Benchmark Analysis with FaCT

Tan Horrocks

University of Manchester
Manchester, UK

horrocks@cs.man.ac.uk

Abstract. FaCT (Fast Classification of Terminologies) is a Description
Logic (DL) classifier that can also be used for modal logic satisfiability
testing. The FaCT system includes two reasoners, one for the logic SHF
and the other for the logic SHZQ, both of which use optimised imple-
mentations of sound and complete tableaux algorithms. FaCT’s most
interesting features are its expressive logic (in particular the SHZQ rea-
soner), its optimised tableaux implementation (which has now become
the standard for DL systems), and its CORBA based client-server archi-
tecture.

1 The FaCT System

The logics implemented in FaCT are both based on ALCg+, an extension of
ALC to include transitive roles [13]. For compactness, this logic has be called
S (due to its relationship with the proposition multi-modal logic S4y,) [14]).
SHF extends S with a hierarchy of roles and functional roles (attributes), while
SHZQ adds inverse roles and fully qualified number restrictions.

The SHZQ reasoner is of particular interest, both form a theoretical and a
practical viewpoint. Adding inverse roles to SHF (to give SHZF) already leads
to the loss of the finite model property, and this has necessitated the develop-
ment of a more sophisticated double dynamic blocking strategy that allows the
algorithm to find finite representations of infinite models while still guaranteeing
termination [7]. Moreover, when SHZF is generalised to SHZQ, it is necessary
to restrict the use of transitive roles in number restrictions in order to maintain
decidability [8]. SHZQ is also of great practical interest as it is powerful enough
to encode the logic DLR, and can thus be used for reasoning about conceptual
data models, e.g., Extended Entity-Relationship (EER) schemas [2,4].

2 Implementation

FaCT is implemented in Common Lisp, and has been run successfully with
several commercial and free lisps, including Allegro, Liquid (formerly Lucid),
Lispworks and GNU. Binaries (executable code) are now available (in addition
to the source code) for Linux and Windows systems, allowing FaCT to used
without a locally available Lisp.

In order to make the FaCT system usable in realistic applications, a wide
range of optimisation techniques are used in the implementation of the satisfia-
bility testing algorithms. These include axiom absorption, lexical normalisation,
semantic branching search, simplification, dependency directed backtracking,
heuristic guided search and caching [6]. The use of these (and other) optimisation
techniques has now become standard in tableaux-based DL implementations [10,
5].

The current implementation of SHZQ is a relatively naive modification of
the SHF reasoner: it does not use the more efficient form of double blocking
described in [8], it does not include any special optimisations to deal with inverse
roles (or take advantage of their absence), and some optimisations that would
require modification in the presence of inverse roles are instead simply disabled.
As a result, performance with SHZQ is significantly worse than with SHF, even
w.r.t. SHF problems. These issues are being addressed in a new implementation
of the SHZQ reasoner.

Work is also underway on the development of Abox reasoning for the FaCT
system: an SHF Abox has recently been released [15] and a full SHZQ Abox is
being developed [9].

3 Special Features

In addition to the standard KRSS functional interface [11], FaCT can also be
configured as a classification and reasoning server using the Object Management
Group’s Common Object Request Broker Architecture (CORBA) [1]. This ap-
proach has several advantages: it facilitates the use of FaCT by non-Lisp client
applications; the API is defined using CORBA’s Interface Definition Language
(IDL), which can be mapped to various target languages; a mechanism is pro-
vided for applications to communicate with the DL system, either locally or
remotely; and server components can be added/substituted without client ap-
plications even being aware of the change. This has allowed, for example, the
successful use of FaCT’s reasoning services in a (Java based) prototype EER
schema integration tool developed as part of the DWQ project [3].

4 Performance Analysis

FaCT’s SHZ Q reasoner (version 2.13.14) was used with those problems involving
inverse roles; in all other cases the SHF reasoner (version 2.13.3) was used. The
tests were run on two machines, one with a 450MHz Pentium III and 128 Mb
of RAM, the other with a 433MHz Celeron and 256Mb of RAM. In both cases
Allegro CL Enterprise Edition 5.0 was used with Red Hat Linux. For the purposes
of these tests the difference in performance between the two machines is small
enough to be ignored.

As far as FaCT’s performance is concerned, the current implementation is
beginning to show its age: the system has been used as a testbed for new algo-
rithms and optimisation techniques, and after nearly five years of “evolution” a

major overhaul is long overdue. This is particularly true of the SHZ Q reasoner.!

It is therefore unlikely that FaCT’s performance will be competitive with that of
younger and leaner systems whose designs reflect the experience gained with the
FaCT system. Moreover, FaCT’s optimisations are specifically aimed at improv-
ing the system’s performance when classifying realistic knowledge bases (KBs),
and perform less well with the kinds of randomly generated data used in these
tests. In particular, the partial model caching technique used by FaCT relies for
its effectiveness on the fact that, in realistic KBs, there are typically large num-
bers of different roles (modalities). In contrast, most of the TANCS test data
uses only a single role. Moreover, the data used in the TANCS test is very sus-
ceptible to optimisation by caching the satisfiability status of sets of formulae [6].
This can be seen in Table 4, which shows the results of running the “final” set
of TANCS QBEF tests using both FaCT’s standard SHF reasoner and a modi-
fied version (denoted FaCTT) that includes satisfiability status caching instead
of partial model caching. The results for satisfiable and unsatisfiable tests are
separated and in each case the number of instances solved (i), median time (m)
and worst case time (w) is given. Times are in seconds, with a timeout of 1,000s.
There were a total of 64 instances in each test, and all unsolved instances were
the result of timeout rather than memory failure.

Table 1. Results of “final” TANCS tests for FaCT and FaCT?

FaCT FaCT'
SAT UNSAT SAT UNSAT
Test i m w i m w i m w i m w
C45-V8-D4| 4 606.57 717.39| 23 106.43 813.78|32 5.26 11.64(32 1.07 10.58
C45-V8-D5(0 — - 2 547.02 774.59| 32 139.97 721.68| 32 20.52 259.09
Ch5-V8-D6|0 — - 3 595.26 631.98|28 89.04 328.41| 36 13.85 215.70

It is interesting to compare these results with the the times taken to classify
a large realistic KB (the GALEN medical terminology KB [12]). In this case
satisfiability status caching is actually less effective than partial model caching:
FaCT takes ~41s to classify the KB, whereas FaCTT takes ~50s.

The standard SHF reasoner was also tested on the Periodic Satisfiability
(Global PSpace) reference problems. With the standard (CNF) encoding, these
were all very easy (most problems were solved in times too short to by accurately
measured), but with the K encoding the PSat problems became much harder,
and few were solved within the timeout.? This effect is much less pronounced
with the QBF problems, probably because absorption is only relevant with global
axioms. A more detailed analysis was performed using harder PSat problems

! As mentioned above, these (and other) issues are being addressed in a new imple-
mentation.

2 This causes of this effect are being investigated—it is probably related to the ab-
sorption optimisation.

with the standard encoding (12 variables, depth 1, 24-192 clauses, 30 instances
per data point, 600s timeout), and the results are shown in Figure 1 (left).

psat-cnf-K4-V12-D1.eps psat-inv-cnf-K4-V4-D1

10000 10000

1000 + 1000 +

=
o
oS
2
o
oS

CPU time (10ms)
CPU time (10ms)

10 ¢ 10 ¢

0 2 4 6 8 10 12 14 16 0 5 10 15 20 25
CIV CIV

Fig. 1. Percentile satisfiability times for two problem sets

The SHZQ reasoner was tested using the Modal QBF (Modal PSpace) and
Periodic Satisfiability (Global PSpace) problems with inverse. The performance
of the reasoner in these tests was quite poor, with most tests ending in either
timeout or memory failure. The results of those tests where at least one instance
was solved are given in Table 4, using the same format as Table 4, but with the
addition of the number of tests resulting in a timeout (T) or memory failure (M).
The reason for the poor performance is probably the lack of satisfiability status
caching which, as demonstrated above, is a crucially important optimisation with
this kind of test data. A more detailed analysis was performed using easier PSat
problems with the standard encoding (4 variables, depth 1, 16-96 clauses, 30
instances per data point, 600s timeout), and the results are shown in Figure 1
(right).

5 Availability

FaCT and iFaCT are available (under the GNU general public license) via the
WWW at http://www.cs.man.ac.uk/ horrocks.

References

1. S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris. A proposal for a
description logic interface. In Proc. of DL’99, pages 33-36, 1999.

2. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Source
integration in data warehousing. In Proc. of DEXA-98, pages 192-197, 1998.

10.

11.

12.

13.

14.

15.

Table 2. Results of tests using FaCT’s SHZQ reasoner

SAT UNSAT

Test i m w |i m w |T M
p-gbf-inv-cnfSSS-K4-C10-V4-D4|2 11.19 32.70|0 - - |0 6
p-gbf-inv-cnfSSS-K4-C20-V4-D4|1 36.43 36.43|2 70.37 155.62| 0 5
p-gbf-inv-cnfSSS-K4-C30-V4-D4|1 112.48 112.48| 1 275.13 275.13| 0 6
p-gbf-inv-cnfSSS-K4-C40-V4-D4|0 — - |5176.97 376.15| 0 3
p-gbf-inv-cnfSSS-K4-C50-V4-D4|0 — - |8 11.23 61.44|{0 O
p-gbf-inv-cnfSSS-K4-C20-V4-D6|0 — - |1 158 1.58{0 7
p-gbf-inv-cnfSSS-K4-C40-V4-D6{0 — - |1 50.72 50.72|0 7
p-gbf-inv-cnfSSS-K4-C50-V4-D6|0 — - |6123.88 341.35| 0 2
p-psat-inv-cnf-K4-C20-V4-D1 8 1.59 45.61/10 - - 00
p-psat-inv-cnf-K4-C30-V4-D1 3 11.58 58.59|0 — - 05
p-psat-inv-cnf-K4-C40-V4-D1 |4 64.32 106.05|1 2.56 2.56|3 0
p-psat-inv-cnf-K4-C50-V4-D1 5 181 17981 1.79 1.79(2 O
p-psat-inv-cnf-K4-C20-V8-D1 7 0.05 39.06|0 — - 01
p-psat-inv-cnf-K4-C30-V8-D1 |5 14.03 108.67|0 — - |10 3
p-psat-inv-cnf-K4-C20-V8-D2 2 004 0.140 - - 2 4

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Use of the
data reconciliation tool at telecom italia. DWQ deliverable D.4.3, Foundations of
Data Warehouse Quality (DWQ), 1999.

E. Franconi and G. Ng. The iecom tool for intelligent conceptual modelling. Sub-
mitted to VLDB-2000.

V. Haarslev, R. Moller, and A.-Y. Turhan. Implementing an ALCRP(D) abox
reasoner — progress report. In Proc. of DL’98, pages 82—86, 1998.

I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267-293, 1999.

I. Horrocks and U. Sattler. A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3):385-410, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In Proc. of LPAR’99, pages 161-180. Springer-Verlag, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHZ Q. In Proc. of CADE-2000, 2000. To appear.

P. F. Patel-Schneider. DLP system description. In Proc. of DL’98, pages 87—89,
1998.

P. F. Patel-Schneider and B. Swartout. Description logic specification from the
KRSS effort, June 1993.

A. L. Rector, W A Nowlan, and A Glowinski. Goals for concept representation in
the GALEN project. In Proc. of SCAMC’93, pages 414-418, 1993.

U. Sattler. A concept language extended with different kinds of transitive roles.
In 20. Deutsche Jahrestagung fir Kinstliche Intelligenz, pages 333-345, 1996.

K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91, pages 466-471, 1991.

S. Tessaris and G. Gough. Abox reasoning with transitive roles and axioms. In
Proc. of DL’99, 1999.

