Reasoning with Individuals for the Description Logic
SHIQ

Ian Horrocks!, Ulrike Sattler?, and Stephan Tobies?

! Department of Computer Science, University of Manchester, UK
horrocks@cs.man.ac.uk
2 LuFg Theoretical Computer Science, RWTH Aachen, Germany
{sattler, tobies}@informatik.rwth-aachen.de

Abstract. While there has been a great deal of work on the development of rea-
soning algorithms for expressive description logics, in most cases only Tbox rea-
soning is considered. In this paper we present an algorithm for combined Tbox
and Abox reasoning in the SHZ Q description logic. This algorithm is of particu-
lar interest as it can be used to decide the problem of (database) conjunctive query
containment w.r.t. a schema. Moreover, the realisation of an efficient implemen-
tation should be relatively straightforward as it can be based on an existing highly
optimised implementation of the Tbox algorithm in the FaCT system.

1 Motivation

A description logic (DL) knowledge base (KB) is made up of two parts, a termino-
logical part (the terminology or Tbox) and an assertional part (the Abox), each part
consisting of a set of axioms. The Tbox asserts facts about concepts (sets of objects)
and roles (binary relations), usually in the form of inclusion axioms, while the Abox
asserts facts about individuals (single objects), usually in the form of instantiation ax-
ioms. For example, a Tbox might contain an axiom asserting that Man is subsumed by
Animal, while an Abox might contain axioms asserting that both Aristotle and Plato
are instances of the concept Man and that the pair (Aristotle, Plato) is an instance of
the role Pupil-of.

For logics that include full negation, all common DL reasoning tasks are reducible to
deciding KB consistency, i.e., determining if a given KB admits a non-empty interpreta-
tion [6]. There has been a great deal of work on the development of reasoning algorithms
for expressive DLs [2; 12; 16; 11], but in most cases these consider only Tbox reasoning
(i.e., the Abox is assumed to be empty). With expressive DLs, determining consistency
of a Tbox can often be reduced to determining the satisfiability of a single concept [2;
23; 3], and—as most DLs enjoy the tree model property (i.e., if a concept has a model,
then it has a tree model)—this problem can be decided using a tableau-based decision
procedure.

The relative lack of interest in Abox reasoning can also be explained by the fact that
many applications only require Tbox reasoning, e.g., ontological engineering [15; 20]
and schema integration [10]. Of particular interest in this regard is the DL SHZQ [18],
which is powerful enough to encode the logic DLR [10], and which can thus be used

for reasoning about conceptual data models, e.g., Entity-Relationship (ER) schemas [9].
Moreover, if we think of the Tbox as a schema and the Abox as (possibly incomplete)
data, then it seems reasonable to assume that realistic Tboxes will be of limited size,
whereas realistic Aboxes could be of almost unlimited size. Given the high complexity
of reasoning in most DLs [23; 7], this suggests that Abox reasoning could lead to severe
tractability problems in realistic applications. '

However, SHZ Q Abox reasoning is of particular interest as it allows DLR schema
reasoning to be extended to reasoning about conjunctive query containment w.r.t. a
schema [8]. This is achieved by using Abox individuals to represent variables and con-
stants in the queries, and to enforce co-references [17]. In this context, the size of the
Abox would be quite small (it is bounded by the number of variables occurring in the
queries), and should not lead to severe tractability problems.

Moreover, an alternative view of the Abox is that it provides a restricted form of
reasoning with nominals, i.e., allowing individual names to appear in concepts [22; 5;
1]. Unrestricted nominals are very powerful, allowing arbitrary co-references to be en-
forced and thus leading to the loss of the tree model property. This makes it much harder
to prove decidability and to devise decision procedures (the decidability of SHZ Q with
unrestricted nominals is still an open problem). An Abox, on the other hand, can be
modelled by a forest, a set of trees whose root nodes form an arbitrarily connected
graph, where number of trees is limited by the number of individual names occurring
in the Abox. Even the restricted form of co-referencing provided by an Abox is quite
powerful, and can extend the range of applications for the DLs reasoning services.

In this paper we present a tableaux based algorithm for deciding the satisfiability
of unrestricted SHZQ KBs (i.e., ones where the Abox may be non-empty) that ex-
tends the existing consistency algorithm for Tboxes [18] by making use of the forest
model property. This should make the realisation of an efficient implementation rela-
tively straightforward as it can be based on an existing highly optimised implementation
of the Tbox algorithm (e.g., in the FaCT system [14]). A notable feature of the algo-
rithm 1is that, instead of making a unique name assumption w.r.t. all individuals (an
assumption commonly made in DLs [4]), increased flexibility is provided by allowing
the Abox to contain axioms explicitly asserting inequalities between pairs of individual
names (adding such an axiom for every pair of individual names is obviously equivalent
to making a unique name assumption).

2 Preliminaries

In this section, we introduce the DL. SHZ Q. This includes the definition of syntax, se-
mantics, inference problems (concept subsumption and satisfiability, Abox consistency,
and all of these problems with respect to terminologies?), and their relationships.
SHZQ is based on an extension of the well known DL ALC [24] to include tran-
sitively closed primitive roles [21]; we call this logic S due to its relationship with

! Although suitably optimised algorithms may make reasoning practicable for quite large
Aboxes [13].

2 We use terminologies instead of Tboxes to underline the fact that we allow for general concept
inclusions axioms and do not disallow cycles.

the proposition (multi) modal logic S4 .,y [231.% This basic DL is then extended with
inverse roles (Z), role hierarchies (M), and qualifying number restrictions (Q).

Definition 1. Let C be a set of concept names and R a set of role names with a subset
R C R of transitive role names. The set of roles is RU {R~ | R € R}. To avoid
considering roles such as R~~, we define a function Inv on roles such that Inv(R) =
R~ if R is a role name, and Inv(R) = S if R = S~. We also define a function Trans
which returns true iff R is a transitive role. More precisely, Trans(R) = true iff R €
R, orlnv(R) € R,.

A role inclusion axiom is an expression of the form R T S, where R and S are
roles, each of which can be inverse. A role hierarchy is a set of role inclusion axioms.
For a role hierarchy R, we define the relation = to be the transitive-reflexive closure
of Cover RU{Inv(R) C Inv(S) | RC S € R}. A role R is called a sub-role (resp.
super-role) of a role S if R =S (resp. S = R). A role is simple if it is neither transitive
nor has any transitive sub-roles.

The set of SHZ Q-concepts is the smallest set such that

— every concept name is a concept, and,
— if C, D are concepts, R is a role, S is a simple role, and n is a nonnegative integer,
then CN D, CU D, -C,VR.C, AR.C, >nS.C, and <nS.C are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C' = D for two
SHIQ-concepts C and D. A terminology is a set of GClIs.

Let 1 ={a,b,c...} be a set of individual names. An assertion is of the form a: C,
(a,b): R, or a # b for a,b € 1, a (possibly inverse) role R, and a SHZ Q-concept C.
An Abox is a finite set of assertions.

Next, we define semantics of SHZ Q and the corresponding inference problems.

Definition 2. An interpretation Z = (AZ,.T) consists of a set A%, called the domain
of T, and a valuation -T which maps every concept to a subset of AT and every role to
a subset of AT x AT such that, for all concepts C, D, roles R, S, and non-negative
integers n, the following equations are satisfied, where §M denotes the cardinality of a
set M and (RT)* the transitive closure of R*:

RT = (RT)* foreachrole R € R,

(R7)T = {(x,9) | (r) € R} (inverse roles)
(cnbD)¥=ctnD? (conjunction)
(CuD)f =c*tuD? (disjunction)
(=0)f = AT\ CT (negation)
(AR.C)T = {2 | y.(x,y) € RT andy € CT} (exists restriction)
(VR.C)T = {z | Vy.{x,y) € R implies y € CT} (value restriction)
(=nR.C)t = {z | #{y.{z,y) € RT andy € CT} = n} (>-number restriction)

(<nR.C): ={z | #{y.(z,y) € R andy € CT} < n} (<-number restriction)
An interpretation T satisfies a role hierarchy R iff R* C S% for each RC S in R.
Such an interpretation is called a model of R (written T = R).

? The logic S has previously been called ALC p+, but this becomes too cumbersome when
adding letters to represent additional features.

An interpretation T satisfies a terminology T iff C* C D for each GCI C C D in
T. Such an interpretation is called a model of T (written T = T).

A concept C' is called satisfiable with respect to a role hierarchy R and a termi-
nology T iff there is a model T of R and T with CT # (). A concept D subsumes a
concept C w.rt. R and T iff C* C D? holds for each model T of R and T. For an
interpretation I, an element x € A is called an instance of a concept C iff x € CL.

For Aboxes, an interpretation maps, additionally, each individual a € 1 to some
element a* € AT. An interpretation T satisfies an assertion

a:C iff ot € O7,
(a,b):R iff (a,b?) € R, and
a#b iff a #b"
An Abox A is consistent w.r.t. R and T iff there is a model T of R and T that satisfies
each assertion in A.

For DLs that are closed under negation, subsumption and (un)satisfiability can be mutu-
ally reduced: C' C D iff C'M—D is unsatisfiable, and C is unsatisfiable iff C' C A —A
for some concept name A. Moreover, a concept C is satisfiable iff the Abox {a:C'} is
consistent. It is straightforward to extend these reductions to role hierarchies, but termi-
nologies deserve special care: In [2; 23; 3], the internalisation of GCIs is introduced,
a technique that reduces reasoning w.r.t. a (possibly cyclic) terminology to reasoning
w.r.t. the empty terminology. For SHZ Q, this reduction must be slightly modified. The
following Lemma shows how general concept inclusion axioms can be internalised us-
ing a “universal” role U, that is, a transitive super-role of all roles occurring in 7" and
their respective inverses.

Lemma 1. Let C, D be concepts, A an Abox, T a terminology, and R a role hierarchy.
We define
Cr = Ml =C; U D;.
C,ED;eT

Let U be a transitive role that does not occurin T, C, D, A, or R. We set
Ry :=RU{RCU,Inv(R)C U | RoccursinT, C, D, A or R}.

— Cis satisfiable w.r.t. T and R iff C 11 C'r MYU.C'r is satisfiable w.r.t. Ry .

— D subsumes C with respect to T and R iff C M —D M Cr NYU.Cr is unsatisfiable
w.rt. Ry.

— A is consistent with respect to R and T iff AU {a:Cr NVYU.Ct | a occurs in A}
is consistent w.r.t. Ry.

The proof of Lemma 1 is similar to the ones that can be found in [23; 2]. Most
importantly, it must be shown that, (a) if a SHZ Q-concept C is satisfiable with respect
to a terminology 7 and a role hierarchy R, then C,7 have a connected model, i. e., a
model where any two elements are connect by a role path over those roles occuring in C'
and 7, and (b) if y is reachable from x via a role path (possibly involving inverse roles),
then (x,y) € UZ. These are easy consequences of the semantics and the definition of

U.

Theorem 1. Satisfiability and subsumption of SHZ Q-concepts w.r.t. terminologies and
role hierarchies are polynomially reducible to (un)satisfiability of SHZQ-concepts
w.r.t. role hierarchies, and therefore to consistency of SHZ Q-Aboxes w.r.t. role hier-
archies.

Consistency of SHI Q-Aboxes w.r.t. terminologies and role hierarchies is polyno-
mially reducible to consistency of SHI Q-Aboxes w.r.t. role hierarchies.

3 A SHZ Q-Abox Tableau Algorithm

With Theorem 1, all standard inference problems for SHZ Q-concepts and Aboxes can
be reduced to Abox-consistency w.r.t. a role hierarchy. In the following, we present a
tableau-based algorithm that decides consistency of SHZ Q-Aboxes w.r.t. role hierar-
chies, and therefore all other SHZ Q inference problems presented.

The algorithm tries to construct, for a SHZ Q-Abox A, a tableau for A4, that is, an
abstraction of a model of .A. Given the notion of a tableau, it is then quite straightfor-
ward to prove that the algorithm is a decision procedure for Abox consistency.

3.1 A Tableau for Aboxes

In the following, if not stated otherwise, C, D denote SHZ Q-concepts, R a role hierar-
chy, A an Abox, R 4 the set of roles occurring in A and R together with their inverses,
and I 4 is the set of individuals occurring in .A.

Without loss of generality, we assume all concepts C' occurring in assertions a: C' €
A to be in NNF, that is, negation occurs in front of concept names only. Any SHZ O-
concept can easily be transformed into an equivalent one in NNF by pushing negations
inwards using a combination of DeMorgan’s laws and the following equivalences:

-(3R.C) = (VR.-C) -(VR.C) = (3R.-C)
-(<nR.C)=>2(n+1)R.C ~(>nR.C) = <(n—1)R.C where
<(-1)R.C:=AMN-A forsome A e C
For a concept C' we will denote the NNF of —=C' by ~C'. Next, for a concept C, clos(C')
is the smallest set that contains C' and is closed under sub-concepts and ~. We use
clos(A) := Juce4 clos(C) for the closure clos(C') of each concept C' occurring in A.
It is not hard to show that the size of clos(.A) is polynomial in the size of \A.

Definition 3. 7' = (S, L, €,7) is a tableau for A w.r.t. R iff

— S is a non-empty set,

- LS — 2905(A) yaps each element in' S to a set of concepts,

- & : R4 — 25%S maps each role to a set of pairs of elements in S, and
— J:14 — S maps individuals occurring in A to elements in S.

Furthermore, for all s,t € S, C,C1,Cs € clos(A), and R, S € R4, T satisfies:

(P1) if C € L(s), then =C ¢ L(s),
(P2) if Cr 1 Cq € L(s), then C1 € L(s) and Cy € L(s),

(P3) if C1 UCy € L(s), then Cy € L(s) or Cy € L(s),
(P4) ifVS.C € L(s) and (s,t) € E(S), then C € L(t),
(P5) if 35.C € L(s), then there is some t € S such that (s,t) € E(S) and C € L(t),
(P6) if vS.C € L(s) and (s,t) € E(R) for some R &S with Trans(R), then VR.C €
L),
(P7) (,5) € E(R) iff (4,2) € E(Inv(R),
(P8) if (s,t) € E(R) and RES, then (s,t) € £(S5),
(P9) if <nS.C € L(s), then ST (s5,C) < n,
(P10) if >nS.C € L(s), then 45T (s,C) > n,
(P11) if (@ n S C) € L(s) and (s,t) € E(S) then C € L(t) or ~C € L(t),
(P12) ifa:C € A, then C € L(I(a)),
(P13) if (a,b): R € A, then (J(a),J(b)) € E(R),
(P14) ifa # b e A thenJ(a) # I(b),

where 1 is a place-holder for both < and >, and ST (s,C) = {t € S | (s,t) €
E(S)and C € L(t)}.

Lemma 2. A SHZQ-Abox A is consistent w.r.t. R iff there exists a tableau for A w.r.t.
R.

Proof: For the if direction, if T = (S, L, &,7J) is a tableau for A w.r.t. R, a model
T = (A%, .T) of Aand R can be defined as follows:

AT =8
for concept names A in clos(A) : A% :={s| A€ L(s)}
for individual names a € I: a? :=J(a)
E(R)T if Trans(R)
for role names R € R : RT := &(R) U U pz
P ER,P£R

otherwise

where &(R)™ denotes the transitive closure of &(R). The interpretation of non-transitive
roles is recursive in order to correctly interpret those non-transitive roles that have a
transitive sub-role. From the definition of RZ and (P8), it follows that, if (s,t) € ST
then either (s,t) € £(5) or there exists a path (s, s1), (s1,52),... , (sn,t) € E(R) for
some R with Trans(R) and RES.

Due to (P8) and by definition of Z, we have that Z is a model of R.

To prove that 7 is a model of A, we show that C' € L(s) implies s € C7 for any
s € S. Together with (P12), (P13), and the interpretation of individuals and roles, this
implies that 7 satisfies each assertion in .A. This proof can be given by induction on the
length ||C|| of a concept C' in NNF, where we count neither negation nor integers in
number restrictions. The only interesting case is C' = VS.E: lett € S with (s, t) € ST.
There are two possibilities:

- (s,t) € £(S). Then (P4) implies E € L(t).

- (s,t) & &E(S). Then there exists a path (s, s1),(s1,82),..., (sn,t) € E(R) for
some R with Trans(R) and R &.S. Then (P6) implies VR.E € L(s;) forall 1 <
1 < n, and (P4) implies E € L(t).

In both cases, ¢t € EZ by induction and hence s € C7.

For the converse, for T = (AZ,-T) a model of A w.r.t. R, we define a tableau
T =(S,L,¢&,7) for Aand R as follows:

S:=A% &R):=R%, L(s):={Cecclos(A)|scC?}, and I(a)=a’.

It is easy to demonstrate that 7" is a tableau for D. a

3.2 The Tableau Algorithm

In this section, we present a completion algorithm that tries to construct, for an input
Abox A and a role hierarchy R, a tableau for A w.r.t. R. We prove that this algorithm
constructs a tableau for A and R iff there exists a tableau for A and R, and thus decides
consistency of SHZ Q Aboxes w.r.t. role hierarchies.

Since Aboxes might involve several individuals with arbitrary role relationships be-
tween them, the completion algorithm works on a forest rather than on a tree, which is
the basic data structure for those completion algorithms deciding satisfiability of a con-
cept. Such a forest is a collection of trees whose root nodes correspond to the individuals
present in the input Abox. In the presence of transitive roles, blocking is employed to
ensure termination of the algorithm. In the additional presence of inverse roles, blocking
is dynamic, i.e., blocked nodes (and their sub-branches) can be un-blocked and blocked
again later. In the additional presence of number restrictions, pairs of nodes are blocked
rather than single nodes.

Definition 4. A completion forest F for a SHZ Q Abox A is a collection of trees whose
distinguished root nodes are possibly connected by edges in an arbitrary way. Moreover,
each node x is labelled with a set L(x) C clos(A) and each edge (x,y) is labelled with
a set L({x,y)) C R of (possibly inverse) roles occurring in A. Finally, completion
forests come with an explicit inequality relation # on nodes and an explicit equality
relation = which are implicitly assumed to be symmetric.

If nodes x and y are connected by an edge {(x,y) with R € L({z,y)) and R ES,
then y is called an S-successor of x and x is called an Inv(S)-predecessor of y. If y is
an S-successor or an Inv(S)-predecessor of x, then y is called an S-neighbour of x. A
node y is a successor (resp. predecessor or neighbour) of y if it is an S-successor (resp.
S-predecessor or S-neighbour) of y for some role S. Finally, ancestor is the transitive
closure of predecessor.

For a role S, a concept C and a node x in F we define S* (z,C) by

S (x,C) := {y | y is S-neighbour of x and C' € L(y)}.

A node is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node x is directly blocked iff none of its ancestors are blocked, and it has
ancestors ©', y and y' such that

1. y is not a root node and
2. x is a successor of x' and y is a successor of iy’ and

3. L(z) = L(y) and L(z") = L(y') and
4. L({',) = L({y',9))-

In this case we will say that y blocks x.

A node y is indirectly blocked iff one of its ancestors is blocked, or it is a successor
of a node x and L((x,y)) = 0; the latter condition avoids wasted expansions after an
application of the <-rule.

Given a SHZ Q-Abox A and a role hierarchy R, the algorithm initialises a comple-
tion forest F 4 consisting only of root nodes. More precisely, F 4 contains a root node
z§ for each individual a; € 14 occurring in A, and an edge (x}), x}) if A contains an
assertion (a;, a;): R for some R. The labels of these nodes and edges and the relations
= and = are initialised as follows:

£(ah) = {C] ai:C € A),
L((xé,xé» = {R| (a;,a;) : R € A},

zh # x)) iff a; #a; € A and

the =-relation is initialised to be empty. F 4 is then expanded by repeatedly applying
the rules from Figure 1.

For a node x, L(x) is said to contain a clash if, for some concept name A € C,
{A,-A} C L(x), or if there is some concept <nS.C € L(x) and x has n + 1 S-
neighbours yo, . . ., yn with C € L(y;) and y; # y; forall0 < i < j < n. A completion
forest is clash-free if none of its nodes contains a clash, and it is complete if no rule
from Figure I can be applied to it.

Fora SHI Q-Abox A, the algorithm starts with the completion forest F 4. It applies
the expansion rules in Figure 1, stopping when a clash occurs, and answers “A is
consistent w.r.t. R” iff the completion rules can be applied in such a way that they
yield a complete and clash-free completion forest, and “A and is inconsistent w.r.t. R”
otherwise.

Since both the <-rule and the <,-rule are rather complicated, they deserve some
more explanation. Both rules deal with the situation where a concept <nR.C' € L(x)
requires the identification of two R-neighbours y, z of x that contain C' in their labels.
Of course, y and z may only be identified if y # z is not asserted. If these conditions
are met, then one of the two rules can be applied. The <-rule deals with the case where
at least one of the nodes to be identified, namely y, is not a root node, and this can lead
to one of two possible situations, both shown in Figure 2. The upper situation occurs
when both y and z are successors of x. In this case, we add the label of y to that of
z, and the label of the edge (z,y) to the label of the edge (z, z). Finally, z inherits all
inequalities from y, and L ((z, y)) is set to J, thus blocking y and all its successors.

The second situation occurs when both y and z are neighbours of z, but z is the
predecessor of x. Again, L(y) is added to L(z), but in this case the inverse of L ({z, y))
is added to L((z,z)), because the edge (x,y) was pointing away from x while (z, x)
points towards it. Again, z inherits the inequalities from y and £ ({z, y)) is set to ().

The <, rule handles the identification of two root nodes. An example of the whole
procedure is given in the lower part of Figure 2. In this case, special care has to be taken
to preserve the relations introduced into the completion forest due to role assertions in

M-rule:

if 1. C1 M C2 € L(z), is not indirectly blocked, and
2. {01,02} Z L(l‘)
then L(x) — L(z) U{C4,C2}

LI-rule:

if 1. Ch Uy € L(x), z is not indirectly blocked, and
2.{C1,Co}NL(z) =0
then L(z) — L(x) U{E} forsome E € {C1,C>}

J-rule:

if 1. 35.C € L(z), x is not blocked, and
2. z has no S-neighbour y with C' € L(y)
then create a new node y with £ ({z,y)) := {S} and L(y) := {C}

V-rule:

if 1. ¥S.C € L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of z with C' ¢ L(y)
then L(y) — L(y) U{C}

V4 -rule:

if 1. VS.C € L(z), z is not indirectly blocked, and

2. there is some R with Trans(R) and R E S,

3. there is an R-neighbour y of z with VR.C ¢ L(y)
then L(y) — L(y) U{VR.C}

choose-rule:

if 1. (x n S C) € L(x), z is not indirectly blocked, and
2. there is an S-neighbour y of x with {C, ~C} N L(y) =0
then L(y) — L(y) U{E} forsome E € {C,~C}

>-rule:

if 1. >nS.C € L(x), = is not blocked, and
2. there are no n S-neighbours y1, . .., yn such that C' € L(y;)
andy; #y;forl <i<j<n
then create n new nodes y1, . .., yn, with L((z, y;)) = {S},
L(y:) ={C}.andy; # y; forl <i < j<n.

if 1. <nS.C' € L(x), z is not indirectly blocked, and
2. #S7 (2, C) > n, there are S-neighbours y, z of & with not y # z,
y is neither a root node nor an ancestor of z, and C' € L(y) N L(z),
then 1. £L(z) — L(z) U L(y) and
2. if z is an ancestor of x
then L((z,z)) — L({z,z)) Ulnv(L({x,y)))
else L({z,z)) — L((z,2)) UL({z,y))
3. Lz, y) — 0
4. Set u # z for all w withu # y

<,-rule:

if 1. <nS.C € L(zx), and
2. 457 (z, C) > n and there are two S-neighbours y, z of x
which are both root nodes, C' € L(y) N L(z), and noty # z
then 1. L(z) — L(z) U L(y) and
2. For all edges (y, w):
i. if the edge (z, w) does not exist, create it with £ ({z, w)) := 0
it £((2,w)) — L((zw)) UL((y, w))
3. For all edges (w, y):
i. if the edge (w, z) does not exist, create it with L ({(w, z)) := 0
it £ ((w, 2)) — L((w, 2)) U L((w, 1))
4. Set L(y) := 0 and remove all edges to/from y.
. Set w # z for all u with u # y.
6.Sety = z.

W

Fig. 1. The Expansion Rules for SHZ Q-Aboxes.

<-rule

z @ — = r @
L(<I7/ k{w,y)) L((LZ))UL((?AK
z’ L(z) 4@ L) Z’\L(Z) U L(y), O L(y)
ya ‘V N y N e V‘ R y oo
z/.L(z) z/.L(z)UL(y)
K <-rule /
, LM(LZ)) — = SRz, 2) Uinv(L (@, y)))
’ /
: ® ' .o
L((z,y)) ¢
@ L) 4O L
FooN ¥
wl.
<--rule
L((w1,2)) UL{w1,y))
z @
L((w,2)) ULz, y))
.9 L(2) 4O LW SOL(HULY) 00
L((y, w2)) L((y, w2))
'wz. w2.

Fig. 2. Effect of the <- and the <,-rule

the Abox, and to memorise the identification of root nodes (this will be needed in order
to construct a tableau from a complete and clash-free completion forest). The <, rule
includes some additional steps that deal with these issues. Firstly, as well as adding £ (y)
to L(z), the edges (and their respective labels) between y and its neighbours are also
added to z. Secondly, £(y) and all edges going from/to y are removed from the forest.
This will not lead to dangling trees, because all neighbours of y became neighbours of
z in the previous step. Finally, the identification of y and z is recorded in the = relation.

Lemma 3. Let A be a SHZ Q-Abox and R a role hierarchy. The completion algorithm
terminates when started for A and R.

Proof: Let m = fclos(A), n = |R 4|, and nyax := max{n | >nR.C € clos(A)}.
Termination is a consequence of the following properties of the expansion rules:

1. The expansion rules never remove nodes from the forest. The only rules that remove
elements from the labels of edges or nodes are the <- and <,.-rule, which sets them
to (). If an edge label is set to () by the <-rule, the node below this edge is blocked
and will remain blocked forever. The <,-rule only sets the label of a root node x
to (, and after this, z’s label is never changed again since all edges to/from x are
removed. Since no root nodes are generated, this removal may only happen a finite
number of times, and the new edges generated by the <,-rule guarantees that the
resulting structure is still a completion forest.

2. Nodes are labelled with subsets of clos(.A) and edges with subsets of R 4, so there
are at most 22" different possible labellings for a pair of nodes and an edge.
Therefore, if a path p is of length at least 22", the pair-wise blocking condition
implies the existence of two nodes x, y on p such that y directly blocks y. Since a
path on which nodes are blocked cannot become longer, paths are of length at most
22mn.

3. Only the 3- or the >-rule generate new nodes, and each generation is triggered
by a concept of the form JR.C or >nR.C in clos(.A). Each of these concepts
triggers the generation of at most 1,5 successors ¥;: note that if the <- or the <,.-
rule subsequently causes £((z, y;)) to be changed to), then x will have some R-
neighbour z with £(z) D L(y). This, together with the definition of a clash, implies
that the rule application which led to the generation of y; will not be repeated. Since
clos(.A) contains a total of at most m 3R.C, the out-degree of the forest is bounded
by mnmaxn. O

Lemma 4. Let A be a SHZ Q-Abox and R a role hierarchy. If the expansion rules can
be applied to A and R such that they yield a complete and clash-free completion forest,
then A has a tableau w.r.t. R.

Proof: Let F be a complete and clash-free completion forest. The definition of a tableau
T = (S,L,¢&,J) from F works as follows. Intuitively, an individual in S corresponds
to a path in F from some root node to some node that is not blocked, and which goes
only via non-root nodes.

More precisely, a path is a sequence of pairs of nodes of F of the form p =
[0 ..., Z2]. For such a path we define Tail(p) := w, and Tail'(p) := =],. With

0
[p|Z+++], we denote the path [2,..., 2= Z34L] The set Paths(F) is defined induc-
+1 0

Y ! 9 !
Ty Ty

tivelg as follows:

— For root nodes z} of F, [i—‘;] € Paths(F), and
— For a path p € Paths(F) and a node z in F:
e if z is a successor of Tail(p) and z is neither blocked nor a root node, then
[p|£] € Paths(F), or
o if, for some node y in F, y is a successor of Tail(p) and z blocks y, then
[p|Z] € Paths(F).

Please note that, since root nodes are never blocked, nor are they blocking other nodes,
the only place where they occur in a path is in the first place. Moreover, if p € Paths(F),

then Tail(p) is not blocked, Tail(p) = Tail’(p) iff Tail’(p) is not blocked, and L (Tail(p)) =
L(Tail'(p)).
We define a tableau T' = (S, L, €, 7) as follows:

S = Paths(F)
L(p) =L (Tail(p))
E(R)={(p,[p|%]) € S x S| 2’ is an R-successor of Tail(p)} U
{(lal%],9) € S x S| 2’ is an Inv(R)-successor of Tail(q)} U
{([%L [2]) € S x 8 | @,y are root nodes, and y is an R-neighbour of x}
(@) [i—“} if 2} is a root node in F with £(zf) # 0
J(a;) = 9 , - - ‘ -
[i—z] if L(x}) = 0, x)) a root node in F with £(z}) # 0 and 2 = x})

Please note that £(z) = () implies that x is a root node and that there is another root
node y with L(y) # () and = y. We show that 7' is a tableau for D.

— T satisfies (P1) because F is clash-free.

— (P2) and (P3) are satisfied by 7" because F is complete.

— For (P4), let p,q € SwithVR.C € L(p), (p,q) € E(R).If ¢ = [p| 7], then 2’ is an
R-successor of Tail(p) and, due to completeness of F, C' € L(a') = L(z) = L(q).
If p = [¢| %], then 2’ is an Inv(R)-successor of Tail(¢) and, due to completeness of
F, C € L(Tail(q)) = L(qg). If p = [{] and ¢ = [¥] for two root nodes , x, then y
is an R-neighbour of x, and completeness of F yields C € L(y) = L(q). (P6) and
(P11) hold for similar reasons.

— For (P5), let 3R.C € L(p) and Tail(p) = z. Since z is not blocked and F com-
plete, = has some R-neighbour y with C' € L(y).

e If y is a successor of x, then y can either be a root node or not.

* If y is not a root node: if y is not blocked, then ¢ := [p|¥] € S;if y is
blocked by some node z, then ¢ := [p| 2] € S.

x If y is a root node: since y is a successor of x, z is also a root node. This
implies p = [7] and ¢ = [Y] € S.

e z is an Inv(R)-successor of y, then either

* p = [q| 7] with Tail(q) = y.

* p = [q|37] with Tail(g) = u # y. Since z only has one predecessor, u
is not the predecessor of x. This implies x # ', x blocks z’/, and u is
the predecessor of ' due to the construction of Paths. Together with the
definition of the blocking condition, this implies L({u,z’)) = L({y, z))
as well as £L(u) = L(y) due to the blocking condition.

* p = 2] with 2 being a root node. Hence y is also a root node and ¢ = [%]

In any of these cases, (p, ¢) € E(R) and C' € L(q).

— (P7) holds because of the symmetric definition of the mapping &.

— (P8) is due to the definition of R-neighbours and R-successor.

— Suppose (P9) were not satisfied. Hence there is some p € S with (<nS.C) €
L(p) and £ST (p,C) > n. We will show that this implies £57 (Tail(p),C) > n,
contradicting either clash-freeness or completeness of F. Let « := Tail(p) and
P := ST (p, C). We distinguish two cases:

;"j]. Then §P > n is impossible
0

since the function Tail’ is injective on P: if we assume that there are two distinct

paths ¢1,q2 € P and Tail’(g1) = Tail’(g2) = %/, then this implies that each ¢;

is of the form ¢; = [p %] or q; = [Z—;] From ¢q; # g2, we have that ¢; = [p %]
holds for some 7 € {1,2}. Since root nodes occur only in the beginning of
paths and ¢; # g, we have ¢1 = [p|(y1,%)] and g2 = [p|(y2,y')]. If y' is not
blocked, then y; = ' = ya, contradicting q; # ¢2. If 3 is blocked in F, then
both 7; and y block y’, which implies y; = y2, again a contradiction. Hence
Tail’ is injective on P and thus §P = # Tail'(P). Moreover, for each y’ €
Tail'(P), ¥’ is an S-successor of z and C' € L(y’). This implies 457 (z, C) >
n.

e P contains a path ¢ where p = [¢|%;]. Obviously, P may only contain one
such path. As in the previous case, Tail’ is an injective function on the set
P’ := P\ {q}, eachy’ € Tail'(P’) is an S-successor of x, and C' € L(y’) for
each 3y € Tail'(P’). Let z := Tail(q). We distinguish two cases:

«x ¢ = 2. Hence x is not blocked, and thus x is an Inv(S)-successor of z.
Since Tail’'(P’) contains only successors of = we have that z ¢ Tail' (P’)
and, by construction, z is an S-neighbour of with C' € L(z).

x x # x'. This implies that =’ is blocked by z and that z’ is an Inv(S)-
successor of z. Due to the definition of pairwise-blocking this implies that
x is an Inv(S)-successor of some node u with L(u) = L(z). Again, u &
Tail'(P’) and, by construction, u is an S-neighbour of z and C € L(u).

— For (P10), let (>nS.C) € L(p). Hence there are n S-neighbours y1,. .., y, of
2 = Tail(p) in F with C' € L(y;). For each y; there are three possibilities:

e y; is an S-successor of x and y; is not blocked in F. Then ¢; := [p
arootnode and ¢; := [¥*]isin S.

e y; is an S-successor of x and y; is blocked in F by some node z. Then ¢; =
[p-] is in S. Since the same z may block several of the y;s, it is indeed nec-
essary to include y; explicitly into the path to make them distinct.

e 1z is an Inv(.S)-successor of y;. There may be at most one such y; if z is not
a root node. Hence either p = [g;| 5] with Tail(¢;) = y;, or p = [Z] and
g = [2*].

Hence for each y; there is a different path ¢; in S with S € L((p,¢;)) and C €
L(g:), and thus £S7 (p, C) > n.

— (P12) is due to the fact that, when the completion algorithm is started for an Abox
A, the initial completion forest F 4 contains, for each individual name a; occurring
in A, a root node z} with L(z}) = {C € clos(A) | a;: C € A}. The algorithm
never blocks root individuals, and, for each root node :cf) whose label and edges
are removed by the <,.-rule, there is another root node x% with x6 = xé and {C €
clos(A) | a;:C € A} C L(x?). Together with the definition of J, this yields (P12).
(P13) is satisfied for similar reasons.

— (P14) is satisfied because the <,.-rule does not identify two root nodes z{, y; when
xly # yi holds. O

e P contains only paths of the form [p[;] and [

w]ory;is

Lemma 5. Let A be a SHZQ-Abox and R a role hierarchy. If A has a tableau w.r.t.
R, then the expansion rules can be applied to A and R such that they yield a complete
and clash-free completion forest.

Proof: LetT = (S,L,E&,7) be a tableau for A and R. We use T to trigger the ap-
plication of the expansion rules such that they yield a completion forest F that is both
complete and clash-free. To this purpose, a function 7 is used which maps the nodes of
F to elements of S. The mapping 7 is defined as follows:

— For individuals a; in A, we define 7(x}) := I(a;).

— If m(x) = s is already defined, and a successor y of x was generated for IR.C' €
L(x), then w(y) =t for some t € S with C' € L(¢) and (s,) € E(R).

- If 7(z) = sis already defined, and successors y; of 2 were generated for >nR.C' €
L(x), then w(y;) = t; for n distinct t; € S with C € L(t;) and (s,t;) € E(R).

Obviously, the mapping for the initial completion forest for A and R satisfies the fol-
lowing conditions:

L(z) € L(n(z)),
if y is an S-neighbour of x, then (7 (x), 7 (y)) € £(S), and (%)
x # y implies 7(x) # 7 (y).

It can be shown that the following claim holds:

CLAIM: Let F be generated by the completion algorithm for .4 and R and let 7 satisfy
(*). If an expansion rule is applicable to JF, then this rule can be applied such that it
yields a completion forest ' and a (possibly extended) 7 that satisfy (x).

As a consequence of this claim, (P1), and (P9), if A and R have a tableau, then the
expansion rules can be applied to A and R such that they yield a complete and clash-
free completion forest. d

From Theorem 1, Lemma 2, 3 4, and 5, we thus have the following theorem:

Theorem 2. The completion algorithm is a decision procedure for the consistency of
SHIQ-Aboxes and the satisfiability and subumption of concepts with respect to role
hierarchies and terminologies.

4 Conclusion

We have presented an algorithm for deciding the satisfiability of SHZ Q KBs where the
Abox may be non-empty and where the uniqueness of individual names is not assumed
but can be asserted in the Abox. This algorithm is of particular interest as it can be used
to decide the problem of conjunctive query containment w.r.t. a schema [17].

An implementation of the SHZ Q Tbox satisfiability algorithm is already available
in the FaCT system [14], and is able to reason efficiently with Tboxes derived from real-
istic ER schemas. This suggests that the algorithm presented here could form the basis
of a practical decision procedure for the query containment problem. Work is already
underway to test this conjecture by extending the FaCT system with an implementation
of the new algorithm.

References

1

2.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid logics. In
Proc. of CSL’99, number 1683 in LNCS, pages 307-321 Springer-Verlag, 1999.

F. Baader. Augmenting concept languages by transitive closure of roles: An alternative to
terminological cycles. In Proc. of IJCAI-91, 1991.

. F. Baader, H.-J. Biirckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity of feature

logics with negation, functional uncertainty, and sort equations. Journal of Logic, Language
and Information, 2:1-18, 1993.

. F. Baader, H.-J. Heinsohn, B. Hollunder, J. Muller, B. Nebel, W. Nutt, and H.-J. Profitlich.

Terminological knowledge representation: A proposal for a terminological logic. Technical
Memo TM-90-04, DFKI, Saarbriicken, Germany, 1991.

. P. Blackburn and J. Seligman. What are hybrid languages? In Advances in Modal Logic,

volume 1, pages 41-62. CSLI Publications, Stanford University, 1998.

. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological knowl-

edge representation systems. J. of Artificial Intelligence Research, 1:109—138, 1993.

. D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms and com-

plexity. In Proc. of ECAI’96, pages 303-307. John Wiley & Sons Ltd., 1996.

. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment

under constraints. In Proc. of PODS 98, pages 149-158. 1998.

. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Source integration in

data warehousing. In Proc. of DEXA-98. IEEE Computer Society Press, 1998.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Description logic framework for information integration. In Proc. of KR-98, 1998.
G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux
and algorithms for converse-PDL. Information and Computation, 1998. To appear.
Giuseppe De Giacomo and Maurizio Lenzerini. What’s in an aggregate: Foundations for
description logics with tuples and sets. In Proc. of IJCAI-95, 1995.

V. Haarslev and R. Moller. An empirical evaluation of optimization strategies for abox
reasoning in expressive description logics. In Lambrix et al. [19], pages 115-119..

I. Horrocks. FaCT and iFaCT. In Lambrix et al. [19], pages 133-135.

I. Horrocks, A. Rector, and C. Goble. A description logic based schema for the classification
of medical data. In Proc. of the 3rd Workshop KRDB’96. CEUR, June 1996.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles and role
hierarchies. Journal of Logic and Computation, 9(3):385-410, 1999.

I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. Query containment using a DLR ABox.
LTCS-Report 99-15, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 1999.
I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics.
In Proc. of LPAR’99, number 1705 in LNAI, pages 161-180. Springer-Verlag, 1999.

P. Lambrix, A. Borgida, M. Lenzerini, R. Mdller, and P. Patel-Schneider, editors. Proc. of
the International Workshop on Description Logics (DL’99), 1999.

E. Mays, R. Weida, R. Dionne, M. Laker, B. White, C. Liang, and F. J. Oles. Scalable and
expressive medical terminologies. In Proc. of the 1996 AMAI Annual Fall Symposium, 1996.
U. Sattler. A concept language extended with different kinds of transitive roles. In 20.
Deutsche Jahrestagung fiir KI, volume 1137 in LNAI. Springer-Verlag, 1996.

A. Schaerf. Reasoning with individuals in concept languages. Data and Knowledge Engi-
neering, 13(2):141-176, 1994.

K. Schild. A correspondence theory for terminological logics: Preliminary report. In J.
Mylopoulos, R. Reiter, editors, Proc. of IJCAI-91, Sydney, 1991.

M. Schmidt-Schaufl and G. Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1-26, 1991.

