
How to decide Query Containment under Constraints
using a Description Logic

Ian Horrocks1, Ulrike Sattler2, Sergio Tessaris1, and Stephan Tobies2

1 Department of Computer Science, University of Manchester, UK
2 LuFg Theoretical Computer Science, RWTH Aachen, Germany

Abstract. We present a procedure for deciding (database) query containment
under constraints. The technique is to extend the logic DLR with an Abox, and
to transform query subsumption problems into DLR Abox satisfiability prob-
lems. Such problems can then be decided, via a reification transformation, using
a highly optimised reasoner for the SHIQ description logic. We use a simple ex-
ample to support our hypothesis that this procedure will work well with realistic
problems.

1 Introduction

Query containment under constraints is the problem of determining whether the result
of one query is contained in the result of another query for every database satisfying a
given set of constraints (derived, for example, from a schema). This problem is of par-
ticular importance in information integration (see [10]) and data warehousing where,
in addition to the constraints derived from the source schemas and the global schema,
inter-schema constraints can be used to specify relationships between objects in differ-
ent schemas (see [6]).

In [12], query containment without constraints was shown to be NP-complete, and a
subsequent analysis identified cycles in queries as the main source of complexity [13].
Query containment under different forms of constraints have, e.g., been studied in [23]
(containment w.r.t. functional and inclusion dependencies) and [11, 24] (containment
w.r.t. is-a hierarchies).

Calvanese et al. [4] have established a theoretical framework using the logicDLR,1

presented several (un)decidability results, and described a method for solving the de-
cidable cases using an embedding in the propositional dynamic logic CPDLg [17, 15].
The importance of this framework is due to the high expressive power of DLR, which
allows Extended Entity-Relationship (EER) schemas and inter-schema constraints to be
captured. However, the embedding technique does not lead directly to a practical deci-
sion procedure as there is no (known) implementation of a CPDLg reasoner. Moreover,
even if such an implementation were to exist, similar embedding techniques [14] have
resulted in severe tractability problems when used, for example, to embed the SHIF
description logic in SHF by eliminating inverse roles [18].

1 Set semantics is assumed in this framework.



In this paper we present a practical decision procedure for the case where neither
the queries nor the constraints contain regular expressions. This represents a restric-
tion with respect to the framework described in Calvanese et al., where it was shown
that the problem is still decidable if regular expressions are allowed in the schema and
the (possibly) containing query, but this seems to be acceptable when modelling clas-
sical relational information systems, where regular expressions are seldom used [7, 6].
When excluding regular expressions, constraints imposed by EER schemas can still be
captured, so the restriction (to contain no regular expressions) is only relevant to inter-
schema constraints. Hence, the use of DLR in both schema and queries still allows for
relatively expressive queries, and by staying within a strictly first order setting we are
able to use a decision procedure that has demonstrated good empirical tractability.

The procedure is based on the method described by Calvanese et al., but extends
DLR by defining an ABox, a set of axioms that assert facts about named individuals
and tuples of named individuals (see [5]). This leads to a much more natural encoding
of queries (there is a direct correspondence between variables and individuals), and
allows the problem to be reduced to that of determining the satisfiability of a DLR
knowledge base (KB), i.e., a combined schema and ABox. This problem can in turn
be reduced to a KB satisfiability problem in the SHIQ description logic, with n-ary
relations reduced to binary ones by reification. In [24], a similar approach is presented.
However, the underlying description logic (ALCNR) is less expressive thanDLR and
SHIQ (for example, it is not able to capture Entity-Relationship schemas).

We have good reasons to believe that this approach represents a practical solution.
In the FaCT system [18], we already have an (optimised) implementation of the de-
cision procedure for SHIQ schema satisfiability described in [21], and using FaCT
we have been able to reason very efficiently with a realistic schema derived from the
integration of several Extended Entity-Relationship schemas using DLR inter-schema
constraints (the schemas and constraints were taken from a case study undertaken as
part of the Esprit DWQ project [7, 6]). In Section 4, we use the FaCT system to demon-
strate the empirical tractability of a simple query containment problem with respect to
the integrated DWQ schema. FaCT’s schema satisfiability algorithm can be straight-
forwardly extended to deal with ABox axioms (and thus arbitrary query containment
problems) [22], and as the number of individuals generated by the encoding of realistic
query containment problems will be relatively small, this extension should not compro-
mise empirical tractability.

Most proofs are either omitted or given only as outlines in this paper. For full details,
please refer to [20] .

2 Preliminaries

In this section we will (briefly) define the key components of our framework, namely
the logic DLR, (conjunctive) queries, and the logic SHIQ.
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2.1 The Logic DLR

We will begin with DLR as it is used in the definition of both schemas and queries.
DLR is a description logic (DL) extended with the ability to describe relations of any
arity. It was first introduced in [9].

Definition 1. Given a set of atomic concept names NC and a set of atomic relation
names NR, every C ∈ NC is a concept and every R ∈ NR is a relation, with every R
having an associated arity. If C,D are concepts, R, S are relations of arity n, i is an
integer 1 6 i 6 n, and k is a non-negative integer, then

>, ¬C, C uD, ∃[$i]R, (≤ k[$i]R) are DLR concepts, and
>n, ¬R, R u S, ($i/n : C) are DLR relations with arity n.

Relation expressions must be well-typed in the sense that only relations with the same
arity can be conjoined, and in constructs like ∃[$i]R the value of i must be less than or
equal to the arity of R.

The semantics ofDLR is given in terms of interpretations I = (∆I , ·I), where ∆I

is the domain (a non-empty set), and ·I is an interpretation function that maps every
concept to a subset of ∆I and every n-ary relation to a subset of (∆I)n such that the
following equations are satisfied (“]” denotes set cardinality).

>I = ∆I (C u D)I = CI ∩ DI

¬CI = ∆I \ CI (∃[$i]R)I =
˘

d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI .di = d
¯

(≤ k[$i]R)I =
˘

d ∈ ∆I | ]
˘

(d1, . . . , dn) ∈ RI .di = d
¯

≤ k
¯

>n
I ⊆ (∆I)n RI ⊆ >n

I

(¬R)I = >n
I \ RI (R u S)I = RI ∩ SI

($i/n : C)I = {(d1, . . . , dn) ∈ >n
I | di ∈ CI}

Note that >n does not need to be interpreted as the set of all tuples of arity n, but
only as a subset of them, and that the negation of a relation R with arity n is relative to
>n.

In our framework, a schema consists of a set of logical inclusion axioms expressed
in DLR. These axioms could be derived from the translation into DLR of schemas
expressed in some other data modelling formalism (such as Entity-Relationship mod-
elling [3, 8]), or could directly stem from the use of DLR to express, for example,
inter-schema constraints to be used in data warehousing, (see [6]).

Definition 2. A DLR schema S is a set of axioms of the form C v D and R v S,
where C,D are DLR concepts and R, S are DLR relations of the same arity; an
interpretation I satisfies C v D iff CI ⊆ DI , and it satisfies R v S iff RI ⊆ SI . An
interpretation I satisfies a schema S iff I satisfies every axiom in S.

Crucially, we extend DLR to assert properties of individuals, names representing
single elements of the domain. An ABox is a set of axioms asserting facts about indi-
viduals and tuples of individuals.
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Definition 3. Given a set of individuals NI, a DLR ABox A is a set of axioms of the
form w:C and w:R, where C is a concept, R is a relation of arity n, w is an individual
and w is an n-tuple 〈w1, . . . , wn〉 such that w1, . . . , wn are individuals. We will often
write wi to refer to the ith element of an n-tuple w, where 1 6 i 6 n.

Additionally, the interpretation function ·I maps every individual to an element of
∆I and thus also tuples of individuals to tuples of elements of ∆I . An interpretation I
satisfies an axiom w:C iff wI ∈ CI , and it satisfies an axiom w:R iff wI ∈ RI . An
interpretation I satisfies an ABox A iff I satisfies every axiom in A.

A knowledge base (KB) K is a pair 〈S,A〉, where S is a schema and A is an ABox.
An interpretation I satisfies a KB K iff it satisfies both S and A.

If an interpretation I satisfies a concept, axiom, schema, or ABox X , then we say
that I is a model of X , call X satisfiable, and write I |= X .

Note that it is not assumed that individuals with different names are mapped to
different elements in the domain (the so-called unique name assumption).

Definition 4. If K is a KB, I is a model of K, and A is an ABox, then I ′ is called
an extension of I to A iff I ′ satisfies A, ∆I = ∆I′

, and all concepts, relations, and
individuals occuring in K are interpreted identically by I and I ′.

Given two ABoxes A,A′ and a schema S, A is included in A′ w.r.t. S (written
〈S,A〉|≈A′) iff every model I of 〈S,A〉 can be extended to A′.

2.2 Queries

In this paper we will focus on conjunctive queries (see [1, chap. 4]), and describe only
briefly (in Section 5) how the technique can be extended to deal with disjunctions of
conjunctive queries (for full details please refer to [20]). A conjunctive query q is an
expression

q(x)← term1(x,y, c) ∧ . . . ∧ termn(x,y, c)

where x, y, and c are tuples of distinguished variables, variables, and constants, re-
spectively (distinguished variables appear in the answer, “ordinary” variables are used
only in the query expression, and constants are fixed values). Each term termi(x,y, c)
is called an atom in q and is in one of the forms C(w) or R(w), where w (resp. w) is
a variable or constant (resp. tuple of variables and constants) in x, y or c, C is a DLR
concept, and R is a DLR relation.2

For example, a query designed to return the bus number of the city buses travelling
in both directions between two stops is:

BUS(nr)← bus route(nr , stop1, stop2) ∧ bus route(nr , stop2, stop1) ∧ city bus(nr)

where nr is a distinguished variable (it appears in the answer), stop1 and stop2 are non-
distinguished variables, city bus is a DLR concept and bus route is a DLR relation.

2 The fact that these concepts and relations can also appear in the schema is one of the distin-
guishing features of this approach.
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In this framework, the evaluation q(I) of a query q with n distinguished variables
w.r.t. a DLR interpretation I (here perceived as standard FO interpretation) is the set
of n-tuples d ∈ (∆I)n such that

I |= ∃y.term1(d,y, c) ∧ . . . ∧ termn(d,y, c).

As usual, we require unique interpretation of constants, i.e., in the following we will
only consider those intepretations I with cI 6= dI for any two constants c 6= d. A query
q(x) is called satisfiable w.r.t a schema S iff there is an interpretation I with I |= S
and q(I) 6= ∅. A query q1(x) is contained in a query q2(x) w.r.t. a schema S (written
S |= q1 v q2), iff, for every model I of S, q1(I) ⊆ q2(I). Two queries q1, q2 are called
equivalent w.r.t. S iff S |= q1 v q2 and S |= q2 v q1.

For example, the schema containing the axioms

(bus route u ($1/3 : city bus))v city bus route
city bus routev (bus route u ($1/3 : city bus)),

states that the relation city bus route contains exactly the bus route information that
concerns city buses. It is easy to see that the following CITY BUS query

CITY BUS(nr)← city bus route(nr , stop1, stop2) ∧ city bus route(nr , stop2, stop1)

is equivalent to the previous BUS query w.r.t. the given schema. In an information inte-
gration scenario, for example, this could be exploited by reformulating the BUS query
as a CITY BUS query ranging over a smaller database without any loss of information.

2.3 The Logic SHIQ

SHIQ is a standard DL, in the sense that it deals with concepts and (only) binary
relations (called roles), but it is unusually expressive in that it supports reasoning with
inverse roles, qualifying number restrictions on roles, transitive roles, and role inclusion
axioms.

Definition 5. Given a set of atomic concept names NC and a set of atomic role names
NR with transitive role names NR+ ⊆ NR, every C ∈ NC is a concept, every R ∈ NR

is a role, and every R ∈ NR+ is a transitive role. If R is a role, then R− is also a role
(and if R ∈ NR+ then R− is also a transitive role). If S is a (possibly inverse) role,
C,D are concepts, and k is a non-negative integer, then

>, ¬C, C uD, ∃S.C, 6kS.C are also SHIQ concepts.

The semantics of SHIQ is given in terms of interpretations I = (∆I , ·I), where ∆I

is the domain (a non-empty set), and ·I is an interpretation function that maps every
concept to a subset of ∆I and every role to a subset of (∆I)2 such that the following
equations are satisfied.

>I = ∆I (∃S.C)I = {d | ∃d′.(d, d′) ∈ SI and d′ ∈ CI}
¬CI = ∆I \ CI (6kS.C)I = {d | ]{d′.(d, d′) ∈ SI and d′ ∈ CI} 6 k}

(C uD)
I

= CI ∩DI RI = (RI)+ for all R ∈ NR+

(R−)I = {(d′, d) | (d, d′) ∈ RI}
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SHIQ schemas, ABoxes, and KBs are defined similarly to those for DLR: if C,D
are concepts, R,S are roles, and v, w are individuals, then a schema S consists of
axioms of the form C v D and R v S, and an ABox A consists of axioms of the form
w:C and 〈v, w〉:R. Again, a KB K is a pair 〈S,A〉, where S is a schema and A is an
ABox.

The definitions of interpretations, satisfiability, and models also parallel those for
DLR, and there is again no unique name assumption.

Note that, in order to maintain decidability, the roles that can appear in number
restrictions are restricted [21]: if a role S occurs in a number restriction 6kS.C, then
neither S nor any of its sub roles may be transitive (i.e., if the schema contains av-path
from S′ to S, then S′ is not transitive).

3 Determining Query Containment

In this section we will describe how the problem of deciding whether one query is
contained in another one w.r.t. a DLR schema can be reduced to the problem of de-
ciding KB satisfiability in the SHIQ description logic. There are three steps to this
reduction. Firstly, the queries are transformed into DLR ABoxes A1 and A2 such that
S |= q1 v q2 iff 〈S,A1〉|≈A2 (see Definition 4). Secondly, the ABox inclusion prob-
lem is transformed into one or more KB satisfiability problems. Finally, we show how
a DLR KB can be transformed into an equisatisfiable SHIQ KB.

3.1 Transforming Query Containment into ABox Inclusion

We will first show how a query can be transformed into a canonical DLR ABox. Such
an ABox represents a generic pattern that must be matched by all tuples in the evaluation
of the query, similar to the tableau queries one encounters in the treatment of simple
query containment for conjunctive queries [1].

Definition 6. Let q be a conjunctive query. The canonical ABox for q is defined by

Aq = {w:R | R(w) is an atom in q} ∪ {w:C | C(w) is an atom in q}.

We introduce a new atomic concept Pw for every individual w in A and define the
completed canonical ABox for q by

Âq = Aq ∪ {w:Pw | w occurs in Aq} ∪ {wi:¬Pwj
| wi, wj are constants in q and i 6= j}.

The axioms w:Pw in Âq introduce representative concepts for each individual w in
Aq . They are used (in the axioms wi:¬Pwj

) to ensure that individuals corresponding to
different constants in q cannot have the same interpretation, and will also be useful in
the transformation to KB satisfiability.

By abuse of notation, we will say that an interpretation I and an assignment ρ of
distinguished variables, non-distinguished variables and constants to elements in the
domain of I such that I |= ρ(q) define a model for Aq with the interpretation of the
individuals corresponding with ρ and the interpretation P I

w = {wI}.
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We can use this definition to transform the query containment problem into a (very
similar) problem involving DLR ABoxes. We can assume that the names of the non-
distinguished variables in q2 differ from those in q1 (arbitrary names can be chosen
without affecting the evaluation of the query), and that the names of distinguished vari-
ables and constants appear in both queries (if a name is missing in one of the queries, it
can be simply added using a term like >(v)).

The following Theorem shows that a canonical ABox really captures the structure
of a query, allowing the query containment problem to be restated as an ABox inclusion
problem.

Theorem 1 Given a schema S and two queries q1 and q2, S |= q1 v q2 iff 〈S, Âq1
〉|≈Aq2

.

Before we prove Theorem 1, note that, in general, this theorem no longer holds if
we replace Aq2

by Âq2
. Let S be a schema and q1, q2 be two queries such that q1 is

satisfiable w.r.t. S and q2 contains at least one non-distinguished variable z. Then the
completion Âq2

contains the assertion z:Pz where Pz is a new atomic concept. Since
q1 is satisfiable w.r.t. S and Pz does not occur in S or q1, 〈S, Âq1

〉 has a model I with
P I

z = ∅. Such a model I cannot be extended to a model I ′ of Âq2
because there is

no possible interpretation for z that would satisfy zI′

∈ P I′

z . Hence, 〈S, Âq1
〉|6≈Âq2

regardless of whether S |= q1 v q2 holds or not. In the next section we will see how
to deal with the non-distinguished individuals in Aq2

without the introduction of new
representative concepts.

Proof. PROOF OF THEOREM 1: For the if direction, assume S 6|= q1 v q2. Then there
exists a model I of S and a tuple (d1, . . . , dn) ∈ (∆I)n such that (d1, . . . , dn) ∈ q1(I)
and (d1, . . . , dn) 6∈ q2(I). I and the assignment of variables leading to (d1, . . . , dn)

define a model for Âq1
. If ·I could be extended to satisfy Aq2

, then the extension
would correspond to an assignment of the non-distinguished variables in q2 such that
(d1, . . . , dn) ∈ q2(I), thus contradicting the assumption.

For the only if direction, assume there is a model I of both S and Âq1
that cannot

be extended to a model of Aq2
. Hence there is a tuple (d1, . . . , dn) ∈ q1(I) and a

corresponding assignment of variables that define I. If there is an assignment of the
non-distinguished variables in q2 such that (d1, . . . , dn) ∈ q2(I), then this assignment
would define the extension of I such that Aq2

is also satisfied. ut

3.2 Transforming ABox Inclusion into ABox Satisfiability

Next, we will show how to transform the ABox inclusion problem into one or more KB
satisfiability problems. In order to do this, there are two main difficulties that must be
overcome. The first is that, in order to transform inclusion into satisfiability, we would
like to be able to “negate” axioms. This is easy for axioms of the form w:C, because an
interpretation satisfies w:¬C iff it does not satisfy w:C. However, we cannot deal with
axioms of the form w:R in this way, because DLR only has a weak form of negation
for relations relative to>n. Our solution is to transform all axioms inAq2

into the form
w:C.
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The second difficulty is that Aq2
may contain individuals corresponding to non-

distinguished variables in q2 (given the symmetry between queries and ABoxes, we
will refer to them from now on as non-distinguished individuals). These individuals
introduce an extra level of quantification that we cannot deal with using our standard
reasoning procedures: 〈S, Âq1

〉|≈Aq2
iff for all models I of 〈S, Âq1

〉 there exists some
extension of I to Aq2

. We deal with this problem by eliminating the non-distinguished
individuals from Aq2

.

We will begin by exploiting some general properties of ABoxes that allow us to
compact Aq2

so that it contains only one axiom w:R for each tuple w, and one axiom
w:C for each individual w that is not an element in any tuple. It is obvious from the
semantics that we can combine all ABox axioms relating to the same individual or tuple:
I |= {w:C,w:D} (resp. {w:R,w:S}) iff I |= {w:(C uD)} (resp. {w:(R u S)}). The
following lemma shows that we can also absorb wi:C into w:R when wi is an element
of w.

Lemma 1 Let A be a DLR ABox with {wi:C,w:R} ⊆ A, where wi is the ith element
in w. Then I |= A iff I |= {w:(R u $i : C)} ∪ A \ {wi:C,w:R}.

PROOF: From the semantics, if wI ∈ (Ru $i : C)I , then wI ∈ RI and wI
i ∈ CI , and

if wI
i ∈ CI and wI ∈ RI , then wI ∈ (R u $i : C)I . ut
The ABox resulting from exhaustive application of Lemma 1 can be represented as

a graph, with a node for each tuple, a node for each individual, and edges connecting
tuples with the individuals that compose them. The graph will consist of one or more
connected components, where each component is either a single individual (represent-
ing an axiom w:C, where w is not an element in any tuple) or a set of tuples linked
by common elements (representing axioms of the form w:R). As the connected com-
ponents do not have any individuals in common, we can deal independently with the
inclusion problem for each connected set of axioms: 〈S,A〉|≈A′ iff 〈S,A〉|≈G for ev-
ery connected set of axioms G ⊆ A′. As an example, Figure 1 shows the graph that
corresponds to the ABox Aq2

from Example 1.

Returning to our original problem, we will now show how we can collapse a con-
nected component G by a graph traversal into a single axiom of the form w:C, where w
is an element of a tuple occurring in G (an arbitrarily chosen “root” individual), and C
is a concept that describes G from the point of view of w. An example for this process
will be given later in this section.

This would be easy if we were able to refer to individuals in C (i.e., if our logic
included nominals [25]), which is not the case. However, as we will see, it is sufficient
to refer to the distinguished individuals wi in G (which also occur in Âq1

) by their rep-
resentative concepts Pwi

. Moreover, we can refer to non-distinguished individuals zi

by using > as their representative concept (this is only valid for zi that are encountered
only once during the traversal of G, but we will see later that we can, without loss of
generality, restrict our attention to this case). Informally, the use of > as the represen-
tative concept for such zi can be justified by the fact that when an interpretation I is
extended to G, zi can be interpreted as any element in ∆I (= >I).3

3 For full details, the reader is again referred to [20].
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The following lemma shows how we can use the representative concepts to trans-
form an axiom of the form w:R into an axiom of the form wi:C.

Lemma 2 If S is a schema, Â is a completed canonical ABox and A′ is an ABox
with w:R ∈ A′, then 〈S, Â〉|≈A′ iff 〈S, Â〉|≈({wi:C} ∪ A′ \ {w:R}), where w =
〈w1, . . . , wn〉, wi is the ith element in w, C is the concept

∃[$i](R u
l

16j6n.j 6=i

($j/n : Pj)),

and Pj is the appropriate representative concept for wj (> if wj is a non-distinguished
individual, Pwj

otherwise).

PROOF (sketch): For the only if direction, it is easy to see that, if I |= 〈S, Âq1
〉, and I ′

is an extension of I that satisfies w:R, then I ′ also satisfies wi:C.
The converse direction is more complicated, and exploits the fact that, for every

model I of 〈S, Âq1
〉, there is a similar model I ′ in which every representative concept

Pwi
is interpreted as {wI′

i }. If I cannot be extended to satisfy w:R, then neither can
I ′, and, given the interpretations of the Pwi

, it is possible to show that I ′ cannot be
extended to satisfy wi:C either. ut

All that now remains is to choose the order in which we apply the transformations
from Lemma 1 and 2 to the axioms in G, so that, whenever we use Lemma 2 to trans-
form w:R into wi:C, we can then use Lemma 1 to absorb wi:C into another axiom
v:R, where wi is an element of v. We can do this using a recursive traversal of the
graphical representation of G (a similar technique is used in [4] to transform queries
into concepts). A traversal starts at an individual node w (the “root”) and proceeds as
follows.

– At an individual node wi, the node is first marked as visited. Then, while there
remains an unmarked tuple node connected to wi, one of these, w, is selected,
visited, and the axiom w:R transformed into an axiom wi:C. Finally, any axioms
wi:C1, . . . , wi:Cn resulting from these transformations are merged into a single
axiom wi:(C1 u . . . u Cn).

– At a tuple node w, the node is first marked as visited. Then, while there remains
an unmarked individual node connected to w, one of these, wi, is selected, visited,
and any axiom wi:C that results from the visit is merged into the axiom w:R using
Lemma 1.

Note that the correctness of the collapsing procedure does not depend on the traver-
sal (whose purpose is simply to choose a suitable ordering), but only on the individual
transformations.

Having collapsed a component G, we finally have a problem that we can decide
using KB satisfiability:

Lemma 3 If S is a schema and Â is a completed canonical ABox, then 〈S, Â〉|≈{w:C}

iff w is an individual in Â and 〈S, (Â ∪ {w:¬C})〉 is not satisfiable, or w is not an
individual in Â and 〈(S ∪ {> v ¬C}), Â〉 is not satisfiable.
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PROOF (sketch): If w is an individual in Â, 〈S, Â〉|≈{w:C} implies that every model
I of 〈S, Â〉 must also satisfy w:C, and this is true iff I does not satisfy w:¬C. In the
case where w is not an individual in Â, a model I of 〈S, Â〉 can be extended to {w:C}
iff CI 6= ∅, which is true iff ∆I * (¬C)I . ut

If a non-distinguished individual zi is encountered more than once during a traver-
sal, then it is enforcing a co-reference that closes a cycle in the query. In this case we
cannot simply use > to refer to it, as this would fail to capture the fact that zi must be
interpreted as the same element of ∆I on each occasion.

In [4] this problem is dealt with by replacing the non-distinguished variables oc-
curring in a cycle in q2 with variables or constants from q1, and forming a disjunction
of the concepts resulting from each possible replacement. This is justified by the fact
that cycles cannot be expressed in the DLR schema and so must be present in q1.
However, this fails to take into account the fact that identifying two or more of the
non-distinguished variables in q2 could eliminate the cycle.

We overcome this problem by introducing an additional layer of disjunction in
which non-distinguished individuals occurring in cycles are identified (in every pos-
sible way) with other individuals occurring in the same cycle. We then continue as
in [4], but only replacing those individuals that actually enforce a co-reference, i.e., that
would be encountered more than once during the graph traversal.4

Example 1 To illustrate the inclusion to satisfiability transformation, we will refer to
the example given in Section 2.2. The containment of BUS in CITY BUS w.r.t. the
schema is demonstrated by the inclusion 〈S, Â1〉|≈A2, where S, Â1 and A2 are the
schema and two canonical ABoxes (completed in the case of Â1) corresponding to the
given queries:

S =

{
(bus route u ($1/3 : city bus))v city bus route,
city bus routev (bus route u ($1/3 : city bus))

}

Â1 =
{
〈n, y1, y2〉:bus route, 〈n, y2, y1〉:bus route, n:city bus, n:Pn, y1:Py1

, y2:Py2

}

A2 =
{
〈n, z1, z2〉:city bus route, 〈n, z2, z1〉:city bus route

}

The two axioms inA2 are connected, and can be collapsed into a single axiom using
the described procedure. Figure 1 shows a traversal of the graph G corresponding toAq2

that starts at z1 and traverses the edges in the indicated sequence.5 The resulting axiom
(describing A2 from the point of view of z1) is z1:C, where C is the concept

∃[$2](city bus route u ( $3 : (Pz2
u∃[$2](city bus route u $1 : Pn u $3 : Pz1

)))u $1 : Pn)
1 2 3 4 5 6

Pz1
, Pz2

are “place-holders” for z1, z2
6 and the numbers below the DLR operators

denote the edges which correspond to the respective subconcept of C. As z2 is encoun-
tered only once in the traversal, Pz2

can be replaced with >, but as z1 is encountered
4 Note that the graph traversal must always start from the same root.
5 We will ignore the first non-deterministic step as no individual identifications are required in

order to prove the containment.
6 In practice, we use such “place-holders” during the collapsing procedure and then make ap-

propriate (possibly non-deterministic) substitutions.

10



4

1 3

n

z1 z2

〈n, z2, z1〉 : city bus route〈n, z1, z2〉 : city bus route

6
2

5

Fig. 1. A traversal of the graph corresponding to Aq2

twice (as the root and as Pz1
), it must be replaced (non-deterministically) with an in-

dividual i occurring in Â1 (we will refer to the resulting concepts as C[z1/i]), and thus
〈S, Â1〉|≈A2 iff 〈S, Â1〉|≈{i:C[z1/i]}. Taking i = y1 we have 〈S, Â1〉|≈{y1:C[z1/y1]}

because 〈S, (Â1 ∪ {y1:¬C[z1/y1]})〉 is not satisfiable.

Summing up, we thus have:

Theorem 2 For aDLR KBK = 〈S,A〉 and aDLR ABoxA′, the problem of deciding
whether A is included in A′ w.r.t. S can be reduced to (possibly several) DLR ABox
satisfiability problems.

Concerning the practicability of this reduction, it is easy to see that, for any fixed
choice of substitutions for the non-distinguished individuals in G, the reduction from
Theorem 2 can be computed in polynomial time. More problematically, it is neces-
sary to consider each possible identification of non-distinguished individuals occuring
in cycles in G, and for each of these all possible mappings from the set Z of non-
distinguished individuals that occur more than once in the collapsed G to to the set
W of individuals that occur in Â1 (of which there are |W ||Z| many). However, both
Z and W will typically be quite small, especially Z which will consist only of those
non-distinguished individuals that occur in a cycle in G and are actually used to enforce
a co-reference (i.e., to “close” the cycle). This represents a useful refinement over the
procedure described in [4], where all zi that occur in cycles are non-deterministically
replaced with some wi, regardless of whether or not they are used to enforce a co-
reference. Moreover, it is easy to show that most individual identifications cannot con-
tribute to the solution, and can thus be ignored. Therefore, we do not believe that this
additional non-determinism compromises the feasibility of our approach.

Interestingly, also in [13], cycles in queries are identified as a main cause for com-
plexity. There it is shown that query containment without constraints is decidable in
polynomial time for acyclic queries whereas the problem for possibly cyclic queries is
NP-complete [12].
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3.3 Transforming DLR satisfiability into SHIQ satisfiability

We decide satisfiability ofDLR knowledge bases by means of a satisfiability-preserving
translation σ(·) from DLR KBs to SHIQ KBs. This translation must deal with the
fact that DLR allows for arbitrary n-ary relations while SHIQ only allows for unary
predicates and binary relations; this is achieved by a process called reification (see,
for example [16]). The main idea behind this is easily described: each n-ary tuple in
a DLR-interpretation is represented by an individual in a SHIQ-interpretation that is
linked via the dedicated functional relations f1, . . . , fn to the elements of the tuple.

For DLR without regular expressions, the mapping σ(·) (given by [4])

σ(>n) = >n

σ(P) = P
σ($i/n : C) = >n u ∃fi.σ(C)

σ(¬R) = >n u ¬σ(R)
σ(R1 u R2) = σ(R1) u σ(R2)

σ(>) = >1

σ(A) = A
σ(¬C) = ¬σ(C)

σ(C1 u C2) = σ(C1) u σ(C2)
σ(∃[$i]R) = ∃f−

i .σ(R)
σ(≤ k[$i]R) = (≤ k f−

i σ(R))

reifies DLR expressions into SHIQ-concepts. This mapping can be extended to a
knowledge base (KB) as follows.

Definition 7. Let K = (S,A) be a DLR KB. The reification of S is given by

{(σ(R1)v σ(R2)) | (R1 v R2) ∈ S} ∪ {(σ(C1)v σ(C2)) | (C1 v C2) ∈ S}.

To reify the ABox A, we have to reify all tuples appearing in the axioms. For each
distinct tuple w = 〈w1, . . . , wn〉 occurring in A, we chose a distinct individual tw

(called the “reification of w”) and define:

σ(w:R) = {tw:σ(R)} ∪ {〈tw, wi〉:fi | 1 ≤ i ≤ n} and

σ(A) =
⋃
{σ(w:R) | w:R ∈ A} ∪ {w:σ(C) | w:C ∈ A}.

We need a few additional inclusion and ABox axioms to guarantee that any model of
(σ(S), σ(A)) can be “un-reified” into a model of (S,A). Let nmax denote the maximum
arity of the DLR relations appearing in K. We define f(S) to consist of the following
axioms (where x ≡ y is an abbreviation for x v y and y v x):

> ≡ >1 t · · · t >nmax

> v (≤ 1 f1) u · · · u (≤ 1 fnmax)
∀fi.⊥ v ∀fi+1.⊥ for 2 ≤ i < nmax

>i ≡ ∃f1.>1 u · · · u ∃fi.>1 u ∀fi+1.⊥ for 2 ≤ i ≤ nmax

P v >n for each atomic relation P of arity n
A v >1 for each atomic concept A

These are standard reification axioms, and can already be found in [4].
We introduce a new atomic concept Qw for every individual w inA and define f(A)

to consist of the following axioms:

f(A) = {w:Qw | w occurs in A} ∪

{w1:6 1 f−
1 .(>n u ∃f2.Qw2

u . . . u ∃fn.Qwn
) | 〈w1, . . . , wn〉 occurs in A}

12



These axioms are crucial when dealing with the problem of tuple-admissibility (see
below) in the presence of ABoxes.

Finally, we define σ(K) = 〈(σ(S) ∪ f(S)), (σ(A) ∪ f(A))〉.

Theorem 3 LetK = 〈S,A〉 be aDLR knowledge-base.K is satisfiable iff the SHIQ-
KB σ(K) is satisfiable.

PROOF (sketch): The same techniques that were used in [2] can be adapted to the DL
SHIQ, and extended to deal with ABox axioms. The only-if direction is straightfor-
ward. A model I of K can be transformed into a model of σ(K) by introducing, for
every arity n with 2 ≤ n ≤ nmax and every n-tuple of elements d ∈ (∆I)n, a new
element td that is linked to the elements of d by the functional relations f1, . . . , fn. If
we interpret >1 by ∆I , >n by the reifications of all elements in >I

n, and, for every w
that occurs in A, Qw by wI , then it is easy to show that we have constructed a model
of σ(K).

The converse direction is more complicated since a model of σ(K) is not necessarily
tuple-admissible, i.e., in general there may be distinct elements t, t′ that are reifications
of the same tuple d. In the “un-reification” of such a model, d would only appear once
which may conflict with assertions in theDLRKB about the number of tuples in certain
relations. However, it can be shown that every satisfiable KB σ(K) also has a tuple-
admissible model. It is easy to show that such a model, by “un-reification”, induces a
model for the original KB K. ut

We now have the machinery to transform a query containment problem into one or
more SHIQ schema and ABox satisfiability problems. In the FaCT system we already
have a decision procedure for SHIQ schema satisfiability, and this can be straightfor-
wardly extended to deal with ABox axioms [22].

We have already argued why we believe our approach to be feasible. It should also
be mentioned, that our approach matches the known worst-case complexity of the prob-
lem, which was determined as EXPTIME-complete in [4]. Satisfiability of a SHIQ-KB
can be determined in EXPTIME.7 All reduction steps can be computed in determinis-
tic polynomial time, with the exception of the reduction used in Theorem 2, which
requires consideration of exponentially many mappings. Yet, for every fixed mapping,
the reduction is polynomial, which yields that our approach decides query containment
in EXPTIME.

4 The FaCT System

It is claimed in Section 1 that one of the main benefits of our approach is that it leads
to a practical solution to the query containment problem. In this section we will sub-
stantiate this claim by presenting the results of a simple experiment in which the FaCT
system is used to decide a query containment problem with respect to the DWQ schema
mentioned in Section 1.

7 This does not follow from the algorithm presented in [22], which focuses on feasibility rather
than worst-case complexity. It can be shown using a precompletion strategy similar to the one
used in [26] together with the EXPTIME-completeness of CIQ [15].
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The FaCT system includes an optimised implementation of a schema satisfiability
testing algorithm for the DL SHIQ. As the extension of FaCT to include the ABox
satisfiability testing algorithm described in [22] has not yet been completed, FaCT is
currently only able to test the satisfiability of a KB 〈S,A〉 in the case where the A
contains a single axiom of the form w:C (this is equivalent to testing the satisfiability
of the concept C w.r.t. the schema S). We have therefore chosen a query containment
problem that can be reduced to a SHIQ KB satisfiability problem of this form using
the methodology described in Section 3.

The DWQ schema is derived from the integration of several Extended Entity-Relation-
ship (EER) schemas using DLR axioms to define inter-schema constraints [7]. One of
the schemas, called the enterprise schema, represents the global concepts and relation-
ships that are of interest in the Data Warehouse; a fragment of the enterprise schema
that will be relevant to the query containment example is shown in Figure 2. A total
of 5 source schemas representing (portions of) actual data sources are integrated with
the enterprise schema using DLR axioms to establish the relationship between entities
and relations in the source and enterprise schemas (the resulting integrated schema con-
tains 48 entities, 29 relations and 49 DLR axioms). For example, one of the DLR ax-
ioms defining the relationship between the enterprise schema and the entity “Business-
Customer” in the source schema describing business contracts is

Business-Customer v (Company u ∃[$1](agreement u
($2/3 : (Contract u ∃[$1](contract-company u

($2/2 : Telecom-company)))))).

This axiom states, roughly speaking, that a Business-Customer is a kind of Company
that has an agreement where the contract is with a Telecom-company.

As a result of this axiom, it is relatively easy to see that the query

q1(x)← Business-Customer(x)

is contained in the query

q2(x)← agreement(x, y1, y2) ∧ Contract(y1) ∧ Service(y2) ∧
contract-company(y1, y3) ∧ Telecom-company(y3)

with respect to the DWQ schema S, written S |= q1 v q2.
The two queries can be transformed into the following (completed) canonicalDLR

ABoxes

Âq1
= {x:Business-Customer, x:Px}

Aq2
= {〈x, y1, y2〉:agreement, y1:Contract, y2:Service,

〈y1, y3〉:contract-company, y3:Telecom-company},

where Px is the representative concept for x. We can now compact and collapse Aq2
to

give an ABox {x:Cq2
}, where

Cq2
=∃[$1](agreement u ($2/3 : Py1

) u ($3/3 : Py2
) u ($2/3 : Contract) u

($3/3 : Service) u ($2/3 : (∃[$1] contract-company u ($2/2 : Py3
) u

($2/2 : Telecom-company)))).
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Fig. 2. A fragment of the DWQ enterprise schema

As each of the place-holders Py1
, Py2

and Py3
occurs only once in the ABox, they can

be replaced with >, and Cq2
can be simplified to give

C ′
q2

=∃[$1](agreement u ($2/3 : Contract) u ($3/3 : Service) u
($2/3 : (∃[$1]contract-company u ($2/2 : Telecom-company)))).

We can now determine if the query containment S |= q1 v q2 holds by testing
the satisfiability of the KB 〈S,A〉, where A = {x:Business-Customer, x:Px, x:¬C ′

q2
}.

Moreover, A can be compacted to give {x:C}, where C = Business-Customer u Px u
¬C ′

q2
, and the KB satisfiability problem can be decided by using FaCT to test the sat-

isfiability of the concept σ(C) w.r.t. the schema σ(S). Thus we have S |= q1 v q2 iff
σ(C) is not satisfiable w.r.t. σ(S).

The FaCT system is implemented in Common Lisp, and the tests were performed
using Allegro CL Enterprise Edition 5.0 running under Red Hat Linux on a 450MHz
Pentium III with 128Mb of RAM. Excluding the time taken to load the schema from
disk (60ms), FaCT takes only 60ms to determine that σ(C) is not satisfiable w.r.t. σ(S).
Moreover, if σ(S) is first classified (i.e., the subsumption partial ordering of all named
concepts in σ(S) is computed and cached), the time taken to determine the unsatis-
fiability is reduced to only 20ms. The classification procedure itself takes 3.5s (312
satisfiability tests are performed at an average of ≈11ms per satisfiability test), but this
only needs to be done once for a given schema.

Although the above example is relatively trivial, it still requires FaCT to perform
quite complex reasoning, the result of which depends on the presence of DLR inter-
schema constraint axioms; in the absence of such axioms (e.g., in the case of a single
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EER schema), reasoning should be even more efficient. Of course deciding arbitrary
query containment problems would, in general, require full ABox reasoning. However,
the above tests still give a useful indication of the kind of performance that could be ex-
pected: the algorithm for deciding SHIQ ABox satisfiability presented [22] is similar
to the algorithm implemented in FaCT, and as the number of individuals generated by
the encoding of realistic query containment problems will be relatively small, extending
FaCT to deal with such problems should not compromise the demonstrated empirical
tractability. Moreover, given the kind of performance exhibited by FaCT, the limited
amount of additional non-determinism that might be introduced as a result of cycles in
the containing query would easily be manageable.

The results presented here are also substantiate our claim that transforming DLR
satisfiability problems into SHIQ leads to greatly improved empirical tractability with
respect to the embedding technique described in Calvanese et al. [4]. During the DWQ
project, attempts were made to classify the DWQ schema using a similar embedding
in the less expressive SHIF logic [19] implemented in an earlier version of the FaCT
system. These attempts were abandoned after several days of CPU time had been spent
in an unsuccessful effort to solve a single satisfiability problem. This is in contrast to the
3.5s taken by the new SHIQ reasoner to perform the 312 satisfiability tests required to
classify the whole schema.

5 Discussion

In this paper we have shown how the problem of query containment under constraints
can be decided using a KB (schema plus ABox) satisfiability tester for the SHIQ
description logic, and we have indicated how a SHIQ schema satisfiability testing
algorithm can be extended to deal with an ABox. We have only talked about conjunctive
queries, but extending the procedure to deal with disjunctions of conjunctive queries
is straightforward. The procedure for verifying containment between disjunctions of
conjunctive queries is not very different from the one described for simple conjunctive
queries. The main difference is that, although each conjunctive part becomes an ABox
(as described in Section 3.1), the object representing the whole disjunctive query is
a set of alternative ABoxes. This results in one more non-deterministic step, whose
complexity is determined by the number of disjuncts appearing in both queries. Full
details can be found in [20].

Although there is some loss of expressive power with respect to the framework
presented in [4] this seems to be acceptable when modelling classical relational infor-
mation systems, where regular expressions are seldom used.

As we have shown in Section 4, the FaCT implementation of the SHIQ schema
satisfiability algorithm works well with realistic problems, and given that the number
of individuals generated by query containment problems will be relatively small, there
is good reason to believe that a combination of the ABox encoding and the extended
algorithm will lead to a practical decision procedure for query containment problems.
Work is underway to test this hypothesis by extending the FaCT system to deal with
SHIQ ABoxes.
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