessages.

3.1

� Direct submessage relation; M � M ′ if M is a
submessage of M ′ that can be obtained without
performing any decryption.

3.1

−→ Local state transition relation; s
E

−→ s ′ means
that from local state s, event E can be performed
to reach state s ′.

3.3

−→ Global state transition relation; σ
i :E
−→ σ′ means

that from global state σ, event E can be
performed by node i to reach state σ′.

3.6

P(σ)[i ] Predicate P , as interpreted by node i in state σ. 4.1

ρ Binding component of a local state. 3.3

σ0 Initial global state. 3.6

AbsMsg Type of abstract messages. 3.2

associated-
With

Annotation macro; associatedWithx (y) means that
the value of x is associated inseparably with the
value of y .

4.3

Binding Type of bindings, i.e. mappings from variables to
values.

3.3

defined Annotation macro; defined(x ) means that the
variable x has a value associated with it.

4.3

Event Type of events. 3.3

Event-
Template

Event templates. 3.3

GlobalState Global states. 3.6

holds Annotation macro; holds(X ) gives the identities of
agents who hold X as a submessage of a message
they know.

4.3

honest Annotation macro; honest(as) means that the
agents as are honest, i.e. follow the protocol.

4.3
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id Identity or role variable of a local state. 3.3

intruder Identity of the intruder. 3.5

isNew Function testing whether a value is new in a
particular state.

3.6

knows Annotation macro; knows(x ) gives the set of
identities of agents who know the value of x .

4.3

LocalState Type of states of local agent or nodes. 3.4

Msg Type of messages. 3.1

new Event or event template, representing a new value
being generated.

3.3

newpair Event or event template, representing a new
asymmetric key pair being generated.

3.3

Prog Program, i.e. sequence of event templates,
performed by a node.

3.3

prog Program component of a local state. 3.3

proves-
KnowledgeOf

Abstract message; provesKnowledgeOf(x ) shows
that some agent knows x .

6.5

proves-
Knowledge-
OfNR

Abstract message; provesKnowledgeOfNR(x )
shows that some agent other than the local agent
knows x .

6.5

receive Event or event template, representing a message
being received.

3.3

send Event or event template, representing a message
being sent.

3.3

session Annotation macro; session(b; x ) means that b is
taking part in a session, and agrees with the local
agent on the value of x .

4.3

States Function giving the reachable states of a protocol. 3.6

Template Type of message templates. 3.1

traces Function giving the traces of a protocol. 3.6

Type Types of messages. 3.1

type∗ Functions giving the type of variables, atomic
values, templates and messages.

3.1

TypeName Names of atomic types. 3.1
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uniquely-
Bound

Annotation macro; uniquelyBound(x ) means that
the current node’s value for x is bound only to x
in other nodes.

4.3

Val Type of atomic values. 3.1

Var Type of variables. 3.1

vars Function giving the variables of a message
template, event template or program.

3.3
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