Aachen University of Technology
Research group for
Theoretical Computer Science

LTCS—Report

Optimised Reasoning for SHZQ
Tan Horrocks and Ulrike Sattler

LTCS-Report 01-08

RWTH Aachen Ahornstr. 55
LuFg Theoretische Informatik 52074 Aachen
http://www-Iti.informatik.rwth-aachen.de Germany

Optimised Reasoning for SHZ QO

Tan Horrocks and Ulrike Sattler

November 6, 2001

Abstract

The tableau algorithm implemented in the FaCT knowledge represen-
tation system decides satisfiability and subsumption in SHZQ, a very ex-
pressive description logic providing, e.g., inverse and transitive roles, num-
ber restrictions, and general axioms. Intuitively, the algorithm searches
for a tree-shaped abstraction of a model. To ensure termination of this
algorithm without compromising correctness, it stops expanding paths in
the search tree using a so-called “double-blocking” condition.

This condition was clearly more exacting than was strictly necessary,
but it was assumed that more precisely defined blocking conditions would,
on the one hand, make the proof of the algorithm’s correctness far more
difficult and, on the other hand (and more importantly), be so costly to
check as to outweigh any benefit that might be derived.

However, FaCT’s failure to solve UML derived knowledge bases led
us to reconsider this conjecture and to formulate more precisely de-
fined blocking conditions. We prove that the revised algorithm is still
sound and complete, and demonstrate that it greatly improves FaCT’s
performance—in some cases by more than two orders of magnitude.

Contents
1 Introduction
2 SHZIQ-Syntax, Semantics, and Tableaux
21 ASHIQ-Tableau.
3 An optimised blocking condition for SHZQ
3.1 Constructing a SHZQ-Tableau
3.2 Soundness and Completeness
4 Empirical evaluation
5 Discussion

1 Introduction

Description Logics (DLs) form a family of knowledge representation formalisms
designed for the representation of and reasoning about terminological knowledge.
They can be viewed as offsprings of semantic networks and frame-based systems,
whose development was motivated by the insight that such systems need a well-
defined, implementation-independent semantics. A first attempt towards this
goal was made by KL-ONE [BS85], a successful and highly influential knowledge
representation system.

The two main inference problems addressed by KL-ONE were subsumption
between pairs of concepts, which was used to arrange the concepts defined in a
knowledge base into a taxonomy, and satisfiability of single concepts, which was
used to check the consistency of the knowledge base. Unfortunately, when the
underlying representational formalism was studied in detail, it turned out that
the above mentioned inference problems were undecidable [Sch89]. It might
be argued that semi-decidability is fine for other applications, and thus could
be tolerated, but since subsumption can be reduced to unsatisfiability and sat-
isfiability to mon-subsumption, one of both problems would always be truly
undecidable.

Following this observation, the developers of the CLASSIC system from
AT&T [BBMARS9] decided that the DL underlying CLASSIC should not only
be decidable, but be realistically decidable, i.e., they wanted the correspond-
ing inference problems to be decidable in polynomial time. Thus they severely
restricted the expressive power of their DL, and designed a (sub-Boolean) DL
with tractable, sound, and complete inference algorithms.

In parallel, the computational complexity of a variety of DLs was investi-
gated, and it turned out that the inference problems of (almost all) DLs with
interesting expressive power were at least PSPACE-complete [DLNAN91], i.e., of
a complexity apparently far too high to be practicable. Despite this discour-
aging assessment with regard to worst case performance, several researchers
implemented satisfiability /subsumption algorithms for such DLs [BFHT94;
BFT95], and developed sophisticated optimisation techniques designed to im-
prove typical case performance. Surprisingly, these PSPACE algorithms proved
amenable to optimisation and behaved well in practise—it was found that the
pathological cases that lead to the high complexity of these DLs are so artificial
that they rarely occur in practice [Neb90; HKNP94; SvRvdVM95).

In the late 90’s, motivated by a medical terminology application which re-
quired even more expressive power, the DL system FaCT was implemented
with an underlying DL (first SHZF, later SHZ Q) which was of an even higher
complexity, namely EXPTIME-complete [Hor98]. Interestingly, after thought-
ful optimisations, this system showed the same behaviour as its predecessors,
i.e., it behaved very well in practice. Other systems implementing EXPTIME-
complete DLs were subsequently developed [HM01; PS99], and showed a similar
behaviour—a phenomenon that lead part of the DL community to believe that,
with knowledge bases stemming from realistic applications, “tractable” means
“in EXPTIME”.

At the same time, expressive DLs were shown to have useful applications in
the database domain—in particular they were shown to be useful for reason-
ing about conceptual models of databases expressed, e.g., in extended entity-
relationship diagrams or in UML [CLN98]. Roughly speaking, such a conceptual
model can be translated into a DL knowledge base, possibly with the addition
of further (integrity) constraints, and the inference services of a standard DL
system can then be used to detect inconsistencies and implicit is-a links between
classes, entities, or relations. This approach is especially useful when integrating
databases or building data warehouses, and has been implemented in the Icom
tool for intelligent conceptual modelling [FN0OO]. Interestingly, this translation
yields knowledge bases from realistic applications that could not be solved by
any of the available DL systems [BCDGO01], even though the UML diagrams
that lead to these knowledge bases are relatively small and seemingly harmless.

In this paper, we report on an optimisation of the FaCT system that was
inspired by the failure of state-of-the-art DL systems to handle these knowledge
bases. Roughly speaking, FaCT performs a complete search of trees whose depth
can be exponential in the size of the input. It uses back-tracking search and
a cycle-detection mechanism called blocking that limits the tree depth (which
could otherwise be infinite) to ensure termination without compromising sound-
ness and completeness.

In order to deal with inverse roles and the possibility of concepts with only
infinite models, the SHZQ algorithm implemented in FaCT introduced a new
and more sophisticated “double-blocking” technique [HST99b]. The conditions
required to trigger a “block” were more complex than in earlier tableaux algo-
rithms for less expressive DLs, but were still provably correct (i.e., maintained
soundness and completeness) and relatively easy to check. Although these con-
ditions were more exacting than was strictly necessary, relaxing them would
have significantly increased their complexity, making it harder to prove that
they were still correct. Moreover, it seemed that the cost of checking more com-
plex conditions would be prohibitive, and likely to outweigh any benefit that
might derive from establishing blocks at a shallower depth.

An investigation of FaCT’s behaviour when failing to solve UML derived
knowledge bases has, however, lead us to reconsider this conjecture, to for-
mulate a more detailed and less strict blocking condition and, as a matter of
course, to prove that the modified algorithm is still sound and complete. The
effect of the optimised blocking condition on FaCT’s behaviour turned out to
be dramatic—in some cases it improved the system’s performance by more than
two orders of magnitude. Clearly, the value of improved blocking should not be
underestimated, even if the overhead seems considerable.

2 SHIQ-Syntax, Semantics, and Tableaux

In this section, we define syntax and semantics of SHZ Q-concepts and roles. We
start with SHZQ-roles, then introduce some abbreviations, and finally define
SHT Q-concepts.

Definition 1 Let R be a set of role names with both transitive and normal
role names Ry URp = R, where Rp N Ry = (. The set of SHZQ-roles is
RU{R™ | R € R}. A role inclusion aziom is of the form

RCS,

for two SHZQ-roles R and S. A role hierarchy is a set of role inclusion axioms.

An interpretation T = (AT, -T) consists of a set AZ, called the domain of T,
and a function -Z which maps every role to a subset of AZ x AZ such that, for
PeR and R e R+,

(z,y) € PT iff (y,2) € P~7,
if (z,y) € RT and (y,z) € RZ, then (z,2) € RT.

An interpretation Z satisfies a role hierarchy R iff R C ST foreach RC S € R;
we denote this fact by Z = R.

We introduce some notation to make the following considerations easier.

1. The inverse relation on roles is symmetric, and to avoid considering roles
such as R~ ~, we define a function Inv which returns the inverse of a role,
more precisely

R~ if R is a role name
| = . ’
nv(R) { S if R=S" for a role name S.

2. Since set inclusion is transitive and RZ C ST implies Inv(R)% C Inv(S)Z,
we introduce [as the transitive-reflexive closure of C on

RU{Inv(R) CInv(S) | RC S € R}.

We use R = S as an abbreviation for RE S and S E R.

3. Obviously, a role R is transitive if and only if its inverse Inv(R) is tran-
sitive. However, either R or Inv(R) is a role name, and only role names
can be elements of R,. Moreover, in cyclic cases such as R = S, S
is transitive if R or Inv(R) is a transitive role name. In order to avoid
these case distinctions, the function Trans returns true iff R is a transitive
role—regardless whether it is a role name, the inverse of a role name, or
equivalent to a transitive role name (or its inverse):

Trans(R) := { true if, for some S with S =R, S € R} or Inv(S) € Ry

false otherwise.

We are now ready to define SHZ Q-concepts.

Definition 2 A role R is called simple with respect to R iff not Trans(R) and,
for any S E R, S is also a simple role.

Let N¢ be a set of concept names. The set of SHZQ-concepts is the smallest
set such that

1. every concept name C' € N¢ is a concept,

2. if C and D are concepts and R is an SHZQ-role, then (C 1 D), (C U D),
(=C), (VR.C), and (IR.C) are concepts, and

3. if C is a concept, R is a simple SHZQ-role and n € N, then (< n R C)
and (= n R C) are concepts.

The interpretation function -~ of an interpretation Z = (AZ,-) maps, addition-
ally, every concept to a subset of AZ such that
(¢ n D)t =c*n D%,
(CuD)r =C*uD?,
_|Cz — AZ \ 017

(3R.0)* = {x € AT | There is some y € AT with (z,y) € R and y € C*},
(VR.C)T = {x € AT | For all y € AZ, if (x,y) € R, then y € C7},
(KnRC)! = {z € AT | {R%(2,0) < n},
(>n RC)? = {w € AT | tR¥(z,C) > n},

where for a set M we denote the cardinality of M by M and RZ(z, C) is defined
as {y | (z,y) € RT and y € C7}.

A concept C is called satisfiable with respect to a role hierarchy R iff there is
some interpretation Z such that Z = R and CT #). Such an interpretation is
called a model of C with respect to R. A concept D subsumes a concept C with
respect to R (written C Cx D) iff CZ C D? holds for each interpretation Z with
Z = R. Two concepts C, D are equivalent with respect to R (written C =g D)
iff they are mutually subsuming. For an interpretation Z, an individual z € A
is called an instance of a concept C iff z € CZ.

2.1 A SHIZIQ-Tableau

As usual, we define appropriate abstractions of models, tableauz, whose existence
can be tested by a tableaux algorithm. The advantage of this abstraction is that
they allow to replace the “global” condition of the interpretation of transitive
roles into “local” conditions.

For ease of construction, we assume all concepts to be in negation normal
form (NNF), that is, negation occurs only in front of concept names. Any
SHT Q-concept can eagsily be transformed to an equivalent one in NNF by push-
ing negations inwards using a combination of DeMorgan’s laws and the following
equivalences:

-(3R.C) = (VR
-(VR.C) = (3R~
~(<nRC) = (=(n+) RC)
_ [(VR-0) ifn=1
-(ZnRC) = { (< (n—1) RC) otherwise

For a concept C' we will denote the NNF of —=C by ~C.

For a SHZQ-concept D in NNF and a role hierarchy, we define clos(D) to
be the smallest set that contains D, is closed under sub-formulae and ~, and
which contains, for each subconcept VR.C' € clos(D) and role R' E R, also the
concept YR'.C. Then #clos(D) is linear in |D| + |R|.

Definition 3 If R is a role hierarchy, D is a SHZQ-concept in NNF and Rp
is the set of roles occurring in D, together with their inverses, a tableau T' for
D with respect to R is defined to be a triple (S, L, &) such that: S is a set of
individuals, £ : S — 2¢5(P) maps each individual to a set of concepts which
is a subset of clos(D), € : Rp — 25%5 maps each role in Rp to a set of pairs
of individuals, and there is some individual s € S such that D € L(s). For all
s €S, C,Cy,Cs € clos(D), and R, S € Rp, T must satisfy:

T1 if C € L(s), then =C ¢ L(s),

T2 if C1 N Csy € L(s), then Cy € L(s) and Cy € L(s),

T3 if C1 U Cs € L(s), then Cy € L(s) or Cy € L(s),

T4 if VS.C € L(s) and (s,t) € E(I), then C € L(t),

T5 if 3S.C € L(s), then there is some ¢t € S such that (s,t) € &(S) and

C e L(t),
T6 if VS.C € L(s) and (s,t) € E(R) for some R ES with Trans(R), then
VR.C € L(t),
T7 (s,t) € E(R) iff (¢,s) € E(Inv(R)),
T8 if (s,t) € E(R) and R E S then (s,t) € E(T),
T9 if (K n S C) € L(s), then $ST(5,C) < n
T10 if (>n S C) € L(s), then £S7(s,C) > n,
T11 if (K n S C) € L(s) and (s,t) € &(S) then C € L(t) or ~C € L(t),
for

ST(s,C):={t €S| (s, t) € &(S)and C € L(t)}.

Lemma 1 A SHZQ-concept D is satisfiable with respect to a role hierarchy R
iff there exists a tableau for D with respect to R.

Proof: For the if direction, the construction of a model of D from a tableau
for D is similar to the one presented in [HST99a). If T = (S, L, €) is a tableau
for D with D € L(sp), a model Z = (AZ,-Z) of D can be defined as follows:

AT =8
AL {s| A € L(s)} for all concept names A in clos(D)

R = &R)U U &(P)t for role names R
P E R, Trans(R)

From the definition of RZ, T7, and T8, it follows that, if (s,t) € SZ, then
either (s,t) € E(S) or there exists a path (s, s1),(s1,82),---, (sn,t) € E(R) for
some R with Trans(R) and RES.

To show that Z is a model of D w.r.t. R, we have to prove (1) Z = R and
(2) DT #). The first part is obvious due to T8 and the definition of Trans(-)
and -Z. The second part is shown by proving C € L(s) = s € CZ for any s € S.
This implies D # () since T is a tableau for D and hence there must be some
s € S with D € L(s).

This will be proven by induction over norm || - || of a concept C. The norm
[|C|| for concept in NNF is inductively defined as follows:

A = |]-A] .= 0 for A€ Ng
ICy 1 Cs| = [[Ciu G|l = 1+ [|Ci][+ [|ICxl
IVR.C| = |3RC| = 1+]C|
ll(>a n S O = 1+]C],

where we use < as a placeholder for both < and >. The two base cases of the
induction are C' = A or C' = —A. If A € L(s), then, by definition, s € AL. If
—-A € L(s), then by T1, A ¢ L(s) and hence s ¢ AZ. For the induction step we
have to distinguish several cases:

e C =CiMNCy. T2and C € L(s) imply that C; € L(s) and Cy € L(s).
Hence, by induction, we have s € C{ and s € C%, which yields s €
(01 I CQ)I.

e C = (1 UC(Cs. Similar to the previous case.

e C =3S.E. T5 and C € L(s) implies the existence of an individual ¢t € S
such that (s,t) € £(S) and E € L(t). By induction, we have ¢t € EZ and,
from the definition of S and T7, it follows that (s,z) € S and hence
s € CL.

e C =VS.E. Let s € S with C € L(s), let t € S be an arbitrary individual
such that (s,t) € ST. There are two possibilities:

— (s,t) € &(S). Then T4 implies E € L(t) and, by induction, t € EZ.

— (s,t) & E(S). Then there exists a path (s,s1),(s1,82),-.-, {$n,t) €
E(R) for some R with Trans(R) and R ES. Then T6 implies VR.E €
L(s;) for all 1 < i < n and, from T4, E € L(t) also holds. Again, by
induction, this implies ¢t € EZ.

In both cases, we have t € EZ and, since ¢ has been chosen arbitrarily,
s € CT holds.

e C =(>n S E). For an s with C € L(s), we have §S7 (s, E) > n. Hence
there are n individuals ¢1, ..., ¢, such that ¢; # ¢; for ¢ # j, (s, ;) € E(S),
and E € L(t;) for all i. By induction, we have t; € EZ and, since &(S) C
ST, also s € CT.

e C = (<m S E). For this case, we need that S is a simple role, which
implies S7 = &€(S). Let s be an individual with C' € L(s). Due to T11,
we have E € L(t) or ~E € L(t) for each ¢ with (s,t) € E(S). Moreover,
857 (s, E) < n holds due to T9. We can show that §S%(s, E) < #S7 (s, E):
assume #S% (s, E) > #S7 (s, E). This implies the existence of some t with
(s,t) € ST with t € EZ but E ¢ L(t) (because ST = &(S)). By T11 this
implies ~F € L(t), which, by induction yields ¢ € (~FE)Z, in contradiction
tot € ET.

For the only-if direction, we have to show that satisfiability of D with respect
to R implies the existence of a tableau T" for D with respect to R.

Let Z = (AZ,.T) be a model of D with Z = R. A tableau T = (S, L, &) for
D can be defined as follows:

S = Af
&R) = R?
L(s) = {C € clos(D)|seC*}

It remains to demonstrate that T is a tableau for D:

e The Properties T1-T5, T7, and T9-T11 are satisfied as a direct conse-
quence of the definition of the semantics of SHZQ-concepts.

o If s € (VS.C)T and (s,t) € R’ for R with Trans(R) and R[ES, then
t € (VR.C)T unless there is some u such that (t,u) € R and u ¢ CZT.
In this case, if (s,t) € RE, (t,u) € RT and Trans(R), then (s,u) € RZ.
Hence (s,u) € ST and s ¢ (VS.C)T—in contradiction to the assumption.
T therefore satisfies T6.

e T8 is satisfied because 7 = R. "

3 An optimised blocking condition for SHZQ

In this section, we present an optimised version of the tableaux algorithm for
SHIZQ from [HST99a]. The optimisation concerns the blocking condition, i.e.,
the mechanism that guarantees termination of the algorithm by preventing it
from non-termination.

3.1 Constructing a SHZQ-Tableau

From Lemma 1, an algorithm which constructs a tableau for a SHZQ-concept
D can be used as a decision procedure for the satisfiability of D with respect to
a role hierarchy R. Such an algorithm will now be described in detail. It uses
the same techniques as the SHZQ-algorithm in [HST99a] but for the modified
pairwise-blocking condition.

The algorithm presented here tries to construct, for an input concept Cp,
a tableau whose relational structure forms a tree with Cy in the label of the
root node. We must take special care to prevent the algorithm from generating
a tree with arbitrarily long paths. In the original algorithm, we introduced a
so-called double blocking condition. Roughly speaking, if we find two nodes on
a path, a node x and its successor y such that they have two ancestor nodes,
again, a node z' and its successor y' such that (1) z and z' are labelled with
the same concepts, (2) y and y' are labelled with the same concepts, and (3)
the relations between = and y are the same as those between z’ and ', then
this path is no longer modified below y, i.e., it cannot become longer. Now, this
three-fold condition is a rather strict one, e.g., the root node can never block
another node, and thus blocking occurs rather late, which means that paths can
become rather long.

In the following, we will loosen this condition such that blocking can occur
earlier. Basically, we will restrict, in the conditions (1) and (2), the concepts to
the relevant ones and, in condition (3), the relations to the relevant ones.

Moreover, to guarantee the termination of the algorithm, we have to make
sure that the >- and <-rules cannot be applied in a way that would yield an
infinite sequence of rule applications. This is enforced by recording which nodes
have been introduced by an application of the >-rule and by prohibiting an
identification of these nodes by the <-rule.

Definition 4 Let R be a role hierarchy and D a SHZQ-concept in NNF. A
completion tree with respect to R and D is a tree T where each node z of
the tree is labelled with a set L(x) C clos(D) and each edge {x,y) is labelled
with a set of role names L((z,y)) containing (possibly inverse) roles occurring
in clos(D) or R. Additionally, we keep track of inequalities between nodes of
the tree with a symmetric binary relation # between the nodes of T.

Given a completion tree, ancestors, successors, etc. are defined as usual.
A node y is called an R-successor of a node z if y is a successor of z and
S € L({(z,y)) for some S with S E R; y is called an R-neighbour of z if y is an
R-successor of z, or if z is an Inv(R)-successor of y.

For a role S, a concept C, and a node z in T we define ST (z,C) by
ST(x,C) := {y | y is S-neighbour of z and C € L(y)}.

A node is blocked if it is directly or indirectly blocked. A node is directly
blocked if it is c-blocked or a-blocked.! A node w is a-blocked (see Figure 3.1 for
an illustration) if none of its ancestors are blocked, it is not c-blocked, and it
has ancestors v and w' such that w is a successor of v and

Bl L(w) C L(w'),
B2 if w is an Inv(S)-successor of v and VS.C € L(w'), then

a. C € L(v), and
b. if there is some R with Trans(R) and R E S such that w is an Inv(R)-
successor of v, then VR.C € L(v),
B3 if (< n S C) e L(w'), then

a. w is not an Inv(S)-successor of v or
b. w is an Inv(S)-successor of v and ~C € L(v) or
c. w is an Inv(S)-successor of v, C € L(v), and w' has at most n — 1
S-successors z with C € L(z), and
B4 if (>mTE) e L(w') (resp. 3T.E € L(w')), then
a. w' has at least m (resp. at least one) T-successors z with E € L(z)
or
b. w is an Inv(T')-successor of v and E € L(v).
A node w is c¢-blocked (see Figure 3.1 for an illustration) if none of its an-

cestors are blocked, it has ancestors v and w’ such that w is a successor of v,
2
and

B5 L(w) C L(w'),
B6 if w is an Inv(S)-successor of v and VS.C € L(w'), then

a. C € L(v), and

b. if there is some R with Trans(R) and R [S such that w is an Inv(R)-
successor of v, then VR.C € L(v),

B7 if (< nT E) € L(w'), then w is not an Inv(T")-successor of v or ~E € L(v),
and

B8 if w is an U-successor of v and (= m U F) € L(v), then ~F € L(w).

1A c-block leads to a cycle in the tableau to be constructed, whereas an a-block is unravelled
in the standard way.
2Please note that B5 is identical to B1, and B6 to B2.

10

In this case, we say that w' is a c-blocking candidate for w. We say that a
c-blocking candidate w) for w c-blocks w if there is no c-blocking candidate w)
for w “between” wj and w, i.e., if all c-blocking candidates w} for w different
from w) are ancestors of w|. The definition of a node a-blocking another one is
analogous.

A node is indirectly blocked if its predecessor is blocked, and in order to avoid
wasted expansion after an application of the <-rule, a node y will also be taken
to be indirectly blocked if it is a successor of a node z and L({z,y)) = 0.

For a node z, L(x) is said to contain a clash if, for some concept name
A € N¢, {A,~A} C L(z), or if for a some concept C, some role S, and some
n €N (Kn S C) e L(x) and there are n + 1 nodes yo,...,yn such that
C € L(y;), y; is an S-neighbour of z, and y; # y; for all 0 < i < j < n.

The algorithm initialises the tree T to contain a single node z, called the root
node, with L(z¢) = {D}, where D is the concept to be tested for satisfiability.
The inequality relation # is initialised with the empty relation. T is then
expanded by repeatedly applying the rules from Figure 3.1. The order in which
the rules are applied is the following: all rules are applied first to the ancestors
of a node x before the >- or the 3-rule is applied to z.

The completion tree is complete if, for some node z, L () contains a clash or
if none of the rules is applicable. If, for an input concept D, the expansion rules
can be applied in such a way that they yield a complete, clash-free completion
tree, then the algorithm returns “D is satisfiable”, and “D is unsatisfiable”
otherwise.

,BZ: vSs.C
® w'B3: (KnSC)

=g3c < (n—1) S-succs with C
=Baa > m T-succs with E%\\B‘L (>mT E)

=g3p ~C
=gap F oy =B2.a C, =m2b VR.C

=g3. 10 Inv(S)| B2: Inv(S)
=gap Inv(T) | B2.b: Inv(R), R E S, Trans(R)

//\\ Oy =g L(w) CL(w)

Figure 1: Illustration of an a-blocking situation. The double arrow indicates that
a copy of w' and its successors is made a new successor of v when constructing
a tableau.

11

,86: vs.C
-®wW B7. (K nT E)

=B6.a C, =eb VR.C
=p7 ~F ®v B8 (>mUF)

=-g7 no Inv(T') B6: Inv(S)
B6.b: Inv(R), R & S, Trans(R)
B8: U

®w =gs L(w) CL(w)
=>pgg ~F

Figure 2: Illustration of a c-blocking situation. The arrow going up to w’
indicates that w' is made a new successor of v when constructing a tableau.

Remark: (a) Please note that some of the rules are non-deterministic—hence
the somewhat strange return behaviour of the algorithm.

(b) The intuition for the blocking conditions are as follows: when building a
tableau from a completion tree, an a-block is unravelled in the standard way
(i-e., a copy of w' and its successors is made a successor of v), while a c-block
leads to a cylic tableau since the “original” w' is made a successor of v. Bl
and B5 ensure that w' satisfies all V restrictions on v. B2 and B5 ensure that
v satisfies all “backward” V restrictions on w'. In the a-blocking case, B3 and
B4 ensure that, when a copy of w’ has v as a predecessor (instead of its former
predecessor), this copy still satisfies its at-most and at-least restrictions. In the
c-blocking case, B5 ensures that at-most restrictions on w' are still satisfied
with the new neighbour v, and B6 ensures that at-least restrictions on v are still
satisfied even if several of its successors are c-blocked by the same node.

(c) A-blocking alone would have been enough to ensure correctness and
termination—however, c-blocks may occur earlier, and may thus lead to a better
performance.

(d) To make the following proofs easier, the blocking conditions are such that a
node cannot be both a-blocked and c-blocked. If a node is c-blocked, it cannot
be a-blocked.

3.2 Soundness and Completeness

We will show that the algorithm is terminating, sound, and complete.

12

M-rule:

L-rule:

3-rule:

V-rule:

V-rule:

choose-rule:

>-rule:

<-rule:

if 1.

then
if 1.

then
if 1.

then
if 1.

then

if 1.

then

if 1.

then

if 1.

then

if 1.

then

C1 N Cs € L(x), z is not indirectly blocked, and
{C1,Ca} £ L(2)
Lz) — L(z) U{Cy, Co}

Ci1UC2 € L(x), x is not indirectly blocked, and
{C1,Ca}NL(z) =

L(z) — L(z) U {C} for some C € {Cy,C>}

3S.C € L(z), = is not blocked and
2 has no S-neighbour y with C € L(y),
create a new node y with L({z,y)) = {S} and L(y) = {C}

VS.C € L(z), z is not indirectly blocked, and
there is an S-neighbour y of = with C' ¢ L(y)
Ly) — L(y) U {C}

VS.C € L(z), z is not indirectly blocked, and
there is some R with Trans(R) and R E S,

there is an R-neighbour y of z with YR.C ¢ L(y)
L(y) — L(y) U{VR.C}

(€n S C) € L(x), z is not indirectly blocked, and
there is an S-neighbour y of z with {C,~C}NL(y) =0
L(y) — L(y) U{E} for some E € {C,~C}

(=n S C) € L(z), z is not blocked and

there are no n nodes yi,...,y, such that C € L(y;),

y; is an S-neighbour of z, and y; # y; for 1 <i < j <m,
create n new nodes yi, . .., yn with L({z,y;)) = {S},
L(y;) ={C},and y; #y; for 1 <i < j<m.

(€n SC) e L(x), z is not indirectly blocked,
$ST(x,C) > n, and there are two S-neighbours y, z of z with
C e L(y),C € L(2), y is a successor of z, and not y # z
1. L(2) — L(2) U L(y) and
2. if z is a successor of z then
L((z,2)) — L{{z,2))UL((z,y))
else (z is a predecessor of x)
L((z,x)) — L((z,2)) U{Inv(R) | R € L((z,y))}
3. L({z,y)) — 0
Set u # z for all u with u #y

Figure 3: The Expansion Rules for SHZQ

13

Lemma 2 For each SHZQ-concept D and role hierarchy R, the tableaux algo-
rithm terminates.

Proof: Let m = |clos(D)|, k the number of roles occurring in D, and gz
the maximum n that occurs in a concept of the form (1 n S C) € clos(D).
Termination is a consequence of the fact that, in principle, the expansion rules
build a completion tree monotonically with bounded depth and breadth:

1. The expansion rules never remove nodes from the tree or concepts from
node labels. Edge labels can only be changed by the <-rule which either
expands them or sets them to (); in the latter case, the node below the
(-labelled edge is blocked and will remain blocked forever.

2. Successors of a node z are the result of an application of the 3- or the
>-rule to concepts of the form IR.C' (which yields one successor) and
(= n S C) (which yields n successors) in L(z). For a node z, each of
these concepts can trigger the generation of successors at most once. For
the F-rule, if a successor y of z was generated for a concept 35.C € L(x)
and later L({z,y)) is set to @ by an application of the <-rule, then there
will be some S-neighbour z of x such that C € L(z). For the >-rule: If
Y1,---,Yn were generated by an application of the >-rule for a concept
(= n S C), then y; # y; holds for all 1 <4 < j < n. This implies that
there will always be n S-neighbours yi,...,y,, of ¢ with C € L(y]) and
y; # y; for all 1 < i < j < n since the <-rule can never merge two nodes
Yi,y; (because y; # y;) and, whenever an application of the <-rule sets
L({z,y})) to 0, then there will be some S-neighbour z of z with C' € L(z)
and z “inherits” all inequalities from yj.

Since clos(D) contains a total of at most m IR.C and (= n S C) concepts,
the out-degree of the tree is bounded by m - 1y,04-

3. Suppose a node y has ancestors z, 3, and 2’ with

e y is a successor of x, y' is a successor of z’,

o L(y) =Ly,
o L(x) =L(z"), and

o L({z,y)) = L{'),

and the >- or the J-rule can be applied to y. Hence no rules can be applied
to any ancestors of y. In this case, y is a-blocked according to Definition 4.

Nodes are labelled with non-empty subsets of clos(D) and edges with
subsets of Rp, so there are at most 22™+* different possible labellings
for a pair of nodes and an edge. Therefore, if a path p is of length at
least 22™t* then, from the a-blocking conditions defined in Definition 4
and the fact that rules are applied first to ancestors of a node before new
successors of this node are generated, there must be two nodes y, ¥’ on p
such that y is directly a-blocked by g’. Since a path on which nodes are
blocked cannot become longer, paths are of length at most 227k, m

14

Lemma 3 (Soundness) If the expansion rules can be applied to a SHIQ-
concept D such that they yield a complete and clash-free completion tree with
respect to R, then D has a tableau with respect to R.

Proof: We build the tableau by (almost) standard unravelling similar to the
one in [HST99a). The only non-standard elements are due to (1) number restric-
tions and (2) the optimised blocking conditions: for (1), we must distinguish
different successors of a node that are a-blocked by the same node—in standard
unravelling, they would yield the same path, and thus at-least number restric-
tions on their predecessor might be violated. For c-blocking, B8 implies that
the blocked node may not be a “witness” for an at-least restriction on its pre-
decessor, and thus we do not need to distinguish different successors of a node
that are blocked by the same node. For (2), if a node is c-blocked by another
one, then we can build a cyclic model, i.e., make the blocking node a successor
of the blocked node’s predecessor.

Let T be a complete and clash-free completion tree. A path is a sequence

of pairs of nodes of T of the form [%,g, vy o] Let p= [%,g, ..., 7] be a path.
We define Tail(p) = 2, and Tail'(p) = z,. With [p|5**1] we denote the path
n+1
20,..., 2 Zntl] The set Paths(T) is defined inductively as follows:
0 n nt1

e For the root node zo of T, [72] € Paths(T), and
e For a path p € Paths(T) and a node z in T:

— if 2z is a successor of Tail(p) and z is not blocked, then [p[%] €
Paths(T), or

— if, for some node y in T, y is a successor of Tail(p) and z a-blocks y,
then [p|2] € Paths(T).

Please note that, due to the construction of Paths, for p € Paths(T) with
p = [p'| 7], is not blocked, z' is neither c-blocked nor indirectly blocked, and
z' is a-blocked iff x # x’. Furthermore, L(z') C L(z) holds.

Now we can define a tableau T' = (S, L,) with:

S = Paths(T)
Lip) = A(Tail(p)
ER) = {(p,[p|Z]) €S xS |z isan R-successor of Tail(p)} U
{(lgl %], q) € S x S | 2" is an Inv(R)-successor of Tail(g)} U
{,lalé]) I p= [q|*’yi|q'] and y c-blocks an R-successor of Tail(p)} U
{(al],p) I p= [q|%|q'] and y c-blocks an Inv(R)-successor of Tail(p)}

CraM: T is a tableau for D with respect to R.
We have to show that T satisfies all the properties from Definition 3.

o D € L([$2]) since D € L(zo).

15

e T1 holds because T is clash-free; T2 and T3 hold because Tail(p) is not
indirectly blocked and T is complete.

o T4: Let VS.C € L(p) and {p,q) € E(S).
If ¢ = [p|37], then ' is an S-successor of Tail(p) and thus completeness
implies C € L(z'). Since L(z') C L(z) = L(q), we have C € L(q).
If p = [q|7], then 2’ is an Inv(S)-successor of Tail(g). If z = z’, then
VS.C € L(z') and thus completeness implies that C € L(Tail(g)). If
x # z', then VS.C € L(z) together with B2.a implies that C' € L(Tail(q)),
and thus C € L(q).

Ifg= [q1|%] and p = [q1|%|q'], then y c-blocks an S-successor z of Tail(p).
Since T is complete, C' € L(z), and B5 implies that C € L(y). Hence
C € L(g).

If p = [p1|] and ¢ = [p1|Z[p'], then y c-blocks an Inv(S)-successor z of
Tail(q) and VS.C € L(y). In this case, B6.a ensures that C € L(Tail(q)),
and thus C € L(q).

e T6 is quite similar to T4: Let VS.C € L(p) and (p,q) € E(R) for some

R E S with Trans(R). If ¢ = [p|], then 2’ is an R-successor of Tail(p) and
thus completeness of T implies VR.C € L(z'). If z # ', then B1 implies
L(z") C L(z). Thus VR.C € L(q).
If p = [q|7], then 2 is an Inv(R)-successor of Tail(g) and hence Tail(g)
is an R-neighbour of z'. If ' = z, then VS.C € L(x) and completeness
implies VR.C € L(q). If 2' # z, then z a-blocks z' and VS.C' € L(z). Due
to B2.b, VR.C € L(Tail(g)), and thus VR.C' € L(q).

If ¢ = [q1|¥] and p = [g1]|¢'], then y c-blocks an R-successor z of Tail(p).
Since T is complete, VR.C € L(z), and B5 implies that VR.C € L(y).
Hence VR.C € L(q).

If p = [p1]y] and ¢ = [p1|}]p], then y c-blocks an Inv(R)-successor z
of Tail(g) and VS.C € L(y). In this case, B6.b ensures that VR.C €
L(Tail(q)), and thus VR.C € L(q).

e T5: Let 35.C € L(p) and = = Tail(p). Since T is complete, there are two
possibilities:

— z has an S-successor y in T with C € L(y).

If y is not blocked, then ¢ = [p|¥] € S, (p,q) € &(5), and
C € L(q) because L(y) = L(q).

x If y is a-blocked by some node z in T, then ¢ = [p|§] €S,
(p,q) € &(S), and C € L(q) because C € L(y) C L(z) = L(q).

* If y is c-blocked by some node z in T, then p = [p1|Z|p'],
(, [p112]) € €(S), and B5 implies that C' € L(z) = L([p1|Z])-

16

— otherwise, completeness implies that z is an Inv(S)-successor of some
y in T with C' € L(y). Thus p is of the form p = [¢| ;] and there are
only two possibilities:

x If Tail(q) = y, then (p,q) € E(S) and C € L(q).

x Let Tail(q¢) = u # y. Now z only has one predecessor in T, hence
u is not the predecessor of z. This implies z # z', = a-blocks '
in T, and w is the predecessor of z' due to the construction of
Paths. Since x has no S-successor z with C € L(z), B4.b implies
that ' is an Inv(S)-successor of u and C € L(u) = L(g). Hence
(p,q) € &(S) and C € L(q).

e T7 is satisfied due to the symmetric definition of €. T8 is satisfied due to
the definition of R-successor that takes into account [E.

e For T9, let p € S with (< n S C) € L(p). Let z = Tail(p), 2’ = Tail'(p),
and
P:={qe 8| (pq) € &(S) and C € L(q)}.

By definition of €, P contains at most one g that is of the form p = [q] 7].
Due to B7 which disallows c-blocking in the case where (< n S C) is in
the label of the blocking node and C' is in the label of the blocked node’s
ancestor in case the blocked node is an Inv(S)-successor, all other elements
q of P are either of the form

— q = [p|7] for y" an S-successor of z or

— q=[p|}] for p = [p1|]p'] and u c-blocks an S-successor of z.

These elements of P are called “forward” elements in the following.

Since (1) T is clash-free and complete and (< n S C) € L(x), (2) each y'
for each [p| 7] € P is an S-successor of z, (3) each u c-blocks an S-successor
of x for each ¢ = [p;| %] with p = [p1|£[p'], and (4) each blocked node is
blocked by exactly one ancestor, there are at most n forward elements in
P.

It remains to show that, if there is some ¢ with p = [¢| 5] in P, then there
are at most n — 1 forward elements in P (and thus at most n elements in
P).

So, let ¢ € P with p = [¢]7;] and Tail(g) = z.

— If x = 2/, then z is a predecessor of z and observations (1) to (4)
above yield that §P < n.

— If © # 2, then z a-blocks 2’ and z' is an Inv(S)-successor of z.
Moreover, all y' with [p| %] € P are S-successors of z, and all u with
q = [p1|¥] and p = [p1]2]p'] c-block an S-successor of x. In this case,
B3.a and B3.b are not possible, and B3.c implies that P contains at

most (n — 1) forward elements. Thus P contains at most n elements,
and T9 is satisfied.

17

e T10: Assume (= n S C) € L(p). This implies that there exist n indi-
viduals y1,. ..,y in T such that each y; is an S-neighbour of Tail(p) and
C € L(y;). We claim that, for each of these individuals, there is a path
gi such that (p,q¢;) € €(S), C € L(g;), and g; # g; for all 1 < i < j < m.
Obviously, this implies ST (p,C) > n. Due to B8, which prevents an
S-successor y of Tail(p) with C' € L(y) to be c-blocked, there are three
possibilities for each y;,

— y; is an S-successor of z and y; is not blocked in T. Then ¢; = [p
is a path with the desired properties.

yi
vl

— y; is an S-successor of x and y; is a-blocked in T by some node z
Then g; = [p|;] is the path with the desired properties. Since the
same z may block several of the y;s, it is indeed necessary to include
y; explicitly into the path to ensure that [p| 2] # [p| yzj] for y; # y;.

— Tail(p) is an Inv(S)-successor of y;. There may be at most one such

yi- This implies that p is of the form [¢| {2y 2] with Tail(g) = .

Again, g has the desired properties and, obviously, ¢ is distinct from
all other paths g;.

e T11: Let (K n S C) € L(p) and (p,q) € E(S).

If ¢ = [p|&] then 2’ is an S-successor of Tail(p) and thus completeness
implies {C,~C} N L(z') # 0. Since L(z') C L(z) = L(q), we have
{C,~C}NL(q) #0.

If p = [¢| %], then 2’ is an Inv(S)-successor of Tail(g) and (< n S C) €
L(z). If z = 2', then completeness implies {C,~C} N L(Tail(g)) # 0.
If £ # ', then z blocks z’. The construction of & and (p,q) € &(S)
imply that B3.a is not possible, and B3.b together with B3.c imply that
{C,~C} N L(Tail(q)) # 0.

If ¢ = [p1]|] for p = [p1]]p'], then u c-blocks an S-successor of Tail(p), and
completeness together with B5 implies that {C,~C}NL(u) ={C,~C} N

L(Tail(q)) #0
If p=[q|g] for ¢ = [q1|%| '], then u c-blocks an Inv(S)-successor of

Tail(q). Since (£ n S C) e L(u), BT implies that ~C' € L(Tail(g)), and
thus {C,~C} N L(q) # 0. "

Lemma 4 (Completeness) If a SHIQ-concept D has a tableau with respect
to R, then the expansion rules can be applied to D such that they yield a complete
and clash-free completion tree with respect to R.

Proof: Let T = (S,L,&) be a tableau for D w.r.t. R. We use this tableau
to guide the application of the non-deterministic rules. To do this, we will
inductively define a function 7, mapping the individuals of the tree T to S such

18

that,

for each z,y in T:
L(z) C L(n(z))
if y is an S-neighbour of z then {w(x),w(y)) € E(S) (%)
x # y implies 7(z) # 7 (y)

Cramm: Let T be a completion tree and 7 a function satisfying (). If a rule
is applicable to T, then the rule can be applied to T such that it yields a
completion tree T’ for which the function 7 can be extended to 7' satisfying

().

Let T be a completion tree and 7 be a function that satisfies (x). We verify
the claim for each of the expansion rules.

The M-rule: If Cy N Cy € L(x), then C; N Cy € L(w(x)). T2 implies
C1,C2 € L(w(x)) and hence the rule yields a T’ for which 7' = 7 satifies

(%)-

The U-rule: If Cy U Cy € L(z), then C; U Cy € L(w(z)). T3 implies
{C1,Co} N L(w(x)) # 0. Hence the Ll-rule can add an appropriate C; and
7' = 7 satifies (x).

The F-rule: If 35.C € L(x), then 3S.C" € L(n(z)) and T5 implies the
existence of an element t € S such that (r(z),t) € €(S) and C € L(t). The
application of the F-rule generates a new variable y with L((z,y)) = {S}
and L(y) = {C}. Hence define 7’ to be the extension of 7 with 7'(y) = ¢,
and thus, due to T8, the result of applying the 3-rule T' satisfies () with

.

The V-rule: If VS.C' € L(z), then VS.C € L(w(x)) and, if y is an S-
neighbour of z, then also {(m(z),n(y)) € E(S) due to (). Since T is a
tableau, T4 implies C € L(w(y)) and hence the V-rule can be applied
without violating (x).

The V-rule: IfVS.C € L(x), then VS.C € L(w(x)). If there is some R E S
with Trans(R) and y is an R-neighbour of z, then also (7 (z),7(y)) € E(R)
due to (¥) and T8. Then T6 implies VR.C € L(w(y)), and hence the
V4-rule can be applied without violating ().

The choose-rule: If (< n S C) € L(z), then (< n S C) € L(n(x)) and, if
there is an S-neighbour y of z, then (n(z),n(y)) € £(S) due to () and
T8. Then T11 implies {C,~C} N L(w(y) # 0, and thus the choose-rule
can add an appropriate concept E € {C,~C} to L(z) without violating

(%)-

The >-rule: If (> n S C) € L(z), then (= n S C) € L(n(x)) and T10
implies $S7 (7(z),C) > n. Hence there are individuals t;,...,t, € S such
that (w(z),t;) € £(S), C € L(t;), and t; # t; for 1 <4 < j < n. The
>-rule generates n new nodes yi,...,y,. By extending 7 to 7'(y;) = ¢;

19

for each 1 < i < n, one obtains a function 7' that satisfies () for the tree
resulting from the application of the >-rule.

e The <-rule: If (< n S C) € L(z), then (K n S C) € L(w(x)) and T9
implies §S7 (7(z),C') < n. If the <-rule is applicable, we have §ST (z,C) >
n, which implies that there are at least n 4+ 1 S-neighbours yq,...,y, of z
such that C' € L(y;). Thus, there must be two nodes y,z € {yo,...,Yn}
such that 7(y) = 7(z). Then n(y) = w(z) implies that y # z cannot hold
because of (%), and y,z can be chosen such that y is a successor of z.
Hence the <-rule can be applied without violating (x).

This claim implies the completeness of the tableaux algorithm: for the initial
completion tree consisting of a single node g with L(z¢) = {D} and # = 0, we
can give a function 7 that satisfies () by setting m(xg) := so for some sq € S
with D € L(sg) (such an sq exists since T is a tableau for D). Whenever a
rule is applicable to T, it can be applied in a way that maintains (*). Lemma 2
implies that any sequence of rule applications must terminate. Due to (), any
tree generated by these rule-applications must be clash-free. This can be seen
by investigating the two possibilities for a clash:

e T cannot contain a node z with {C,~C} € L(z) because L(z) C L(n(z))
and 7(z) satisfies T1.

e T cannot contain a node z with (< n S C) € L(z) and n+1 S-neighbours
Yo,---Yn of x with C € L(y;) and y; # y; for 0 < 4 < j < n: since
L(z) C L(w(x)), we have (< n S C) € L(w(x)) and, since y; # y; implies
7(y:) # m(y;), this would imply that $S7 (7(z),C) > n, in contradiction
to T9. n

Since terminologies can be internalised in SHZQ [HST99b], we have the
following theorem:

Theorem 1 The tableaux algorithm is a decision procedure for the satisfiability
and subsumption of SHZQ-concepts with respect to role hierarchies and termi-
nologies.

4 Empirical evaluation

The modified algorithm has been implemented in the FaCT system and
tested with knowledge bases (KBs) derived from realistic applications: ei-
ther SHZQ encodings of UML diagrams [BCDGO1] or SHZQ translations of
OIL/DAMLA+OIL ontologies [FvHH'01]. In each case, we have measured the
time taken to classify the KB both with and without the optimised blocking
condition, and also measured the maximum size and depth of trees constructed
by the algorithm during the classification procedure. The results of these tests
are shown in Figure 4.

20

Optimised Blocking Standard Blocking
KB time(s) depth size | time(s) depth size
hospital 2 16 775 - 45 6874
library 0.25 9 147 1.25 11 153
restaurant 8 26 1280 672 36 5824
soccer 36 27 3840 918 32 7087
geography 9 8 70| 4506 18 5983

Figure 4: Comparison of KB classification times and data structures.

It can be seen that the optimised blocking condition uniformly improves
performance and that, in some cases, the improvement is quite dramatic (more
than two orders of magnitude in the case of the geography knowledge base).?
The reason for this is the reduction in the depth and size of the trees built by
the optimised algorithm. Apart from the inherent cost of building larger trees,
the size of the search space due to non-deterministic expansion may increase
exponentially with the number of nodes in the model.

It may be interesting to consider the geography KB in more detail in order to
see why the performance improvement is so dramatic.* As the name suggests,
this KB describes the geography of European countries. For example, it includes
the axioms:

Republic-of-Ireland C His-part-of.Ireland
Ireland C dis-part-of.British-Isles
British-Isles C dis-part-of.Western-Europe
C

Western-Europe dis-part-of.Europe

If these “part-of” relationships were uni-directional, the KB would be rela-
tively trivial to classify. However, the KB also contains axioms specifying the
parts that make up various composites, e.g.:

British-Isles C dis-part-of " .Ireland M Jis-part-of ~.Great-Britain

This kind of cyclical construction is quite common in KBs that describe
physically connected structures, and can also be seen for example in the GALEN
medical terminology KB. The effect of these cyclical axioms can be seen when
classifying the concept Europe. Figure 5 illustrates part of the tree built by the
using the standard double blocking. It can be seen that un-blocked nodes whose
label includes Europe occur several times in a single branch of the tree. The
fourth node in the branch is not blocked because the first occurrence of Europe
is in the label of the root node, which has no predecessor and thus cannot be a

3Without optimised blocking, FaCT was unable to classify the hospital KB—system re-
sources (memory) were exhausted after 86s of processing.

4Please note that the authors do not make any claims for the “quality” or “correctness”
of this ontology.

21

blocking node. The seventh node in the branch is not blocked because the label
of its predecessor contains Southern-Europe, whereas the label of the predecessor
of the fourth node contains Western-Europe. Note that each un-blocked node
with Europe in its label will lead to the generation of a large sub-tree due to
an axiom that lists all the countries that make up Europe. In contrast, the
optimised blocking condition allows the root node to c-block the fourth node,
greatly reducing the total size of the tree.

o {Europe,...}

/,/,//,/’ is-part-of -
2777 & {Belgium,...}
is-part-of
o {Western-Europe, ...}
is-part-of

_» {Europe, ...}

_ -7, | is-part-of
7T e {Italy,}
is-part-of
e {Southern-Europe,...}
is-part-of
_» {Europe,...}
-7, is-part-of ©

P
- ~ 4
P
P . ’ !

Figure 5: Tree built by unoptimised algorithm for concept Europe

The hospital, library, restaurant, and soccer KBs were all derived from the
encoding in SHZQ of UML diagrams. The nature of the encoding means that
the resulting KBs tend to be highly cyclical. Moreover, if the UML diagrams
include maximum cardinality constraints on relations (e.g., single valued rela-
tions), then the encoded KB will include qualified at most restrictions, possibly
with complex qualifying concepts (i.e., concepts of the form (<nR.C) where C is
non-atomic). The expansion of these concepts is highly non-deterministic (due
to the —<- and the —¢poose-rule), and it is critical to minimise the number of
node labels in which they occur. In the case of the hospital KB, for example, the
degree of non-determinism in the larger tree generated without the optimised
blocking condition is so great that, in attempting to search it, FaCT exhausts
the system’s memory.

5 Discussion

In order to deal with inverse roles and number restrictions in a logic lacking the
finite model property, the SHZQ algorithm implemented in the FaCT system

22

introduced a new and more sophisticated “double-blocking” technique. The
conditions under which a block could be established were clearly more exacting
than was strictly necessary, but it was assumed that, apart from the difficulty
of proving soundness and completeness, the increased cost of checking more
precisely defined conditions would outweigh any benefit that might be derived.

The failure of the FaCT system to solve UML derived knowledge bases lead
us to reconsider this conjecture, and we have presented an optimised algorithm
that checks for two different kinds of block, with more precisely defined condi-
tions under which each can be established. In spite of this increased complexity,
we have been able to prove that the optimised algorithm is still sound and com-
plete, and have shown that in some cases it can improve FaCT’s performance
by more than two orders of magnitude.

Clearly, the adverse effects of the stricter standard blocking condition should
not have been underestimated. Inefficient blocking can lead to an increase in
the size of the tree constructed by the algorithm, and given a logic with the
complexity of SHZQ this can lead to a catastrophic blow up in the size of the
search space (the number of different trees that must be explored). As we have
shown, this effect can be observed in realistic knowledge bases derived both from
the encoding of UML diagrams and from OIL/DAML+OIL ontologies.

Acknowledgements

The authors would like to thank Carsten Lutz for valuable comments and sug-
gestions.

References

[BBMARS9] Ronald J. Brachman, Alexander Borgida, Deborah L. McGuin-
ness, and Lori Alperin Resnick. The CLASSIC knowledge rep-
resentation system, or, KL-ONE: the next generation. Preprints
of the Workshop on Formal Aspects of Semantic Networks, Two
Harbors, Cal., 1989.

[BCDGO1] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on
UML Class Diagrams using Description Logic Based Systems. In
Proc. of the KI'2001 Workshop on Applications of Description
Logics. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-44/, 2001.

[BFHt94] Franz Baader, Enrico Franconi, Bernhard Hollunder, Bernhard
Nebel, and Hans-Jiirgen Profitlich. An empirical analysis of op-
timization techniques for terminological representation systems
or: Making KRIS get a move on. Applied Artificial Intelligence.
Special Issue on Knowledge Base Management, 4:109-132, 1994.

23

[BFT95]

[BS85]

[CLNO9g]

[DLNAN91]

[FNOO]

[FvHH*01]

[HKNP94]

[HMO1]

[Hor9s8]

[HST99a]

[HST99b]

[Neb90]

P. Bresciani, E. Franconi, and S. Tessaris. Implementing and
testing expressive description logics: Preliminary report. In Proc.
of DL’95, pages 131-139, 1995.

Ronald J. Brachman and James G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive Science,
9(2):171-216, 1985.

D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for
conceptual data modeling. In Jan Chomicki and Gnter Saake,
editors, Logics for Databases and Information Systems, pages
229-263. Kluwer Academic Publisher, 1998.

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity
of concept languages. In Proc. of KR-91, Boston, MA, USA,
1991.

E. Franconi and G. Ng. The i.com tool for intelligent concep-
tual modelling. In Working Notes of the ECAI2000 Workshop
KRDB2000, 2000.

D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and
P. F. Patel-Schneider. OIL: An ontology infrastructure for the
semantic web. IEEFE Intelligent Systems, 16(2):38-45, 2001.

Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and Hans-
Jiirgen Profitlich. An empirical analysis of terminological repre-
sentation systems. Artificial Intelligence, 68:367-397, 1994.

Volker Haarslev and Ralf Moller. RACER system description.
In IJCAR-01, 2001.

Tan Horrocks. Using an expressive description logic: FaCT or
fiction? In Proc. of KR-98, pages 636647, 1998.

I. Horrocks, U. Sattler, and S. Tobies. A description
logic with transitive and converse roles, role hierarchies
and qualifying number restrictions. LTCS-Report LTCS-99-
08, LuFG Theoretical Computer Science, RWTH Aachen,
1999. Revised version. See http://www-lti.informatik.rwth-
aachen.de/Forschung/Reports.html.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. In H. Ganzinger, D. McAllester,
and A. Voronkov, editors, Proc. of LPAR’99, number 1705 in
LNAI, pages 161-180. Springer-Verlag, 1999.

Bernhard Nebel. Terminological reasoning is inherently in-
tractable. Artificial Intelligence, 43:235-249, 1990.

24

[PS99]

[Sch8&9]

[SvRvdVM95]

Peter F. Patel-Schneider. DLP. In Proc. of DL’99, pages
9-13. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-22/, 1999.

M. Schmidt-Schauss. Subsumption in KL-ONE is undecidable.
In Proc. of KR-89, pages 421-431, Boston (USA), 1989.

P.-H. Speel, F. van Raalte, P. E. van der Vet, and N. J. I. Mars.
Runtime and memory usage performance of description logics. In
G. Ellis, R. A. Levinson, A. Fall, and V. Dahl, editors, Knowledge
Retrieval, Use and Storage for Efficiency: Proc. of the 1st Int.
KRUSE Symposium, pages 13-27, 1995.

25

