
Journal of Artificial Intelligence Research 47 (2013) 741-808 Submitted 01/13; published 08/13

Acyclicity Notions for Existential Rules and
Their Application to Query Answering in Ontologies

Bernardo Cuenca Grau bernardo.cuenca.grau@cs.ox.ac.uk

Ian Horrocks ian.horrocks@cs.ox.ac.uk

Markus Krötzsch markus.kroetzsch@cs.ox.ac.uk

Clemens Kupke clemens.kupke@cs.ox.ac.uk

Despoina Magka despoina.magka@cs.ox.ac.uk

Boris Motik boris.motik@cs.ox.ac.uk

Zhe Wang zhe.wang@cs.ox.ac.uk

Department of Computer Science, University of Oxford

Parks Road, Oxford OX1 3QD, United Kingdom

Abstract

Answering conjunctive queries (CQs) over a set of facts extended with existential rules
is a prominent problem in knowledge representation and databases. This problem can be
solved using the chase algorithm, which extends the given set of facts with fresh facts in
order to satisfy the rules. If the chase terminates, then CQs can be evaluated directly in
the resulting set of facts. The chase, however, does not terminate necessarily, and checking
whether the chase terminates on a given set of rules and facts is undecidable. Numerous
acyclicity notions were proposed as sufficient conditions for chase termination. In this
paper, we present two new acyclicity notions called model-faithful acyclicity (MFA) and
model-summarising acyclicity (MSA). Furthermore, we investigate the landscape of the
known acyclicity notions and establish a complete taxonomy of all notions known to us.
Finally, we show that MFA and MSA generalise most of these notions.

Existential rules are closely related to the Horn fragments of the OWL 2 ontology
language; furthermore, several prominent OWL 2 reasoners implement CQ answering by
using the chase to materialise all relevant facts. In order to avoid termination problems,
many of these systems handle only the OWL 2 RL profile of OWL 2; furthermore, some
systems go beyond OWL 2 RL, but without any termination guarantees. In this paper we
also investigate whether various acyclicity notions can provide a principled and practical
solution to these problems. On the theoretical side, we show that query answering for
acyclic ontologies is of lower complexity than for general ontologies. On the practical
side, we show that many of the commonly used OWL 2 ontologies are MSA, and that the
number of facts obtained by materialisation is not too large. Our results thus suggest that
principled development of materialisation-based OWL 2 reasoners is practically feasible.

1. Introduction

Existential rules are first-order implications between conjunctions of function-free atoms
that may contain existentially quantified variables in the implication’s consequent (Baget,
Leclère, Mugnier, & Salvat, 2011a; Cal̀ı, Gottlob, Lukasiewicz, Marnette, & Pieris, 2010a).
Such rules are used in a variety of ways in databases, knowledge representation, and logic
programming. In database theory, existential rules are known as tuple-generating depen-
dencies (Abiteboul, Hull, & Vianu, 1995) and are used to capture a wide range of schema

c©2013 AI Access Foundation. All rights reserved.

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

constraints. Furthermore, they are also used as declarative data transformation rules in
data exchange—the process of transforming a database structured according to a source
schema into a database structured according to a target schema (Fagin, Kolaitis, Miller, &
Popa, 2005). Existential rules also provide the foundation for several prominent knowledge
representation formalisms, such as Datalog± (Cal̀ı, Gottlob, & Pieris, 2010b; Cal̀ı et al.,
2010a), and they are also closely related to logic programs with function symbols in the
head. Practical applications of existential rules range from bioinformatics (Mungall, 2009)
to modelling complex structures of chemical compounds (Magka, Motik, & Horrocks, 2012;
Hastings, Magka, Batchelor, Duan, Stevens, Ennis, & Steinbeck, 2012).

Answering conjunctive queries (CQs) over a set of facts extended with existential rules is
a fundamental, yet undecidable (Beeri & Vardi, 1981) reasoning problem for existential rules.
The problem can be characterised using chase (Johnson & Klug, 1984; Maier, Mendelzon,
& Sagiv, 1979)—a technique closely related to the hypertableau calculus (Motik, Shearer, &
Horrocks, 2009b; Baumgartner, Furbach, & Niemelä, 1996). In a forward-chaining manner,
the chase extends the original set of facts with facts that can be derived using the rules.
The result of the chase is a universal model, in the sense that an arbitrary CQ over the
original facts and rules can be answered by evaluating the query in this model.

1.1 Chase Termination and Acyclicity Notions

Rules with existentially quantified variables in the head—so-called generating rules—require
the introduction of fresh individuals. Cyclic applications of generating rules may prevent
the chase from terminating, and in fact determining whether chase terminates on a set of
rules and facts is undecidable (Deutsch, Nash, & Remmel, 2008). However, several decidable
classes of existential rules have been identified, and the existing proposals can be classified
into two main groups. In the first group, rules are restricted such that their possibly infinite
universal models can be represented using finitary means. This group includes rules with
universal models of bounded treewidth (Baget et al., 2011a), guarded rules (Cal̀ı et al.,
2010a), and ‘sticky’ rules (Cal̀ı, Gottlob, & Pieris, 2011). In the second group, one uses a
sufficient (but not necessary) acyclicity notion that ensures chase termination.

Roughly speaking, acyclicity notions analyse the information flow between rules to en-
sure that no cyclic applications of generating rules are possible. Weak acyclicity (WA)
(Fagin et al., 2005) was one of the first such notions, and it was extended to notions such as
safety (Meier, Schmidt, & Lausen, 2009), stratification (Deutsch et al., 2008), acyclicity of
a graph of rule dependencies (aGRD) (Baget, Mugnier, & Thomazo, 2011b), joint acyclic-
ity (JA) (Krötzsch & Rudolph, 2011), and super-weak acyclicity (SWA) (Marnette, 2009).
Syntactic acyclicity criteria have also been investigated in the context of logic programs
with function symbols in the rule heads, where the goal is to recognise logic programs with
finite stable models. Several such notions have been implemented in state of the art logic
programming engines, such as omega-restrictedness (Syrjänen, 2001) from the Smodels sys-
tem (Syrjänen & Niemelä, 2001), lambda-restrictedness from the ASP grounder GrinGo
(Gebser, Schaub, & Thiele, 2007), argument-restrictedness (Lierler & Lifschitz, 2009) from
the DLV system (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006), and many
others (Calimeri, Cozza, Ianni, & Leone, 2008; Greco, Spezzano, & Trubitsyna, 2012; De
Schreye & Decorte, 1994).

742

Acyclicity Notions for Existential Rules

1.2 Applications of Acyclicity Notions

Acyclicity notions are interesting for several reasons. First, unlike guarded rules, acyclic
rules can axiomatise structures of arbitrary shapes, as long as these structures are bounded
in size. Second, the result of the chase for acyclic rules can be stored and manipulated as
if it were a database; this is important, for example, in data exchange, where the goal is to
materialise the transformed database.

In this paper, we further argue that acyclicity notions are also relevant to descrip-
tion logics (DLs)—knowledge representation formalisms underpinning the OWL 2 ontology
language (Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider, & Sattler, 2008). CQ
answering over DL ontologies is a key reasoning service in many DL applications, and the
problem was studied for numerous different DLs (Calvanese, De Giacomo, Lembo, Lenzerini,
& Rosati, 2007; Krötzsch, Rudolph, & Hitzler, 2007; Glimm, Horrocks, Lutz, & Sattler,
2008; Ortiz, Calvanese, & Eiter, 2008; Lutz, Toman, & Wolter, 2009; Pérez-Urbina, Motik,
& Horrocks, 2009; Rudolph & Glimm, 2010; Kontchakov, Lutz, Toman, Wolter, & Za-
kharyaschev, 2011). Answering CQs over ontologies, however, is quite technical and often of
high computational complexity. Therefore, practical OWL 2 reasoners frequently solve this
problem using materialisation—a reasoning technique in which the relevant consequences
of the ontology are precomputed using chase, allowing queries to be directly evaluated in
the materialised set of facts. Examples of materialisation-based systems include Oracle’s
Semantic Data Store (Wu, Eadon, Das, Chong, Kolovski, Annamalai, & Srinivasan, 2008),
Sesame (Broekstra, Kampman, & van Harmelen, 2002), OWLIM (Kiryakov, Ognyanov, &
Manov, 2005), Jena (Carroll, Dickinson, Dollin, Reynolds, Seaborne, & Wilkinson, 2004),
and DLE-Jena (Meditskos & Bassiliades, 2008). Such reasoning is possible if (i) the ontology
is Horn (Hustadt, Motik, & Sattler, 2005) and thus does not require disjunctive reasoning,
and (ii) the chase is guaranteed to terminate. To satisfy the second assumption, reasoners
often consider only axioms in the OWL 2 RL profile (Motik, Cuenca Grau, Horrocks, Wu,
Fokoue, & Lutz, 2009a); this systematically excludes generating rules and thus trivially
ensures chase termination, but it also makes the approach incomplete. Generating rules are
partially supported in systems such as OWLim (Bishop & Bojanov, 2011) and Jena, but
such support is typically ad hoc and provides no completeness and/or termination guar-
antees. Acyclicity notions can be used to address these issues: if an ontology is Horn and
acyclic, a complete materialisation can be computed without the risk of non-termination.

1.3 Our Contributions

Motivated by the practical importance of chase termination, in this paper we present two
new acyclicity notions: model-faithful acyclicity (MFA) and model-summarising acyclicity
(MSA). Roughly speaking, these acyclicity notions use a particular model of the rules to
analyse the implications between existential quantifiers, which is why we call them model
based. In particular, MFA uses the actual ‘canonical’ model induced by the facts and
the rules, which makes the notion very general. We prove that checking whether a set of
existential rules is MFA is 2ExpTime-complete, and it becomes ExpTime-complete if the
predicates in the rules are of bounded arity. Due to the high complexity, MFA may be
unsuitable for practical application. Thus, we introduce MSA, which can be understood as
MFA in which the analysis is performed over models that ‘summarise’ (or overestimate) the

743

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

actual models. Checking MSA of existential rules can be realised via checking entailment of
ground atoms in datalog programs. We use this close connection between MSA and datalog
to prove that checking MSA is ExpTime-complete for general existential rules, and that it
becomes coNP-complete if the arity of rule predicates is bounded.

We next conduct a detailed investigation of the landscape of known acyclicity notions,
augmented with MFA and MSA. For the class of logic programs that correspond to exis-
tential rules with skolemised existential quantifiers, we show that MSA and MFA strictly
subsume existing acyclicity notions known from logic programming. We also show that
MSA is strictly more general than SWA—one of the most general acyclicity notions known
in database theory. Furthermore, we investigate the relationship between the known notions
and thus complete the picture with respect to their relative expressiveness.

Both MSA and MFA can be applied to general existential rules without equality. Equal-
ity can be incorporated via singularisation—a technique proposed by Marnette (2009) that
transforms the rules to encode the effects of equality. Singularisation is orthogonal to
acyclicity: after computing the transformed rules, one can use MFA, MSA, or in fact any
notion to check whether the result is acyclic; if so, the chase of the signularised rules ter-
minates, and the chase result can be used in a particular way to answer arbitrary CQs.
Unfortunately, singularisation is nondeterministic: some ways of transforming the rules
may produce acyclic rule sets, but not all ways are guaranteed to do so. In this paper, we
refine singularisation to obtain practically useful upper and lower bounds for acyclicity. We
also show that, when used with JA, our lower bound actually coincides with WA.

We next turn our attention to theoretical and practical issues of using acyclicity for
materialisation-based CQ answering over ontologies. On the theoretical side, we show that
checking MFA and MSA of Horn-SROIF ontologies is ExpTime- and PTime-complete,
respectively, and that answering CQs over acyclic Horn-SROIF ontologies is ExpTime-
complete as well. Furthermore, we show that, for Horn-SHIF ontologies, the complexity
of checking MFA and of answering CQs drops to PSpace. Answering CQs is ExpTime-
complete for general (i.e., not acyclic) Horn-SHIF ontologies (Eiter, Gottlob, Ortiz, &
Simkus, 2008; Ortiz, Rudolph, & Simkus, 2011), so acyclicity makes this problem easier.
Furthermore, Horn ontologies can be extended with arbitrary SWRL rules (Horrocks &
Patel-Schneider, 2004) without affecting decidability or worst-case complexity, provided
that the union of the ontology and SWRL rules is acyclic; this is in contrast to the general
case, where SWRL extensions of DLs easily lead to undecidability.

On the practical side, we explore the limits of reasoning with acyclic OWL 2 ontologies
via materialisation. We checked MFA, MSA, and JA for 336 Horn ontologies; furthermore,
to estimate the impact of materialisation, we compared the size of the materialisation
with the number of facts in the original ontologies. Our experiments revealed that many
ontologies are MSA, and that some complex ones are MSA but not JA; furthermore, the
universal models obtained via materialisation are typically not too large. Thus, our results
suggest that principled, materialisation-based reasoning for ontologies beyond the OWL 2
RL profile may be practically feasible.

This is an extended version of a paper by Cuenca Grau, Horrocks, Krötzsch, Kupke,
Magka, Motik, and Wang (2012) published at KR 2012.

744

Acyclicity Notions for Existential Rules

2. Preliminaries

In this section we introduce definitions and notation used in the rest of our paper.

2.1 First-Order Logic

We use the standard notions of constants, function symbols, and predicate symbols, where
≈ is the equality predicate, > is universal truth, and ⊥ is universal falsehood. Each function
or predicate symbol is associated with a nonnegative integer arity. Variables, terms, substi-
tutions, atoms, first-order formulae, sentences, interpretations (i.e., structures), and models
are defined as usual. By a slight abuse of notation, we often identify a conjunction with
the set of its conjuncts. Furthermore, we often abbreviate a vector of terms t1, . . . , tn as ~t;
we define |~t| = n; and we often identify ~t with the set of indexed terms {t1, . . . , tn}. With
ϕ(~x) we stress that ~x = x1, . . . , xn are the free variables of a formula ϕ, and with ϕσ we
denote the result of applying a substitution σ to ϕ. A term, atom, or formula is ground if it
does not contain variables; a fact is a ground atom. The depth dep(t) of a term t is defined
as 0 if t is a constant or a variable, and dep(t) = 1 + maxni=1 dep(ti) if t = f(t1, . . . , tn). A
term t′ is a subterm of a term t if t′ = t or t = f(~s) and t′ is a subterm of some si ∈ ~s; if
additionally t′ 6= t, then t′ is a proper subterm of t. A term s is contained in an atom P (~t)
if s ∈ ~t, and s occurs in P (~t) if s is a subterm of some term ti ∈ ~t; thus, if s is contained
in P (~t), then s also occurs in P (~t), but the converse may not hold. A term s is contained
(resp. occurs) in a set of atoms I if s is contained (resp. occurs) in some atom in I.

In first-order logic, the equality predicate ≈ is commonly assumed to have a predefined
interpretation—that is, every first-order interpretation is required to interpret ≈ as the
smallest reflexive relation over the domain. Satisfaction of a sentence ϕ in an interpretation
I where ≈ is interpreted in this way is written I |= ϕ, and entailment of a sentence ψ from
a sentence ϕ is written ϕ |= ψ. Unless otherwise stated, we use this standard interpretation
of equality throughout this paper.

Equality, however, can also be treated as an ordinary predicate with an explicit axioma-
tisation. Let Σ be an arbitrary set of function-free first-order formulae. Then, Σ≈ = ∅ if ≈
does not occur in Σ; otherwise, Σ≈ contains formulae (1)–(3) and an instance of formula (4)
for each n-ary predicate P occurring in Σ different from ≈, and for each 1 ≤ i ≤ n. Note
that all variables in all of these formulae are (implicitly) universally quantified.

→ x ≈ x (1)

x1 ≈ x2 → x2 ≈ x1 (2)

x1 ≈ x2 ∧ x2 ≈ x3 → x1 ≈ x3 (3)

P (x1, . . . , xi, . . . , xn) ∧ xi ≈ x′i → P (x1, . . . , x
′
i, . . . , xn) (4)

If ≈ is treated as an ordinary predicate, satisfaction of a formula ϕ in a model I is written
I |=≈ ϕ, and entailment of a formula ψ from formula ϕ is written ϕ |=≈ ψ. Please note that,
according to our definitions, I |=≈ ϕ can hold even if interpretation I interprets predicate ≈
in an arbitrary way; in contrast, I |= ϕ can hold only if interpretation I interprets predicate
≈ as the identity relation on the model’s domain. The consequences of Σ w.r.t. |= and of
Σ ∪ Σ≈ w.r.t. |=≈ coincide—that is, for each first-order sentence ψ constructed using the
symbols from Σ, we have Σ |= ψ if and only if Σ ∪ Σ≈ |=≈ ψ.

745

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

2.2 Rules and Queries

An instance is a finite set of function-free facts. An existential rule (or just rule) is a
function-free sentence of the form

∀~x∀~z.[ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y)] (5)

where ϕ(~x, ~z) and ψ(~x, ~y) are conjunctions of atoms, and tuples of variables ~x, ~y, and ~z are
pairwise disjoint. Formula ϕ is the body and formula ψ is the head of the rule. For brevity,
quantifiers ∀~x∀~z are often omitted. For convenience, we sometimes identify a rule body or
head with the set of the respective conjuncts. A datalog rule is a rule where ~y is empty.
A rule is equality-free if it does not contain the equality predicate ≈. A term s occurs in
an existential rule if s occurs in a head or body atom of the rule, and these definitions
are extended to a set of rules in the obvious way; existential rules do not contain function
symbols, so an analogous notion of s being contained in a rule coincides with this one. Two
variables are directly connected in a rule if they occur together in a body atom of the rule;
furthermore, connected is the transitive closure of directly connected ; finally, a rule of the
form (5) is connected if all pairs of variables w,w′ ∈ ~x ∪ ~z are connected in the rule.

A conjunctive query (CQ) is a formula of the form Q(~x) = ∃~y.ϕ(~x, ~y), where ϕ(~x, ~y) is
a conjunction of atoms; the query is Boolean if ~x is empty. A substitution θ mapping ~x
to constants is an answer to Q(~x) w.r.t. a set of rules Σ and instance I if Σ ∪ I |= Q(~x)θ.
Answering CQs is the core reasoning problem in many applications of existential rules.

When answering a conjunctive query Q(~x) over a set of rules Σ and an instance I, in
the rest of this paper we implicitly assume that Q(~x) and I contain only the predicates
from Σ. This simplifies the presentation since it allows us to define various transformations
of Σ without having to take into account possible predicates that occur in Q(~x) or I only.
This assumption is w.l.o.g., as we can always extend Σ with tautological rules of the form
P (~x)→ P (~x) for each predicate P occurring in Q(~x) or I but not in Σ.

Furthermore, we assume that ≈ does not occur in the body of any rule in Σ or in the
query Q(~x). This is w.l.o.g. since we can eliminate each atom of the form x ≈ t in a rule body
and further replace x with t in the rest of the rule; furthermore, to eliminate body atoms of
the form a ≈ b with a and b constants, we can introduce a fresh predicate Oa, add a new rule
→ Oa(a), replace each body atom a ≈ b with conjunction Oa(x) ∧ x ≈ b in which x is a fresh
variable, and finally eliminate atom x ≈ b as before. Similarly, we do not provide an explicit
support for the inequality predicate 6≈. Inequality in rule heads can be simulated using an
ordinary predicate: each atom of the form s 6≈ t occurring in a rule head can be replaced with
NotEqual(s, t), where NotEqual is a fresh ordinary predicate that is explicitly axiomatised as
irreflexive; note that, if ≈ is handled as a regular predicate explicitly axiomatised by rules
(1)–(4), then the replacement axioms (4) must be instantiated for P = NotEqual as well. In
contrast, atoms involving the inequality predicate occurring in rule bodies generally require
disjunctive reasoning, which is not supported by existential rules.

Finally, we assume that conjunctions ϕ(~x, ~z) and ψ(~x, ~y) in each rule of the form (5) are
both not empty. We also assume that > and ⊥ are treated as ordinary unary predicates,
and that the semantics of > is captured explicitly in Σ by instantiating the following rule
for each n-ary predicate P occurring in Σ:

P (x1, . . . , xn)→ >(x1) ∧ . . . ∧ >(xn) (6)

746

Acyclicity Notions for Existential Rules

These assumptions ensure that I ∪ Σ is always satisfiable, but that Σ ∪ I |= ∃y.⊥(y) if and
only if I ∪ Σ is unsatisfiable w.r.t. the conventional treatment of > and ⊥. By allowing
body atoms of the form >(x), without loss of generality we can require each existential
rule to be safe (i.e., that each universally quantified variable occurring in a head atom also
occurs in a body atom of the rule), which greatly simplifies many of our definitions.

In database theory, satisfaction and entailment are often considered only w.r.t. finite
interpretations under the unique name assumption (UNA); the latter ensures that distinct
constants are interpreted as distinct elements. In contrast, such assumptions are not cus-
tomary in ontology-based KR. In this paper, we do not assume UNA, as UNA can be
axiomatised explicitly if needed using the inequality predicate (or a simulation thereof).
Furthermore, in this paper we investigate theories that are satisfiable in finite models (i.e.,
for which the chase is finite); thus, the difference between finite and infinite satisfiability is
immaterial to our results.

We frequently use skolemisation to interpret rules in Herbrand interpretations, which
are defined as possibly infinite sets of ground atoms. In particular, for each rule r of the
form (5) and each variable yi ∈ ~y, let f ir be a function symbol globally unique for r and yi of
arity |~x|; furthermore, let θsk be the substitution such that θsk(yi) = f ir(~x) for each yi ∈ ~y.
Then, the skolemisation sk(r) of r is the following rule:

ϕ(~x, ~z)→ ψ(~x, ~y)θsk (7)

The skolemisation sk(Σ) of a set of rules Σ is obtained by skolemising each rule in Σ.
Skolemisation does not affect the answers to CQs—that is, for each conjunctive query Q(~x)
formed from only the predicates in Σ, each instance I, and each substitution σ, we have
Σ ∪ I |= Q(~x)σ if and only if sk(Σ) ∪ Σ≈ ∪ I |=≈ Q(~x)σ.

2.3 The Skolem Chase

Answering CQs can be characterised using chase, and in this paper we use the skolem chase
variant (Marnette, 2009). Let r = ϕ→ ψ be a skolemised rule and let I be a set of ground
atoms. A set of ground atoms S is a consequence of r on I if substitution σ exists mapping
the variables in r to the terms occurring in I such that ϕσ ⊆ I and S ⊆ ψσ. The result
of applying r to I, written r(I), is the union of all consequences of r on I. For Ω a set of
skolemised rules, Ω(I) =

⋃
r∈Ω r(I). Let I be a finite set of ground atoms, let Σ be a set

of rules, let Σ′ = sk(Σ) ∪ Σ≈, and let Σ′f and Σ′n be the subsets of Σ′ containing rules with
and without function symbols, respectively. The chase sequence for I and Σ is a sequence
of sets of facts I0

Σ, I
1
Σ, . . . where I0

Σ = I and, for each i > 0, set IiΣ is defined as follows:

• if Σ′n(Ii−1
Σ) 6⊆ Ii−1

Σ , then IiΣ = Ii−1
Σ ∪ Σ′n(Ii−1

Σ),

• otherwise IiΣ = Ii−1
Σ ∪ Σ′f (Ii−1

Σ).

The chase of I and Σ is defined as I∞Σ =
⋃
i I
i
Σ; note that I∞Σ can be infinite. The chase can

be used as a ‘database’ for answering CQs: a substitution σ is an answer to Q over Σ and I
if and only if I∞Σ |=≈ Qσ. The chase of I and Σ terminates if i ≥ 0 exists such that IiΣ = IjΣ
for each j ≥ i; the chase of Σ terminates universally if the chase of I and Σ terminates for
each I. If the skolem chase of I and Σ terminates, then both the nonoblivious chase (Fagin
et al., 2005) and the core chase (Deutsch et al., 2008) of I and Σ terminate as well.

747

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

The critical instance I∗Σ for a set of rules Σ contains all facts that can be constructed
using all predicates occurring in Σ, all constants occurring in the body of a rule in Σ, and
one special fresh constant ∗. The skolem chase for I∗Σ and Σ terminates if and only if the
skolem chase of Σ terminates universally (Marnette, 2009).

2.4 Acyclicity Notions

Checking whether the skolem chase terminates on a given instance is undecidable, and
checking universal skolem chase termination is conjectured to be undecidable as well. Con-
sequently, various sufficient acyclicity notions have been proposed in the literature. For-
mally, an acyclicity notion X is a class of finite sets of rules; such a definition allows us
to talk about (proper) containment between acyclicity notions. We sometimes write ‘Σ is
X’, by which we mean ‘Σ ∈ X’. We next introduce weak and joint acyclicity: the former is
one of the first such notions considered in the literature; and as we show in Section 3, the
latter notion is relatively powerful, yet still easy to understand. We use these two notions
throughout the paper to present examples and state various technical claims. In Section 3
we present the definitions of many other acyclicity notions known in the literature.

In the following, let Σ be a set of rules where no variable occurs in more than one rule. A
position is an expression of the form P |i where P is an n-ary predicate and i is an integer with
1 ≤ i ≤ n. Given a rule r of the form (5) and a variable w occurring in r, the set PosB(w) of
body positions of w contains each position P |i such that P (t1, . . . , tn) ∈ ϕ(~x, ~z) and ti = w
for some vector ~t of terms. The set PosH(w) of head positions is defined analogously, but
w.r.t. the head atoms of r. Note that, since each variable occurs in at most one rule in
Σ, sets PosB(w) and PosH(w) are (indirectly) associated with the rule that contains w. In
the rest of this paper, whenever we use notation such as PosH(w) or PosB(w), we silently
assume that no variable occurs in more than one rule and so the notation is unambiguous.
This is clearly w.l.o.g. as one can always arbitrarily rename variables in different rules.

Weak acyclicity (WA) (Fagin et al., 2005) can be applied to existential rules that contain
the equality predicate. The WA dependency graph WA(Σ) for Σ contains positions as
vertices; furthermore, for each rule r ∈ Σ of the form (5), each variable x ∈ ~x, each position
P |i ∈ PosB(x), and each variable y ∈ ~y, graph WA(Σ) contains

• a regular edge from P |i to each Q|j ∈ PosH(x) such that Q 6= ≈ and,

• a special edge from P |i to each Q|j ∈ PosH(y) such that Q 6= ≈.

Set Σ is WA if WA(Σ) does not contain a cycle that involves a special edge. Equality atoms
are effectively ignored by WA.

Joint acyclicity (JA) (Krötzsch & Rudolph, 2011) generalises WA, but it is applicable
only to equality-free rules. For an existentially quantified variable y in Σ, let Move(y) be
the smallest set of positions such that

• PosH(y) ⊆ Move(y), and

• for each existential rule r ∈ Σ and each universally quantified variable x occurring in
r, if PosB(x) ⊆ Move(y), then PosH(x) ⊆ Move(y).

748

Acyclicity Notions for Existential Rules

The JA dependency graph JA(Σ) of Σ is defined as follows. The vertices of JA(Σ) are
the existentially quantified variables occurring in Σ. Given arbitrary two such variables y1

and y2, the JA dependency graph JA(Σ) contains an edge from y1 to y2 whenever the rule
that contains y2 also contains a universally quantified variable x such that PosH(x) 6= ∅ and
PosB(x) ⊆ Move(y1). Set Σ is JA if JA(Σ) does not contain a cycle.

2.5 Rule Normalisation

Existential rules can often be transformed into other existential rules by replacing parts
of the rule head or body with atoms involving fresh predicates. Such a transformation is
called normalisation, and is often used as a preprocessing step to bring the rules into a
suitable form. For example, Horn OWL 2 axioms can be translated into existential rules
by using the well known transformations of first-order logic, and the latter can then be
normalised to a form we describe in Section 6. In this section we introduce a definition of
rule normalisation that captures all similar methods known to us.

Let r be a rule of the form (8), where ϕ1, ϕ2, ψ1, and ψ2 are conjunctions of atoms
satisfying ~x1 ∪ ~x2 = ~x3 ∪ ~x4, ~z2 ∩ ~z3 = ∅, and ~y2 ∩ ~y3 = ∅.

ϕ1(~x1, ~z1, ~z2) ∧ ϕ2(~x2, ~z1, ~z3)→ ∃~y1, ~y2, ~y3.[ψ1(~x3, ~y1, ~y2) ∧ ψ2(~x4, ~y1, ~y3)] (8)

A normalisation step replaces a conjunction in either the head or the body of the rule with
an atom involving a fresh predicate. More precisely, a head normalisation step replaces
ψ1(~x3, ~y1, ~y2) with atom Q(~x3, ~y1) where Q is a fresh predicate, thus replacing r with rule
(9), and it adds rule (10).

ϕ1(~x1, ~z1, ~z2) ∧ ϕ2(~x2, ~z1, ~z3)→ ∃~y1, ~y3.[Q(~x3, ~y1) ∧ ψ2(~x4, ~y1, ~y3)] (9)

Q(~x3, ~y1)→ ∃~y2.ψ1(~x3, ~y1, ~y2) (10)

Alternatively, a body normalisation step replaces ϕ1(~x1, ~z1, ~z2) with atom Q(~x1, ~z1) where
Q is a fresh predicate, thus replacing r with rule (11), and it adds rule (12).

Q(~x1, ~z1) ∧ ϕ2(~x2, ~z1, ~z3)→ ∃~y1, ~y2, ~y3.[ψ1(~x3, ~y1, ~y2) ∧ ψ2(~x4, ~y1, ~y3)] (11)

ϕ1(~x1, ~z1, ~z2)→ Q(~x1, ~z1) (12)

Given a set of existential rules Σ, normalisation steps are often applied to Σ iteratively. If
the predicate Q introduced in each step is always fresh, we call such normalisation without
structure sharing. In contrast, normalisation with structure sharing allows the predicate
Q to be reused across different normalisation steps. For example, once a predicate Q is
introduced in a head normalisation step to replace ϕ1(~x1, ~z1, ~z2), then a conjunction of the
form ϕ1(~x′1, ~z

′
1, ~z
′
2) where ~x′1, ~z′1, ~z′2 are renamings of ~x1, ~z1, ~z2 can be replaced with Q(~x′3, ~y

′
1)

without introducing the corresponding rule (10). An analogous optimisation can be used
in a body normalisation step.

Let Σ′ be a set of rules obtained via normalisation (with or without structure sharing)
from Σ. It is well known that Σ′ is a conservative extension of Σ. Consequently, for each
instance I and each BCQ Q that does not use the freshly introduced predicates, we have
Σ ∪ I |= Q if and only if Σ′ ∪ I |= Q.

749

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

3. Novel Acyclicity Notions

Weak acyclicity has considerably influenced the field of data exchange in databases, but it
is a rather strict notion and so it may not be sufficient in many applications of existential
rules. Joint acyclicity significantly relaxes weak acyclicity and was developed mainly for
rule based knowledge representation applications.

In Section 3.1 we show that even joint acyclicity—one of the most general acyclicity
notions developed so far—does not capture rules corresponding to axioms commonly found
in ontologies for which the chase terminates universally. To address this important limi-
tation, we propose in Section 3.2 model-faithful acyclicity (MFA)—a novel, very general,
notion that can be used to successfully ensure chase termination for many ontologies used
in practice. The computational cost of checking MFA is, however, rather high; hence, in
Section 3.3 we introduce model-summarising acyclicity (MSA)—a more strict notion that
is easier to check and produces the same results as MFA on most existing ontologies.

3.1 Limitations of Existing Acyclicity Notions

To motivate our new acyclicity notions, we first present an example that shows how known
acyclicity notions, such as JA, are not satisfied by rules that are equivalent to very simple
axioms that abound in OWL ontologies.

Example 1. Let Σ be the set of rules (13)–(17).

r1 = A(x1)→ ∃y1.R(x1, y1) ∧B(y1) (13)

r2 = R(x2, z1) ∧B(z1)→ A(x2) (14)

r3 = B(x3)→ ∃y2.R(x3, y2) ∧ C(y2) (15)

r4 = C(x4)→ D(x4) (16)

r5 = R(x5, z2) ∧D(z2)→ B(x5) (17)

Rules r1 and r2 correspond to the description logic axiom A ≡ ∃R.B, rule r3 corresponds to
axiom B v ∃R.C, rule r4 corresponds to axiom C v D, and rule r5 corresponds to axiom
∃R.D v B. Such axioms are very common in OWL ontologies.

By the definition of JA from Section 2, we have Move(y1) = {R|2, B|1, R|1, A|1}. Thus,
the JA dependency graph contains an edge from y1 to itself, so the set of axioms Σ is not
JA. In contrast, the following table shows the chase sequence for I∗Σ and Σ.

A(∗) R(∗, f(∗)) R(f(∗), g(f(∗))) D(g(f(∗)))
B(∗) B(f(∗)) C(g(f(∗)))
C(∗) R(∗, g(∗)) D(g(∗))
D(∗) C(g(∗))

R(∗, ∗)

Rule r2 is not applicable to R(f(∗), g(f(∗))) since I3 does not contain the fact B(g(f(∗)))
necessary to match the atom B(z1) from the rule. Thus, the chase terminates. ♦

All existing acyclicity notions essentially try to estimate whether an application of a
rule can produce facts that can (possibly by applying chase to other rules) repeatedly

750

Acyclicity Notions for Existential Rules

trigger the same rule in an infinite manner. The key difference between various notions is
how rule applicability is determined. In particular, JA considers each variable in a rule in
isolation and does not check satisfaction of all body atoms at once; for example, rule (14)
is not applicable to the facts generated by rule (15), but this can be determined only by
considering variables x2 and z1 in rule (14) simultaneously. These notions thus overestimate
rule applicability and, as a result, they can fail to detect chase termination.

3.2 Model-Faithful Acyclicity (MFA)

Our main intuition for addressing this problem is that more precise chase termination
guarantees can be obtained by tracking rule applicability more ‘faithfully’. A simple solution
is to be completely precise about rule applicability: one can run the skolem chase and then
use sufficient checks to identify cyclic computations. Since no sufficient, necessary, and
computable test can be given for the latter, we must adopt a practical approach. For
example, we can ‘raise the alarm’ and stop the process if the chase derives a ‘cyclic’ term
f(~t), where f occurs in ~t. This idea can be further refined; for example, one could stop only
if f occurs nested in a term some fixed number of times. The choice of the appropriate test
thus depends on an application; however, as our experiments show, checking only for one
level of nesting suffices in many cases. In particular, no term f(~t) with f occurring in ~t is
generated in the chase of the set of rules Σ from Example 1.

Definition 2. A term t is cyclic if a function symbol f exists such that some term f(~s) is
a subterm of t, and some term f(~u) is a proper subterm of f(~s).

Our notion of acyclicity is declarative: the given set of rules Σ is transformed into a new
set of rules Σ′ that tracks rule dependencies using fresh predicates; then, Σ is identified as
being acyclic if Σ′ does not entail a special nullary predicate C. Since acyclicity is defined
via entailment, it can be decided using any theorem proving procedure for existential rules
that is sound and complete. Acyclicity guarantees termination of the skolem chase, which
also guarantees termination of nonoblivious chase and core chase. We call our notion model-
faithful acyclicity because it estimates rule application precisely, by examining the actual
structure of the universal model of Σ.

Definition 3. For each rule r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y) and each variable yi ∈ ~y, let Fir be a
fresh unary predicate unique for r and yi; furthermore, let S and D be fresh binary predicates,
and let C be a fresh nullary predicate. Then, MFA(r) is the following rule:

ϕ(~x, ~z)→ ∃~y.

ψ(~x, ~y) ∧
∧
yi∈~y

Fir(yi) ∧ ∧
xj∈~x

S(xj , yi)


For a set Σ of rules, MFA(Σ) is the smallest set that contains MFA(r) for each rule r ∈ Σ,
rules (18)–(19), and rule (20) instantiated for each Fir corresponding to some r ∈ Σ:

S(x1, x2)→ D(x1, x2) (18)

D(x1, x2) ∧ S(x2, x3)→ D(x1, x3) (19)

Fir(x1) ∧ D(x1, x2) ∧ Fir(x2)→ C (20)

751

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

The set Σ is model-faithful acyclic (MFA) w.r.t. an instance I if I ∪MFA(Σ) 6|= C; further-
more, Σ is universally MFA1 if Σ is MFA w.r.t. I∗Σ.

Example 4. Let Σ be the set of rules from Example 1. Then, MFA(r1) and MFA(r3) are
given by (21) and (22), respectively; since r1 and r3 contain a single existentially quanti-
fied variable each, we omit the superscripts in Fr1 and Fr3 for the sake of clarity. Thus,
MFA(Σ) consists of rules (14), (16), and (17), rules (21)–(22), rules (18)–(19), and rule
(20) instantiated for Fr1 and Fr3.

A(x1)→ ∃y1.R(x1, y1) ∧B(y1) ∧ Fr1(y1) ∧ S(x1, y1) (21)

B(x3)→ ∃y2.R(x3, y2) ∧ C(y2) ∧ Fr3(y2) ∧ S(x3, y2) (22)

It is straightforward to see that the chase of I∗Σ and MFA(Σ) consists of the facts presented
in Example 1, augmented with the following facts:

S(∗, f(∗)) D(∗, f(∗)) D(f(∗), g(f(∗)))
S(∗, g(∗)) D(∗, g(∗)) D(∗, g(f(∗)))
Fr1(f(∗)) S(f(∗), g(f(∗)))
Fr3(g(∗)) Fr3(g(f(∗)))

The chase of I∗Σ and MFA(Σ) does not contain C, which implies that I ∪MFA(Σ) 6|= C. As
a result, Σ is universally MFA. ♦

MFA is formulated as a semantic, rather than a syntactic notion, and is thus mainly
independent from algorithmic details: entailment I ∪MFA(Σ) 6|= C can be checked using an
arbitrary sound and complete first-order calculus. In Section 4 we discuss the relationship
between MFA and existing notions, and we show that MFA generalises most of them.

The following proposition shows that MFA characterises the derivations of the skolem
chase in which no cyclic terms occur.

Proposition 5. A set Σ of rules is not MFA w.r.t. an instance I if and only if I∞MFA(Σ)
contains a cyclic term.

Proof. Let Σ′ = MFA(Σ), and let I0
Σ′ , I

1
Σ′ , . . . be the chase sequence for I and Σ′. Moreover,

let f ir be the function symbol used to skolemise the i-th existentially quantified variable in
rule r, as defined in Section 2.2. We next prove that the following claims hold for all terms
t and t′ occurring in IkΣ′ , each rule r, each integer i, and each integer k, as well as k =∞.

1. Term t is of the form f ir(~u) if and only if Fir(t) ∈ IkΣ′ .

2. Term t is of the form f ir(~u) and t′ ∈ ~u if and only if S(t′, t) ∈ IkΣ′ .

3. If t′ is a proper subterm of t, then D(t′, t) ∈ Ik+2
Σ′ ; furthermore, D(t′, t) ∈ I∞Σ′ if and

only if t′ is a proper subterm of t.

1. In the rest of this paper we often omit ‘universally’; furthermore, when used as an acyclicity notion,
MFA means ‘universally MFA’.

752

Acyclicity Notions for Existential Rules

(Claims 1 and 2, direction ⇒) The proof is by induction on k. Set I0
Σ′ does not contain

functional terms, and so it clearly satisfies both claims. For the induction step, assume
that both claims hold for Ik−1

Σ′ and consider IkΣ′ . Since Ik−1
Σ′ ⊆ I

k
Σ′ , both claims clearly hold

for each term t that occurs in Ik−1
Σ′ . Consider an arbitrary term t of the form f ir(~u) that

does not occur in Ik−1
Σ′ , and an arbitrary term t′ ∈ ~u. Clearly, t is introduced into IkΣ′ by an

application of the skolemisation of MFA(r) for some rule r ∈ Σ. Since the head of MFA(r)
contains atoms Fir(yi) and S(xj , yi) for each xj ∈ ~x, we have Fir(t) ∈ IkΣ′ and S(t′, t) ∈ IkΣ′
for each t′ ∈ ~u, and so we have Fir(t) ∈ I∞Σ′ and S(t′, t) ∈ I∞Σ′ for each t′ ∈ ~u as well. Finally,
since I∞Σ′ =

⋃
k I

k
Σ′ , these claims clearly hold for k =∞.

(Claims 1 and 2, direction⇐) Predicate S and each predicate Fir occur in Σ′ only in head
atoms of the form Fir(yi) and S(xj , yi); hence, the skolemised rules contain these predicates
only in head atoms of the form Fir(f

i
r(~x)) and S(xj , f

i
r(~x)), which clearly implies our claim.

(Claim 3, the first part for k 6=∞) The proof is by induction on k. The base case holds
vacuously since I0

Σ′ does not contain functional terms. Assume now that the claim holds
for some k − 1, and consider an arbitrary term t = f ir(~u) occurring in IkΣ′ such that t′ is
a subterm of some ti ∈ ~u. By Claim 2, we have S(ti, t) ∈ IkΣ′ ; furthermore, ti occurs in
Ik−1

Σ′ , so by the induction assumption we have D(t′, ti) ∈ Ik+1
Σ′ . Finally, the rules without

functional terms are applied before the rules with functional terms; hence, by rule (19) we
have D(t′, t) ∈ Ik+2

Σ′ , as required.
(Claim 3, the second part) The ‘proper subterm’ relation is transitive, and rules (18)

and (19) effectively define D as the transitive closure of S, which clearly implies this claim.

Assume now that I∞Σ′ contains a cyclic term t. Then, some term t1 = f ir(~s) is a subterm
of t and some term t2 = f ir(~u) is a proper subterm of t1. By Claims 1 and 3, then we have
{Fir(t2),D(t2, t1),Fir(t1)} ⊆ I∞Σ′ . But then, since Σ′ contains rule (20), we have C ∈ I∞Σ′ , so
Σ is not MFA. For the converse claim, assume that Σ is not MFA w.r.t. an instance I.
Then, by Definition 3 we have that I ∪MFA(Σ) |= C. Since the special nullary predicate C
occurs only on the right-hand side of rule (20), there exist terms t1 and t2, a rule r ∈ Σ,
and a predicate Fir such that {Fir(t1),D(t1, t2),Fir(t2)} ⊆ I∞Σ′ . Since Fir(t1) and Fir(t2) are
contained in I∞Σ′ , Claim 1 implies that t1 and t2 are of the form t1 = f ir(~u1) and t2 = f ir(~u2),
respectively. Finally, D(t1, t2) ∈ I∞Σ′ and Claim 3 imply that t1 is a proper subterm of t2, so
I∞Σ′ contains a cyclic term.

This characterisation implies termination of skolem chase of MFA rules Σ in 2ExpTime.
In particular, a term t derived by the skolem chase of Σ′ = MFA(Σ) cannot be cyclic by
Proposition 5; such t can then be seen as a tree with branching factor bounded by the
maximum arity of a function symbol in sk(Σ′) and with depth bounded by the number
of function symbols in sk(Σ′). The chase can thus generate at most a doubly exponential
number of different terms and atoms. The 2ExpTime bound already holds if the rules are
WA (Cal̀ı et al., 2010b), so CQ answering for MFA rules is not harder than for WA rules.

Proposition 6. If a set of rules Σ is MFA w.r.t. an instance I, then the skolem chase for
I and Σ terminates in double exponential time.

Proof. Let Σ′ = MFA(Σ), let c, f , and p be the number of constants, function symbols,
and predicate symbols, respectively, occurring in sk(Σ′), let ` be the maximum arity of a
function symbol, and let a be the maximum arity of a predicate symbol in sk(Σ′). Consider

753

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

now an arbitrary term t occurring in I∞Σ′ ; clearly, t can be seen as a tree with branching
factor ` containing constants in the leaf nodes and function symbols in the internal nodes;
furthermore, since t is not cyclic, dep(t) ≤ f , the number of leaves is bounded by `f , and the
total number of nodes is bounded by f · `f . Each node is assigned a constant or a function
symbol, so the number of different terms occurring in I∞Σ′ is bounded by ℘ = (c+ f)f ·`

f
,

and the number of different atoms in I∞Σ′ is bounded by p · ℘a, which is clearly doubly
exponential in Σ and I. Consequently, the size of I∞Σ′ is at most doubly exponential in Σ
and I. Furthermore, for an arbitrary set of facts I ′ and rule r, the set r(I ′) can be computed
by examining all mappings of the variables in r to the terms occurring in I ′, which requires
exponential time in the size of r and polynomial time in the size of I ′. Consequently, I∞Σ′ can
be computed in time that is double exponential in I and Σ. Finally, it is straightforward
to see that I∞Σ ⊆ I∞Σ′ , so I∞Σ can be computed in double exponential time as well.

By Proposition 6, answering a BCQ over MFA rules is in 2ExpTime. We next prove
that checking MFA w.r.t. a specific instance I is also in 2ExpTime, and that checking uni-
versal MFA is 2ExpTime-hard. This provides tight complexity bounds for both problems.
Towards this goal, we first establish in Lemma 7 a relationship between answering certain
kinds of queries over certain kinds of rules and checking whether a related set of rules is
universally MFA; we use this relationship in several hardness proofs in the rest of this paper.
Then, in Theorem 8 we present our main complexity result.

Lemma 7. Let Σ be a set of weakly acyclic, constant-free, equality-free, and connected rules
with predicates of nonzero arity, let A and B be unary predicates, let R be a fresh binary
predicate, let a be a constant, and let Ω be Σ extended with rule (23).

R(z, x) ∧B(x)→ ∃y.[R(x, y) ∧A(y)] (23)

Then, we have {A(a)} ∪ Σ 6|= B(a) if and only if Ω is universally MFA.

Proof. Let I = {A(a)}, and let I0
Σ, I

1
Σ, . . . be the chase sequence for I and Σ. Furthermore,

let Ω′ = MFA(Ω), let J = I∗Ω, let J0
Ω′ , J

1
Ω′ , . . . be the chase sequence for J and Ω′, and let

f be the function symbol used to skolemise the existential quantifier in rule (23). Set Σ is
constant-free, so a is the only constant occurring in each set IiΣ.

We next show that the facts in J jΩ′ are of a certain form. To this end, for each ` ≥ 0,
let t` = f(. . . f(∗) . . .) where the function symbol f is repeated ` times (by this definition,
we have t0 = ∗); also, each term or fact obtained from t` by zero or more applications of
predicates or function symbols not in {f,D, S,C, R} is of level `. By induction on the chase
sequence for J and Ω′, we next prove that the sequence satisfies the following property (�):

for each fact F ∈ J jΩ′ , some integer ` exists such that F is of the form R(∗, ∗)
or R(t`, t`+1), or the predicate of F is contained in {D, S,C}, or F is an `-level
fact and the predicate of F is not contained in {D, S,C, R}.

Set J0
Ω′ = J clearly satisfies property (�) since each fact in it is clearly of level 0. Now assume

that J jΩ′ satisfies property (�) for some j, and consider an application of a rule r ∈ Ω′. If r
corresponds to rule (18), (19), (20), or (23), then the result of the rule application clearly
satisfies property (�). Otherwise, r is safe and no body atom contains a predicate in

754

Acyclicity Notions for Existential Rules

{D, S,C, R}; by induction assumption, then some atom is matched to a fact of some level `;
the body atoms of r are connected, so all body atoms are matched to facts of the same level;
finally, the head atoms of r contain function symbols different from f , but no constants or
predicates of zero arity, so each fact derived by an atom in the head of r either contains
predicate S or is of level `.

We next show that the chase sequences for I and Σ, and for J and Ω′ are related by the
following property (♦):

for each fact F ′ of level 1 and the fact F obtained by replacing each t1 in F ′

with a, we have F ∈ IiΣ for some i if and only if F ′ ∈ J jΩ′ \ J for some j.

The proof of (♦) is straightforward: J contains R(∗, ∗) and B(∗), so J1
Ω′ contains R(∗, f(∗))

and A(f(∗)); moreover, due to (�), term t1 plays in the chase sequence for J and Ω′ the
‘same role’ as constant a in the chase sequence for I and Σ, so the rule applications to facts
of level 1 in the former chase sequence correspond one-to-one with rule applications in the
latter chase sequence. We omit the formal details for the sake brevity.

Now assume that {A(a)} ∪ Σ |= B(a). Then, B(a) ∈ IiΣ holds for some i. By property

(♦), then integer j exists such that B(f(∗)) ∈ J jΩ′ . But then, due to rule (23), some ` ≥ j
exists such that A(f(f(∗))) ∈ J `Ω′ . By Proposition 5, then Ω is not universally MFA.

Conversely, assume that {A(a)} ∪ Σ 6|= B(a). Since Σ is weakly acyclic and equality-
free, Σ is super-weakly acyclic (Marnette, 2009); as we will show in Section 4 (see Theorem
19), Σ is then MFA as well. Now consider an arbitrary integer j and fact F ∈ J jΩ′ . If F
is of level 0 or 1, since Σ is MFA, fact F does not contain a cyclic term. Furthermore,
B(a) 6∈ I∞Σ so, by property (♦), fact F is not of the form B(f(∗)); thus, rule (23) does not
‘fire’ to introduce facts of level greater than 1. Consequently, F does not contain a cyclic
term, and so, by Proposition 5, the set Ω is universally MFA.

Theorem 8. Given a set of rules Σ, deciding whether Σ is MFA w.r.t. an instance I is in
2ExpTime, and deciding whether Σ is universally MFA is 2ExpTime-hard. Both results
hold even if the arity of predicates in Σ is bounded.

Proof. (Membership) Let Σ′ = MFA(Σ), let I0
Σ′ , I

1
Σ′ , . . . be the chase sequence for I and Σ′,

and let ℘, p, and a be as stated in the proof of Proposition 6. The number of different
atoms that can be constructed from ℘ terms is bounded by k = p · ℘a; note that this is
double exponential even if a is bounded. Let k′ = k + 4; we next show that whether Σ is
MFA w.r.t. I can be decided by constructing Ik

′
Σ′ and then checking whether C ∈ Ik′Σ′ . As in

the proof of Proposition 6, the latter can be done in double exponential time.
If IkΣ′ = Ik

′
Σ′ , then I∞Σ′ = IkΣ′ , so Σ is not MFA if and only if C ∈ IkΣ′ . Otherwise, we

have IkΣ′ (Ik
′

Σ′ ; but then, Ik+1
Σ′ clearly contains at least one cyclic term t = f ir(~t) such that

t′ = f ir(~s) is a subterm of some ti ∈ ~t. Since Ik+1
Σ′ satisfies Claims 1–3 from the proof of

Proposition 5, we have D(ti, t) ∈ Ik+3
Σ′ ; by rule (20) and the fact that rules without functional

terms are applied before rules with functional terms, we have C ∈ Ik′Σ′ ; thus, C ∈ I∞Σ′ , so Σ
is not MFA by Proposition 5.

(Hardness) We prove the claim by a reduction from the problem of checking I ∪ Σ |= Q,
where Σ is a weakly acyclic set of equality-free rules and with predicates of bounded arity,

755

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

I is an instance, and Q = ∃~y.ξ(~y) is a Boolean conjunctive query. Cal̀ı et al. (2010b) show
that, for such I, Σ, and Q, deciding I ∪ Σ |= Q is 2ExpTime-complete. We next transform
I, Σ, and Q so that we can apply Lemma 7, which proves our claim.

Let Σ1 = Σ ∪ {ξ(~y)→ B} where B is a fresh predicate of zero arity; clearly, I ∪ Σ |= Q
holds if and only if I ∪ Σ1 |= B holds.

Let Σ2 and I2 be obtained by eliminating constants from the rules in Σ1; that is, we
initially set I2 = I and then, for each rule r ∈ Σ and each constant c occurring in r, we
replace all occurrences in c with a fresh variable wc, add an atom Oc(wc) to the body of r
where Oc is a fresh predicate uniquely associated with c, and add a fact Oc(c) to I2. It is
straightforward to see that I ∪ Σ1 |= B if and only if I2 ∪ Σ2 |= B.

Finally, to transform Σ2 and I2 into Σ3, we define some notation. Let P̂ be a fresh n+1-
ary predicate unique for each n-ary predicate P , and let w be a fresh variable not occurring
in Σ2. For a conjunction of atoms ϕ, let ϕ̂ =

∧
P (~t)∈ϕ P̂ (~t, w). Rule (24) is obtained from

I2 as specified below, where A is a fresh unary predicate, each constant c occurring in I2 is
associated with a distinct, fresh variable vc, and ~vc is the vector of all such variables:

A(w)→ ∃~vc.
∧

P (c1,...,ck)∈I2

P̂ (vc1 , . . . , vck , w) (24)

Finally, the set Σ3 contains rule (24) and a rule

ϕ̂(~x, ~z, w)→ ∃~y.ψ̂(~x, ~y, w) for each rule ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y) in Σ2. (25)

Clearly, all predicates in Σ3 are of nonzero arity; all rules in Σ3 are constant-free and
connected; and A occurs only in the body of rule (24) and Σ2 is WA, so Σ3 is WA as well.
Finally, let I3 = {A(a)} where a is a fresh constant; by induction on the chase sequences for
Σ2 and I2, and Σ3 and I3, it is straightforward to show that, for each integer i and each fact
P (c1, . . . , ck), we have P (c1, . . . , ck) ∈ (I2)iΣ2

if and only if P̂ (fc1(a), . . . , fck(a), a) ∈ (I3)i+1
Σ3

,
where fc1 , . . . , fck are the skolem functions used to skolemise vc1 , . . . , vck in rule (24). Thus,
I2 ∪ Σ2 |= B if and only if I3 ∪ Σ3 |= B̂(a), which by Lemma 7 implies our claim.

The results of Theorem 8 are somewhat discouraging: known acyclicity notions can
typically be checked in PTime or in NP. We consider MFA to be an ‘upper bound’ of
practically useful acyclicity notions. We see two possibilities for improving these results. In
Section 3.3 we introduce an approximation of MFA that is easier to check; our experiments
(see Section 7) show that this notion often coincides with MFA in practice. Furthermore,
we show next that the complexity is lower for rules of the following shape.

Definition 9. A rule r of the form (5) is an ∃-1 rule if ~y is empty or ~x contains at most
one variable.

As we discuss in the following sections, ∃-1 rules capture (extensions of) Horn DLs. We
next show that BCQ answering and MFA checking for ∃-1 rules is easier than for general
rules. Intuitively, if Σ is MFA and contains only ∃-1 rules, then all functional terms in
sk(MFA(Σ)) are unary and hence the number of different terms and atoms derivable by
chase becomes exponentially bounded, as shown by the following theorem.

756

Acyclicity Notions for Existential Rules

Theorem 10. Let Σ be a set of ∃-1 rules, and let I be an instance. Checking whether Σ is
MFA w.r.t. I is in ExpTime, and checking whether Σ is universally MFA is ExpTime-hard.
Moreover, if Σ is MFA w.r.t. I, then answering a BCQ over Σ and I is ExpTime-complete.

Proof. We defer the proof of both hardness claims to Section 6, which deals with an even
smaller class of rules that correspond to Horn description logic ontologies. In particular,
we prove hardness of BCQ answering in Lemma 59, and hardness of checking whether Σ is
MFA w.r.t. I in Lemma 60. In the rest of this proof, we show both membership results.

Let Σ′ = MFA(Σ); let c be the number of constants in an instance; and let f be the
number of function symbols in the rules. Since Σ contains only ∃-1 rules, Σ′ also contains
only ∃-1 rules; consequently, all functional terms in sk(Σ′) are of arity 1. Hence, each
noncyclic term can be understood as a sequence of at most f function symbols, so the total
number of different noncyclic terms is bounded by ℘ = c · (f + 1)f . The total number of
atoms is bounded by p · ℘a, where p is the number of predicates and a is the maximum
arity of a predicate in Σ′. Note that this is exponential even if a is fixed. As in the proof
of Proposition 6, we can now show that either the chase for Σ′ and I terminates or a cyclic
term is derived in exponential time, which proves that the complexity of checking whether
Σ is MFA w.r.t. I is in ExpTime.

Finally, since I∞Σ ⊆ I∞Σ′ , if Σ is MFA, then I∞Σ can be computed in exponential time, so
a BCQ over Σ and I can be answered in ExpTime.

3.3 Model-Summarising Acyclicity (MSA)

The high cost of checking MFA of Σ arises because the arity of function symbols in sk(Σ) is
unbounded and the depth of cyclic terms can be linear in Σ. To obtain an acyclicity notion
that is easier to check, we must coarsen the structure used for cycle analysis. We thus next
introduce model-summarising acyclicity, which ‘summarises’ the models of Σ by reusing the
same constant to satisfy an existential quantifier, instead of introducing ‘deep’ terms.

Definition 11. Let S, D, and Fir be as specified in Definition 3; furthermore, for each rule
r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y) and each variable yi ∈ ~y, let cir be a fresh constant unique for r
and yi. Then, MSA(r) is the following rule, where θMSA is the substitution that maps each
variable yi ∈ ~y to cir:

ϕ(~x, ~z)→ ψ(~x, ~y)θMSA ∧
∧
yi∈~y

Fir(yi)θMSA ∧
∧
xj∈~x

S(xj , yi)θMSA


For a set Σ of rules, MSA(Σ) is the smallest set that contains MSA(r) for each rule
r ∈ Σ, rules (18)–(19), and rule (20) instantiated for each predicate Fir. Set Σ is model-
summarising acyclic (MSA) w.r.t. an instance I if I ∪MSA(Σ) 6|= C; furthermore, Σ is
universally MSA if Σ is MSA w.r.t. I∗Σ.

Example 12. Consider again the set of rules Σ from Example 1. MSA(r1) and MSA(r3)
are given by rules (26) and (27), respectively; since r1 and r3 contain a single existentially
quantified variable each, we omit the superscripts in Fr1, Fr3, cr1, and cr3 for the sake of

757

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

clarity. Thus, MSA(Σ) consists of rules (14), (16), and (17), rules (26)–(27), rules (18)–
(19), and rule (20) instantiated for Fr1 and Fr3.

A(x1)→ R(x1, cr1) ∧B(cr1) ∧ Fr1(cr1) ∧ S(x1, cr1) (26)

B(x3)→ R(x3, cr3) ∧ C(cr3) ∧ Fr3(cr3) ∧ S(x3, cr3) (27)

The following table shows the chase sequence for I∗Σ and MSA(Σ).

A(∗) R(∗, cr1) R(cr1 , cr3) D(cr1 , cr3)

B(∗) R(∗, cr3) D(cr3)

C(∗) B(cr1) S(cr1 , cr3)

D(∗) C(cr3) D(∗, cr3)

R(∗, ∗) S(∗, cr1) D(∗, cr1)

S(∗, cr3)

Fr1(cr1)

Fr3(cr3)

The result of the chase does not contain C, and so Σ is universally MSA. ♦

Note that MSA(Σ) is equivalent to a set of datalog rules: the only minor difference is
that the rules in MSA(Σ) can contain several head atoms, but such rules can clearly be
transformed into equivalent datalog rules. Thus, MSA can be checked using a datalog rea-
soner. This connection with datalog and the complexity results by Dantsin, Eiter, Gottlob,
and Voronkov (2001) for checking entailment of a ground atom in a datalog program provide
us with the upper complexity bound for checking MSA in Theorem 13. The complexity of
datalog reasoning is O(r · nv) where r is the number of rules, v is the maximum number of
variables in a rule, and n is the size of the set of facts that the rules are applied to; thus,
checking MSA should be feasible if the rules in Σ are ‘short’ and so v is ‘small’.

Theorem 13. For Σ a set of rules, deciding whether Σ is MSA w.r.t. an instance I is in
ExpTime, and deciding whether Σ is universally MSA is ExpTime-hard. The two problems
are in coNP and coNP-hard, respectively, if the arity of the predicates in Σ is bounded.

Proof. (Membership) Let Σ′ = MSA(Σ), and note that Σ is MSA w.r.t. I if and only if
I ∪ Σ′ 6|= C if and only if C 6∈ I∞Σ′ . The total number of atoms occurring in I∞Σ′ is p ·ca, where
p is the number of predicates, c is the number of constants, and a is the maximum arity of
the predicates in Σ′; this number is clearly exponential if a is not bounded. The rest of the
proof is the same as in Theorem 8.

Assume now that a is bounded; then the number of ground atoms in I∞Σ′ becomes poly-
nomial. Furthermore, by the definition of the chase, C ∈ I∞Σ′ if and only if there exist a se-
quence of rules r1, . . . , rn of the form ri = ϕi → ψi and a sequence of substitutions σ1, . . . , σn
such that ϕσi ⊆ I ∪ {ψjσj | j < i} ⊆ I∞Σ′ for each 1 ≤ i ≤ n and ψnσn = C. Clearly, we can
assume that n ≤ p · ca, which is polynomial. Thus, we can guess the two sequences in non-
deterministic polynomial time, and we can check the required property in polynomial time.
Thus, I ∪ Σ′ |= C can be checked in nondeterministic polynomial time, so checking whether
Σ is MSA w.r.t. I is in coNP.

758

Acyclicity Notions for Existential Rules

(Hardness) Let Σ be a set of datalog rules, let I be an instance, and let Q be ground
atom. Checking whether I ∪ Σ |= Q is ExpTime-complete in general (Dantsin et al., 2001).
Furthermore, the problem is NP-hard if the arity of predicates is bounded: a rule in Σ can
encode an arbitrary Boolean conjunctive query with atoms of bounded arity but arbitrarily
many variables, for which answering is well known to be NP-hard.

Let Σ4 and I4 be obtained from Σ as in the proof of Theorem 8; then, I ∪ Σ |= Q if and
only if I4 ∪ Σ4 |= B(a), and the set of rules Ω obtained from Σ4 as specified in Lemma 7 is
universally MFA if and only if I4 ∪ Σ4 6|= B(a). Finally, the only existential variable in Ω
occurs in a rule of the form (23), so it is straightforward to see that Ω is universally MFA
if and only if T ′ is universally MSA.

Before concluding this section, we present Theorem 14 and Example 15, which together
show that MFA is strictly more general than MSA.

Theorem 14. If a set of rules Σ is MSA (w.r.t. an instance I), then Σ is MFA (w.r.t. I)
as well.

Proof. Let Σ1 = MFA(Σ) and let Σ2 = MSA(Σ). Furthermore, let h be the mapping of
ground terms to constants defined such that h(t) = cir if t is of the form f ir(. . .), and h(t) = t
if t is a constant; for an atom A = P (t1, . . . , tn), let h(A) = P (h(t1), . . . , h(tn)); and for an
instance I, let h(I) = {h(A) | A ∈ I}. Finally, let I0

Σ1
, I1

Σ1
, . . . be the chase sequence for I

and Σ1, and let I0
Σ2
, I1

Σ2
, . . . be the chase sequence for I and Σ2. Note that sk(Σ2) = Σ2

differs from sk(Σ1) only in that the former contains the constant cir in place of each func-
tional term f ir(~x). Please note that, although our definition of the chase applies rules with
function symbols after rules without function symbols, one can clearly construct the chase
of the function-free set of rules Σ2 using any order of rule applications, including the one
corresponding to the order of rule applications in the chase of Σ1. Assuming this slight
modification, one can show by a straightforward induction on i that h(IiΣ1

) ⊆ IiΣ2
for each

i; this implies h(I∞Σ1
) ⊆ I∞Σ2

. Consequently, C 6∈ I∞Σ2
clearly implies C 6∈ I∞Σ1

; hence, if Σ is
MSA, then Σ is MFA as well, as required.

Example 15. Let Σ be the set of rules (28)–(31).

r1 = A(x)→ ∃y.R(x, y) ∧B(y) (28)

r2 = B(x)→ ∃y.S(x, y) ∧ T (y, x) (29)

r3 = A(z) ∧ S(z, x)→ C(x) (30)

r4 = C(z) ∧ T (z, x)→ A(x) (31)

It is straightforward to check that Σ is universally MFA, but not universally MSA. ♦

3.4 Acyclicity Notions and Normalisation

As mentioned in Section 2.5, existential rules are often normalised into a particular form;
however, this cannot destroy acyclicity: if a set of rules Σ is MFA, then each set of rules
obtained from Σ by normalisation is MFA as well. This claim involves certain technical
assumptions about the treatment of equality, which is why we postpone a formal proof
of this statement until Section 5. Next, however, we show that normalisation can have a
positive effect on acyclicity.

759

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Example 16. Let Σ be the set containing only the following rule:

A(x)→ ∃y.[B(x) ∧A(y)] (32)

As specified in Section 2.2, this rule is skolemised as follows, which causes that the skolem
chase of Σ and instance I = {A(a)} does not terminate.

A(x)→ B(x) ∧A(f(x)) (33)

Note, however, that atoms B(x) and A(y) in the head of the rule do not share variables,
so we can normalise this rule as follows, where Q is a fresh predicate of zero arity:

A(x)→ B(x) ∧Q (34)

Q→ ∃y.A(y) (35)

It is straightforward to check that this normalised set of rules is MFA; in fact, the normalised
set of rules is even JA. Intuitively, normalisation, as defined in Section 2.5, ensures that
each functional symbol introduced during normalisation depends on as few variables in the
rule as possible. ♦

Normalisation, however, can have a negative effect on universal termination, as shown
by the following example.

Example 17. Let Σ be the set containing only the following rule:

C(z) ∧R(z, x) ∧B(x)→ ∃y1∃y2.[R(x, y1) ∧R(y1, y2) ∧B(y2)] (36)

One can readily check that Σ is universally MFA. Now let Σ′ be the following set of rules,
which is obtained by replacing conjunction R(y1, y2) ∧B(y2) in the rule head with Q(y1):

C(z) ∧R(z, x) ∧B(x)→ ∃y1.[R(x, y1) ∧Q(y1)] (37)

Q(y1)→ ∃y2.[R(y1, y2) ∧B(y2)] (38)

Let f1 and f2 be function symbols used to skolemise the existential quantifier in rule (37)
and (38), respectively. Since Q(∗) ∈ I∗Σ′, the chase of Σ′ and I∗Σ′ derives R(∗, f2(∗)) and
B(f2(∗)); but then, these facts, C(∗), and rule (37) derive Q(f1(f2(∗))), after which rule
(38) derives R(f1(f2(∗)), f2(f1(f2(∗)))) and B(f2(f1(f2(∗)))). The chase of Σ′ and I∗Σ′ thus
contains a cyclic term, so Σ′ is not universally MFA.

Intuitively, this problem occurs because the critical instance I∗Σ′ for Σ′ also instantiates
the predicate Q introduced during normalisation. Such predicates, however, cannot occur in
arbitrary input instances, so we can use the critical instance for Σ. Since Q(∗) 6∈ I∗Σ, the
skolem chase of Σ′ and I∗Σ does not derive a cyclic term, from which we can conclude that
the skolem chase of Σ′ terminates on each instance I that contains facts constructed using
only the predicates occurring in Σ. ♦

4. Relationship with Known Acyclicity Notions

Many acyclicity notions have been proposed in the literature, but the relationships between
them have been only partially investigated. We next investigate the relationship between
MFA, MSA, and the acyclicity notions known to us, and we produce a detailed picture of
their relative expressiveness. We show that MFA and MSA generalise most of these notions.

760

Acyclicity Notions for Existential Rules

4.1 Acyclicity in Databases

Acyclicity notions have been considered in databases in data integration and data exchange
scenarios. Weak acyclicity (Fagin et al., 2005) was one of the first such notions, and it has
spurred on the research into more sophisticated notions for ensuring chase termination.

4.1.1 Super-Weak Acyclicity

Marnette (2009) proposed super-weak acyclicity (SWA), which generalises weak acyclicity
provided that the rules are equality-free. We next recapitulate the definition of SWA, and
then we show that MSA and MFA are strictly more general than SWA.

Definition 18. Let Σ be a set of existential rules in which no variable occurs in more than
one rule, and let θsk be the substitution used to skolemise the rules in Σ.2 A place is a pair
〈A, i〉 where A is an n-ary atom occurring in a rule in Σ and 1 ≤ i ≤ n. A set of places P ′

covers a set of places P if, for each place 〈A, i〉 ∈ P , a place 〈A′, i′〉 ∈ P ′ and substitutions
σ and σ′ exist such that Aσ = A′σ′ and i = i′. Given a variable w occurring in a rule
r = ϕ→ ∃~y.ψ, sets of places In(w), Out(w), and Move(w) are defined as follows:

• set In(w) contains each place 〈R(~t), i〉 such that R(~t) ∈ ϕ and ti = w;

• set Out(w) contains each place 〈R(~t)θsk, i〉 such that R(~t) ∈ ψ and ti = w; and

• set Move(w) is the smallest set of places such that

– Out(w) ⊆ Move(w) and

– Out(w′) ⊆ Move(w) for each variable w′ that is universally quantified in some
rule in Σ such that Move(w) covers In(w′).

The SWA dependency graph SWA(Σ) of Σ contains a vertex for each rule of Σ, and an
edge from a rule r ∈ Σ to a rule r′ ∈ Σ if a variable x′ occurring in both the body and the
head of r′ and an existentially quantified variable y occurring in the head of r exists such
that Move(y) covers In(x′). Set Σ is super-weakly acyclic (SWA) if SWA(Σ) is acyclic.

Marnette (2009) uses a slightly different definition: the notation for places is the same
as our notation for positions; a variable may occur in more than one rule so sets In(w),
Out(w), and Move(w) are defined w.r.t. a rule and a variable; and a rule trigger relation is
used instead of the SWA dependency graph. For simplicity, Definition 18 introduces SWA
in the same style as JA; however, both definitions capture the same class of rules.

The following theorem shows that MSA is more general than SWA. Furthermore, in
Example 12 we argued that the set of rules Σ from Example 1 is MSA, and one can readily
check that Σ is not SWA. Consequently, MSA is strictly more general than SWA.

Theorem 19. If a set of rules Σ is SWA, then Σ is universally MSA.

2. Substitution θsk is unique for each rule in Section 2.2; however, since each variable in Σ occurs in at most
one rule, w.l.o.g. we can take θsk as the substitution used to skolemise all the rules in Σ.

761

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Proof. Let Σ′ = MSA(Σ), let I0, I1, . . . be the chase sequence for I∗Σ and Σ′, and let I∞ be the
chase of I∗Σ and Σ′. Furthermore, let ρ be the function that maps constants to themselves and
that maps ground functional terms as ρ(f ir(~t)) = cir, where f ir and cir were introduced in Sec-
tion 2.2 and Definition 11, respectively. Finally, let ρ(P (t1, . . . , tn)) = P (ρ(t1), . . . , ρ(tn)).

We next prove the following property (�): for each rule r ∈ Σ, each existentially quanti-
fied variable yi occurring in r, each P (~t) ∈ I∞ where P 6∈ {S,D,C}, and each tj ∈ ~t such that
tj = cir, a substitution τ and a place 〈A, j〉 ∈ Move(yi) exist such that P (~t) = ρ(Aτ). The
proof is by induction on the length of the chase. Since I0 = I∗Σ does not contain a constant
of the form cir, property (�) holds vacuously for I0. Assume now that property (�) holds for
some Ik−1, and consider an arbitrary rule r ∈ Σ, an existentially quantified variable yi in r,
a fact P (~t) ∈ Ik \ Ik−1 with P 6∈ {S,D,C}, and a term tj ∈ ~t such that tj = cir. Fact P (~t) is
derived in Ik from the head atom H of some rule r1 ∈ MSA(Σ). Let σ be the substitution
used in the rule application; clearly, we have Hσ = P (~t). Furthermore, let r2 ∈ Σ be the rule
such that r1 = MSA(r2), let r3 = sk(r2), and let H3 be the head atom of r3 that corresponds
to H; clearly, we have ρ(H3σ) = P (~t). Now if H has cir in position j, then r = r1 since r1

is the only rule that contains cir; thus, 〈H3, j〉 ∈ Out(yi) ⊆ Move(yi), so property (�) holds.
Otherwise, H contains at position j a universally quantified variable x such that σ(x) = cir.
Let B1, . . . , Bn be the body atoms of r1 that contain x; clearly, {B1σ, . . . , Bnσ} ⊆ Ik−1.
All these atoms satisfy the induction assumption, so for each Bm ∈ {B1, . . . , Bn} and each
` such that Bm contains variable x at position `, a place 〈B′m, `〉 ∈ Move(yi) and substitu-
tion τm exist such that Bmσ = ρ(B′mτ

m). Let σ′ be the substitution obtained from σ by
setting σ′(w) = τm(w) for each variable w for which τm(w) is a functional term; clearly,
Bmσ

′ = B′mτ
m. But then, Move(yi) covers In(x); hence, by the definition of Move, we have

that 〈H3, j〉 ∈ Move(yi), so property (�) holds.
We additionally prove the following property (♦): if S(cir, c

i′
r′) ∈ I∞ for some i and i′,

then SWA(Σ) contains an edge from r to r′. Consider an arbitrary such fact, let yi be the
existentially quantified variable of r corresponding to cir, and let k be the smallest integer
such that S(cir, c

i′
r′) ∈ Ik. Clearly, S(cir, c

i′
r′) is derived in Ik from the head atom S(x, ci

′
r′)

of rule r′. Let σ be the substitution used in the rule application; thus, σ(x) = cir. Let
B1, . . . , Bn be the body atoms of r that contain x; clearly, we have {B1σ, . . . , Bnσ} ⊆ Ik−1.
All these atoms satisfy property (�), so for each Bm ∈ {B1, . . . , Bn} and each ` such that
Bm contains variable x at position `, a place 〈B′m, `〉 ∈ Move(yi) and substitution τm exist
such that Bmσ = ρ(B′mτ

m). But then, as in the previous paragraph we have that Move(yi)
covers In(x), so SWA(Σ) contains an edge from r to r′.

Assume now that Σ is not MSA, so C ∈ I∞; then {Fir(t),D(t, t′),Fir(t
′)} ⊆ I∞ holds for

some Fir due to rules (20). But then, since predicate Fir occurs in Σ′ only in an atom Fir(c
i
r),

we have t = t′ = cir. Finally, since D is axiomatised in Σ′ as the transitive closure of S,
clearly SWA(Σ) contains a path from r to itself, and so Σ is not SWA.

The rule set in Example 1 is MSA but not SWA. Furthermore, it is known that SWA is
more general than JA, and the two notions differ only if at least one rule contains a body
atom in which at least one variable occurs more than once (Krötzsch & Rudolph, 2013).
The following example shows that SWA is strictly more general than JA.

Example 20. Let Σ be the set of the following rules:

r1 = A(x1)→ ∃y.R(x1, y) ∧R(y, x1) ∧R(x1, x1) (39)

762

Acyclicity Notions for Existential Rules

r2 = R(x2, x2)→ B(x2) (40)

r3 = B(x3)→ A(x3) (41)

One can readily verify that Σ is SWA, but not JA. ♦

Theorem 19 holds even if Σ contains the equality predicate, but provided that the
axiomatisation of equality (cf. Section 2) is taken as part of the input. On such rule sets,
however, SWA, JA, MSA, and MFA are not strictly more general than WA. We discuss the
underlying problems, as well as possible solutions, in Section 5.

4.1.2 Acyclicity by Rewriting

Spezzano and Greco (2010) proposed an acyclicity notion called Adn-WA. Roughly speak-
ing, one first rewrites a set of rules Σ into another set of rules Σ′ by adorning the positions
in the predicates that can contain infinitely many terms during the chase; then, one checks
whether Σ′ is WA. The rewriting algorithm is rather involved, so we do not recapitulate its
definition; instead, we discuss it by means of an example. Spezzano and Greco used this
example to show that Adn-WA is not subsumed by SWA, but the same example also shows
that Adn-WA is not subsumed by MFA either.

Example 21. Let Σ be the set containing the following rules:

A(x)→ ∃y.R(x, y) (42)

B(z) ∧R(z, x)→ A(x) (43)

The transformation by Spezzano and Greco (2010) produces a set Σ′ that consists of
three groups of rules. The first group contains rules (44)–(47).

Ab(x)→ ∃y.Rbf (x, y) (44)

Bb(z) ∧Rbb(z, x)→ Ab(x) (45)

Bb(z) ∧Rbf (z, x)→ Af (x) (46)

Af (x)→ ∃y.Rff (x, y) (47)

For each n-ary predicate P , the transformation introduces predicates of the form Pm , where
m is an adornment—a string of length n of letters b or f . Intuitively, if m contains letter
b at position i, then during the chase construction the i-th position of Pm can contain only
constants occurring in an instance. Rules (44)–(47) were derived as follows. Rule (44)
is obtained from rule (42) by marking all positions of variable x with b, which effectively
creates a variant of the rule whose body is applicable only to constants. Variable y in the
head of rule (44) occurs under an existential quantifier, so the corresponding position is
marked with f . Rule (45) is obtained from rule (43) in an analogous way. But then, since
facts introduced by rule (44) can trigger an application of rule (43), the latter rule is marked
as rule (46); predicate Af in the head of rule (46) reflects the fact that variable x in the rule
body is instantiated by atom Rbf (z, x). Finally, facts derived by rule (46) can trigger an
application of rule (42), so the latter rule is instantiated as (47). At this point the algorithm
terminates: since no rule was instantiated with a marking Bf in the head, it is not possible
to use predicate Rff to mark the body of rule (43) in a consistent way.

763

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

The second group consists of rules (48)–(50), which ‘populate’ the adorned predicates
with the contents of an instance.

R(x1, x2)→ Rbb(x1, x2) (48)

A(x)→ Ab(x) (49)

B(x)→ Bb(x) (50)

The third group consists of rules (51)–(56), which ‘gather’ the content of each adorned
predicate Pm into a fresh output predicates P̂ .

Rbb(x1, x2)→ R̂(x1, x2) (51)

Rbf (x1, x2)→ R̂(x1, x2) (52)

Rff (x1, x2)→ R̂(x1, x2) (53)

Ab(x)→ Â(x) (54)

Af (x)→ Â(x) (55)

Bb(x)→ B̂(x) (56)

It is straightforward to check that Σ is not MFA. In contrast, Σ′ is WA; furthermore,
Spezzano and Greco (2010) show that, for each instance I and each vector of ground terms
~t, we have P̂ (~t) ∈ I∞Σ′ if and only if P (~t) ∈ I∞Σ . Since Σ′ is WA, I∞Σ′ is finite, and, by the
previously mentioned property, I∞Σ is finite as well. ♦

The following example shows that MFA is not subsumed by Adn-WA, which indicates
that MFA and Adn-WA are incomparable.

Example 22. Let Σ be the set containing the following rules:

r1 = A(x)→ ∃y.R(x, y) ∧B(y) (57)

r2 = S(z, x) ∧B(x)→ ∃y.S(x, y) (58)

The rules in the first group of the set Σ′ obtained by the transformation are shown below;
we do not show the rules in the second and the third group for the sake of brevity.

Ab(x)→ ∃y.Rbf (x, y) ∧Bf (y) (59)

Sbb(z, x) ∧Bb(x)→ ∃y.Sbf (x, y) (60)

Sbf (z, x) ∧Bf (x)→ ∃y.Sff (x, y) (61)

Sff (z, x) ∧Bf (x)→ ∃y.Sff (x, y) (62)

The last rule ensures that the WA dependency graph for Σ′ contains a special edge from
position Sff |2 to itself; thus, Σ′ is not WA, and therefore Σ is not Adn-WA. In contrast,
one can readily verify that Σ is MFA. ♦

Spezzano and Greco (2010) also proposed several optimisations of this transformation,
the discussion of which is out of scope of this paper. All of them can be seen as ‘unfolding’
the rules in Σ up to a certain number of chase steps. This seems close to an idea by Baget

764

Acyclicity Notions for Existential Rules

et al. (2011b), who propose to run the chase for some fixed number of steps before checking
for potential cycles. A similar effect could be obtained by extending the notion of MFA to
check for terms that contain a function symbol nested some fixed number of times.

Finally, note that the transformation by Spezzano and Greco (2010) is independent
from the notion used to check the acyclicity of the transformed rule set; hence, given an
arbitrary acyclicity notion X, one can define Adn-X in the obvious way. Given arbitrary
notions X and Y such that X ⊆ Y , it is obvious that Adn-X ⊆ Adn-Y ; consequently, we
have Adn-X 6⊆ MFA for each X such that WA ⊆ X. In contrast, however, it not obvious
whether the inclusion between Adn-X and Adn-Y is strict whenever the inclusion between
X and Y is strict, or whether MFA is contained in Adn-X for some X with WA ⊆ X.
Finally, we conjecture that X ⊆ Adn-X holds for an arbitrary notion X, but we do not
have a formal proof of this conjecture. Due to the complex nature of the rewriting, we
refrain from further analysis of these relationships.

4.1.3 Monitor Graph

Meier et al. (2009) propose an idea that is similar in spirit to MFA. The idea is to track
each chase step in an additional data structure called the monitor graph. If the chase is
infinite, then the monitor graph contains cycles of arbitrary length; conversely, if one can
show that the monitor graph does not contain a cycle of some fixed length, then the chase is
guaranteed to terminate. While this idea is closely related to MFA, note that the definition
of MFA is semantic; hence, one can use an arbitrary theorem proving technique to check
whether MFA(Σ) |= C. In contrast, the notion of a monitor graph is specifically tied to the
nonoblivious chase. It is well known that the result of the nonoblivious chase depends on
the order in which the rules applied; consequently, a set of rules can be identified as cyclic
or acyclic depending on the selected rule application strategy. Because of this dependence,
it is difficult to compare the monitor graph approach with other acyclicity notions.

4.2 Acyclicity in Knowledge Representation

Existential rules can capture knowledge representation formalisms such as Horn fragments
of description logics (see Section 6), conceptual graphs (Baget, 2004; Baget et al., 2011a),
and datalog± rules (Cal̀ı et al., 2010a), and so acyclicity notions allow for materialisation-
based query answering over knowledge bases. In this context, Baget (2004) and Baget et al.
(2011a) proposed the notion of acyclic graph rule dependencies (aGRD). Intuitively, aGRD
introduces a rule dependency relation ≺ for which r1 ≺ r2 means that an application of
rule r1 on an instance I can subsequently trigger an application of rule r2. If the relation
≺ is acyclic, then no rule can trigger itself so the skolem chase terminates on an arbitrary
instance. This can be formalised as follows.

Definition 23. The rule dependency relation ≺ ⊆ Σ× Σ on a set of rules Σ is defined
as follows. Let r1 = ϕ1 → ∃~y1.ψ1 and r2 = ϕ2 → ∃~y2.ψ2 be arbitrary rules in Σ, and let
sk(r1) = ϕ1 → ψ′1 and sk(r2) = ϕ2 → ψ′2. Then, r1 ≺ r2 if and only if there exist an instance
I, a substitution σ1 for all variables in sk(r1), and a substitution σ2 for all variables in sk(r2)
such that ϕ1σ1 ⊆ I, ϕ2σ2 6⊆ I, ϕ2σ2 ⊆ I ∪ ψ′1σ1, and ψ′2σ2 6⊆ I ∪ ψ′1σ1. Set Σ has an acyclic
graph of rules dependencies (aGRD) if the relation ≺ on Σ is acyclic.

765

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Definition 23 differs from the original definition by Baget (2004) in several ways. First,
Baget uses fresh nulls to capture the effect of existential quantifiers, whereas Definition 23
uses skolem functions; however, this does not change the resulting relation ≺ in any way.
Second, Baget does not require ψ′2σ2 6⊆ I ∪ ψ′1σ1. This condition intuitively ensures that
an application of r1 to I enables r2 to derive something new; analogous optimisations were
proposed by Deutsch et al. (2008) and Greco et al. (2012). It should be clear that Definition
23 is stronger than the one by Baget. To unify the notions used in various parts of this
paper, we included this optimisation into Definition 23; however, we nevertheless call the
resulting stronger notion aGRD.

The following example shows that aGRD, even in its weaker form as originally proposed
by Baget (2004), is not contained in SWA.

Example 24. Let Σ be the set consisting of the following rule:

r = A(z1, x, z2) ∧B(z2)→ ∃y1∃y2.A(x, y1, y2) (63)

To see that r ≺ r does not hold, consider the skolemisation r′ of r:

sk(r) = A(z1, x, z2) ∧B(z2)→ A(x, f1(x), f2(x)) (64)

Now let I be an arbitrary instance, and let σ1 and σ2 be arbitrary substitutions such that
{A(z1, x, z2)σ1, B(z2)σ1} ⊆ I and {A(z1, x, z2)σ2, B(z2)σ2} 6⊆ I. Since instance I contains
only constants, atom A(x, f1(x), f2(x))σ1 is of the form A(a, f1(a), f2(a)); but then, for
{A(z1, x, z2)σ2, B(z2)σ2} ⊆ I ∪ {A(a, f1(a), f2(a))} to hold, it must be that σ2(z2) = f2(a);
thus, B(z2)σ2 = B(f2(a)) should be contained in I, which is impossible since I is an instance
and thus does not contain functional terms. Note that the additional condition by Greco et al.
(2012) plays no role here. Thus, we have r 6≺ r, so Σ is aGRD even in the weaker form by
Baget (2004). However, one can easily check that Σ is not SWA. ♦

However, aGRD seems to be a rather weak notion: as the following example shows, even
a set of rules without existential quantifiers can be cyclic according to this criterion.

Example 25. Let Σ be the set consisting of the following rules:

r1 = A(x)→ B(x) (65)

r2 = B(x)→ C(x) (66)

r3 = C(x)→ A(x) (67)

To see that r1 ≺ r2, let I = {A(a)}, let σ = {x 7→ a}, and note that A(x)σ ∈ I, B(x)σ 6∈ I,
B(x)σ ∈ I ∪ {B(x)σ}, and C(x)σ 6∈ I ∪ {B(x)σ}. Analogously, by taking I = {B(a)} we get
r2 ≺ r3, and by taking I = {C(a)} we get r3 ≺ r1. Consequently, Σ is not aGRD. However,
Σ is obviously WA since it does not contain existentially quantified variables. ♦

Baget et al. (2011a) suggested that rule dependencies become more powerful if they are
combined with an arbitrary acyclicity notion X. Intuitively, the main idea is to use ≺ to
partition a set of rules into strongly connected components, and then check whether each
component is X; we call this notion X≺. This idea can be formalised as follows.

766

Acyclicity Notions for Existential Rules

Definition 26. Let Σ be a set of existential rules, and let ≺ be the rule dependency relation
on Σ. Relation ≺ is extended to arbitrary sets C ⊆ Σ and C ′ ⊆ Σ such that C ≺ C ′ if
and only if rules r ∈ C and r′ ∈ C ′ exist such that r ≺ r′. A dependency partition of Σ
is a sequence of sets Σ1, . . . ,Σn such that Σ =

⋃n
i=1 Σi, each Σi is a strongly connected

component of ≺, and Σj 6≺ Σi for all i and j such that 1 ≤ i < j ≤ n.
Let X be an arbitrary acyclicity notion. Then, Σ ∈ X≺ if a dependency partition

Σ1, . . . ,Σn of Σ exists such that, for each 1 ≤ i ≤ n, we have Σi ∈ X, or Σi consists of
a single rule ri such that ri 6≺ ri.

If Σ is aGRD, then each strongly connected component Σi contains a single rule ri such
that ri 6≺ ri. Now if Definition 26 did not consider the special case where Σi consists of a
single rule that does not depend on itself, then SWA≺ would not extend aGRD; for example,
the rule in Example 24 would not be in SWA≺. The extra condition in Definition 26 thus
ensures that aGRD is contained in X≺ regardless of the choice of X, and that aGRD can
be understood as ∅≺—the acyclicity notion obtained by extending the empty notion (i.e.,
the notion under which no rule set is acyclic) with rule dependencies.

We next present two simple results. Proposition 27 precludes inclusions between certain
acyclicity notions and will thus help us establish proper inclusions between many acyclicity
notions. Furthermore, Proposition 28 shows that combining an acyclicity notion contained
in SWA with rule dependencies creates a strictly stronger acyclicity notion; note that this
holds even for the weaker form of rule dependencies originally proposed by Baget (2004).

Proposition 27. Let X and Y be acyclicity notions such that X ⊆ Y . Then, X≺ ⊆ Y ≺.
Furthermore, if there exists a set Σ ∈ Y \X whose rule dependency relation has a cycle
containing all the rules from Σ, then Y 6⊆ X≺, Y ≺ 6⊆ X≺, and X≺ (Y ≺.

Proof. Relationship X≺ ⊆ Y ≺ is immediate from Definition 26. Assume now that there
exists a set of rules Σ ∈ Y \X whose rule dependency relation has a cycle containing all the
rules from Σ. By Definition 26, Σ 6∈ X implies Σ 6∈ X≺, and Σ ∈ Y implies Σ ∈ Y ≺. But
then, we clearly have Y 6⊆ X≺ and Y ≺ 6⊆ X≺, and the latter clearly implies X≺ (Y ≺.

Proposition 28. For each acyclicity notion X such that X ⊆ SWA, we have X (X≺ and
aGRD 6⊆ X.

Proof. Set Σ from Example 24 is in aGRD and thus in X≺; however, Σ is not in SWA and
hence not in X either.

MSA also does not contain aGRD; however, unlike for SWA, our claim depends on the
optimisation in Definition 23. An analysis of the relationship between MSA and the version
of rule dependencies originally proposed by Baget (2004) is out of scope of this paper.

Example 29. Let Σ be the set consisting of the following rules:

r1 = R(x1, x1) ∧ U(x1, z) ∧ U(x2, z)→ R(x1, x2) (68)

r2 = R(z, x)→ ∃y.T (x, y) (69)

r3 = T (z, x)→ ∃y.U(x, y) (70)

767

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

It is obvious that r1 ≺ r2, r1 6≺ r3, r2 6≺ r1, r2 6≺ r2, r2 ≺ r3, r3 6≺ r2, and r3 6≺ r3. We next
argue that r1 6≺ r1 and r3 6≺ r1, which implies that Σ is aGRD.

To see that r1 6≺ r1, assume that an application of r1 to an instance I produces an atom
of the form R(a, b); due to atom R(x1, x1) in the body of r1, we have R(a, a) ∈ I. Now let
I ′ = I ∪ {R(a, b)}; since R(a, a) ∈ I, the rule application derives ‘something new’ only if
a 6= b. Now assume that a substitution σ2 exists that makes r1 applicable to I ′ but not to I;
this rule application must ‘use’ the fact R(a, b), which implies that R(x1, x1)σ2 = R(a, b);
however, this is impossible since a 6= b. Consequently, we have r1 6≺ r1, and this holds even
for the version of rule dependencies by Baget (2004).

Furthermore, to see that r3 6≺ r1, assume that r3 is applicable to an instance I, and that
the rule application derives a fact of the form U(a, f(a)). Now let I ′ = I ∪ {U(a, f(a))},
and assume that a substitution σ2 exists that makes r1 applicable to I ′ but not to I; this
rule application must ‘use’ the fact U(a, f(a)), which implies that σ2(x1) = σ2(x2) = a and
σ2(z) = f(a). Furthermore, rule r1 is applicable only if R(a, a) ∈ I; but then, the rule appli-
cation does not derive ‘something new’ since R(x1, x2)σ2 = R(a, a). Consequently, we have
r3 6≺ r1; however, unlike in the previous paragraph, this claim depends on the optimisation
in Definition 23.

Consider now the chase of I∗Σ and MSA(Σ) as shown below (facts involving the predicates
D, Fr2, and Fr3 are omitted for clarity). The chase result contains C, so Σ is not in MSA,
and thus aGRD 6⊆ MSA; as a corollary, we also get MSA (MSA≺.

R(∗, ∗) T (∗, cr2) U(cr2 , cr3) R(∗, cr2) T (cr2 , cr2) C

T (∗, ∗) U(∗, cr3) S(cr2 , cr3) S(cr2 , cr2)

U(∗, ∗) S(∗, cr2)

S(∗, cr3)

Note that R(∗, cr2) is derived from R(∗, ∗), U(∗, cr3), and U(cr2 , cr3), where the latter two
facts are obtained from distinct instantiations of MSA(r3). Rule dependencies, however,
analyse rule applicability w.r.t. sk(r3), which is closer to the actual skolem chase. ♦

In contrast to this result, in Theorem 32 we will show that extending MFA with rule
dependencies does not create a stronger notion: MFA≺ coincides with MFA, which implies
that X≺ ⊆ MFA for each notion X such that X ⊆ MFA. Towards this goal, we show in
Lemma 30 that independent rule sets can be evaluated independently, and in Lemma 31
that a single rule that does not depend on itself can be applied only once.

Lemma 30. Let Σ1 and Σ2 be sets of existential rules such that Σ2 6≺ Σ1, and let F be a
set of ground facts not containing a function symbol in sk(Σ2). Then, F∞Σ1∪Σ2

= (F∞Σ1
)∞Σ2

.

Proof. Let F0 = F∞Σ1
; let F0, F1, . . . be the chase sequence for F0 and Σ2 where, for con-

venience, we assume each Fi to be obtained from Fi−1 by a single rule application (this
assumption is clearly w.l.o.g.); and let F ′ = (F0)∞Σ2

. By the definition of the skolem chase,
we clearly have F ′ ⊆ F∞Σ1∪Σ2

. Furthermore, assume that F∞Σ1∪Σ2
6⊆ F ′; then, a skolemised

rule r1 ∈ sk(Σ1) of the form r1 = ϕ1(~x1)→ ψ1(~x1) exists such that F ′ (r1(F ′). Fix the
smallest i such that Fi (r1(Fi) (we clearly have i > 0), and let σ1 be the substitution used
in the application of r1. Furthermore, let r2 ∈ sk(Σ2) be the skolemised rule of the form

768

Acyclicity Notions for Existential Rules

r2 = ϕ2(~x2)→ ψ2(~x2) that is used to derive Fi from Fi−1, and let σ2 be the substitution
used in the application of r2. Now consider an arbitrary term f(~x2) in the head of r2 and
assume that f(~x2)σ2 occurs in Fi−1; since the function symbol f is ‘private’ to r2, the head
of r2 must have been already instantiated for σ2; but then, ψ2σ2 ⊆ Fi−1, which contradicts
our assumption that ψ2σ2 ∈ Fi \ Fi−1. Thus, we have the following property (?):

for each term f(~x2) occurring in the head of r2, ground term f(~x2)σ2 does not
occur in Fi−1.

Finally, let δ be a function that maps each ground term in Fi−1 to a fresh distinct constant;
let I = δ(Fi−1); let σ′2 be the substitution defined by σ′2(w) = δ(σ2(w)) for each variable w
in r2; and let σ′1 be the substitution defined as follows for each variable w in r1:

• σ′1(w) = f(δ(~t)) if σ1(w) = f(~t) for f a function symbol ‘private’ to r2; and

• σ′1(w) = δ(σ1(w)) otherwise.

We clearly have ϕ2σ
′
2 ⊆ I and ψ2σ

′
2 6⊆ I; furthermore, by (?), we also have ϕ1σ

′
1 ⊆ I ∪ ψ2σ

′
2

and ψ1σ
′
1 6⊆ I ∪ ψ2σ

′
2. Moreover, ϕ1σ

′
1 6⊆ I follows from our assumption that i is the smallest

integer such that Fi (r1(Fi). But then, by Definition 23, we have r2 ≺ r1 and, consequently,
Σ2 ≺ Σ1 as well, which is a contradiction.

Lemma 31. Let Σ = {r} be a singleton rule set such that r 6≺ r, and let F be a set of facts
not containing a function symbol in sk(Σ). Then, F∞Σ = Σ(F).

Proof. Let F0 = F , and let F0, F1, . . . be sets of facts such that each Fi+1 is the union of
Fi with the result of a distinct single application of r to F0; clearly,

⋃
i Fi = Σ(F0). Now

assume that
⋃
i Fi (Σ(

⋃
i Fi); then analogously to the proof of Lemma 30, one can show

that r ≺ r, which is a contradiction; we omit the details for the sake of brevity.

Theorem 32. Let Σ be an arbitrary set of rules and let I be an arbitrary instance. If Σ is
MFA≺ w.r.t. I, then Σ is also MFA w.r.t. I.

Proof. Assume that Σ is in MFA≺; let I be an arbitrary instance; let Σ1, . . . ,Σn be a
dependency partition of Σ; let Υ0 = ∅ and I0 = I; and, for each 1 ≤ i ≤ n, let Υi =

⋃i
`=1 Σ`

and Ii = (Ii−1)∞Σi
. By the definition of dependency partitions, we have that Σi 6≺ Υi−1 holds

for each 1 ≤ i ≤ n. We next show that, for each 0 ≤ i ≤ n, the following two properties hold:

(a) Ii = (I0)∞Υi
, and

(b) Ii does not contain a cyclic term.

Set I0 does not contain functional terms and hence it trivially satisfies (a) and (b). Now
consider arbitrary 0 < i < n such that Ii−1 satisfies (a) and (b). By the induction assump-
tion, Lemma 30, Σi 6≺ Υi−1, and Υi = Σi ∪Υi−1, we have that (I0)∞Υi

= ((I0)∞Υi−1
)∞Σi

; thus,
Ii satisfies (a). To see that Ii satisfies (b), note that no function symbol used to skolemise
the rules in Σi is used to skolemise the rules in Υi−1; we call this property (?). Now there
are two ways to compute Ii.

• Assume that Σi = {ri} such that ri 6≺ ri. By Lemma 31, we have Ii = ri(Ii−1); but
then, Ii does not contain a cyclic term due to (?).

769

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

• If Σi is MFA, then Ii does not contain a cyclic term due to (?) and Proposition 5.

From the above claim we have that In = I∞Υn
= I∞Σ and that In does not contain a cyclic

term; but then, Σ is MFA w.r.t. I by Proposition 5.

Combinations of rule dependencies with acyclicity notions have also been considered in
databases: Deutsch et al. (2008) proposed a notion of stratification, and Meier et al. (2009)
further developed this idea and proposed a notion of c-stratification. Roughly speaking, each
such notion checks whether all strongly connected components of a certain rule dependency
graph are WA. The rule dependency notions, however, were developed for the nonoblivious
chase and are thus different from Definition 23, as illustrated by the following rule:

r = R(z, x)→ ∃y.R(x, y) ∧R(y, y) (71)

The skolem chase on the critical instance for r is infinite, and r ≺ r by Definition 23. In
contrast, rule r does not pose problems for the nonoblivious chase. In particular, assume
that the rule is matched to an atom R(t1, t2), and that it derives R(t2, t3) and R(t3, t3).
Then, rule r is not applicable to R(t2, t3) or R(t3, t3) since in either case the head atom
is satisfied; hence, the rule dependency graphs by Deutsch et al. and Meier et al. are both
empty. These results can be summarised as follows: if a rule set Σ satisfies the notion by
Deutsch et al., then for each instance I there exists a finite nonoblivious chase sequence;
furthermore, if Σ satisfies the notion by Meier et al., then for each instance I all chase
sequences (regardless of the rule application strategy) are finite. Meier (2010) discusses in
detail the subtle differences between these notions. Since these notions consider a different
chase variant, we do not discuss them any further in this paper.

4.3 Acyclicity and Logic Programming

Acyclicity notions have also been considered in the context of disjunctive logic programs
with function symbols under the answer set semantics, with the goal of ensuring that a given
program has finitely many answer sets, all of which are finite. All of these notions must deal
with disjunction and nonmonotonic negation, which is one of the main differences to the
notions considered thus far. All notions from logic programming, however, are applicable to
rules without disjunction and nonmonotonic negation, in which case they ensure termination
of the skolem chase. Therefore, in this section we compare such specialisations of the
acyclicity notions from logic programming with aGRD, WA, JA, SWA, MSA, and MFA.
We simplify all definitions so that they apply only to skolemised existential rules—that is, we
do not present parts of definitions that handle disjunctions in the head and nonmonotonic
negation and function symbols in the body.

4.3.1 Finite Domain Notion

Calimeri et al. (2008) proposed a finite domain (FD) notion. We next recapitulate this
definition, but we do so in the style of Greco et al. (2012), which will come useful in Section
4.3.3 when we introduce Γ-acyclicity. Both approaches use an argument graph to determine
possible ways for propagating ground terms between positions during chase. The definition
of the argument graph is the same as that of the WA dependency graph (see Section 2.4),

770

Acyclicity Notions for Existential Rules

but without the distinction between regular and special edges. To simplify the presentation,
we consistently use the WA dependency graph instead of the argument graph.

Definition 33. Let Σ be a set of rules. A position P |i is Σ-recursive with a position Q|j
if the WA dependency graph WA(Σ) contains a cycle (consisting of regular and/or special
edges) going through P |i and Q|j. The set PosFD(Σ) of finite domain positions of Σ is the
largest set of positions in Σ such that, for each position P |i ∈ PosFD(Σ), each rule r ∈ Σ of
the form r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y), and each head atom of r of the form P (~t), the following
conditions are satisfied:

• if the i-th component of ~t is a variable x ∈ ~x, then PosB(x) ∩ PosFD(Σ) 6= ∅; and

• if the i-th component of ~t is a variable y ∈ ~y, then, for each variable x ∈ ~x, some
position Q|j ∈ PosB(x) ∩ PosFD(Σ) exists that is not Σ-recursive with P |i.

Set Σ is FD if PosFD(Σ) coincides with the set of all positions in Σ.

Note that the notion of Σ-recursive positions introduced above is symmetric: if P |i is
Σ-recursive with Q|j , then Q|j is also Σ-recursive with P |i. Furthermore, note that Calimeri
et al. (2008) defined FD as follows:

A set of rules Σ is FD if, for each rule r = ϕ(~x, ~z)→ ∃~y.ψ(~x, ~y) in Σ, each atom
Q(~t) in the head of r, each j-th term of ~t that is an existential variable y, and
each variable x ∈ ~x, there exists a position P |i ∈ PosB(x) such that Q|j is not
Σ-recursive with P |i.

Conditions in the above definition clearly correspond to the conditions in Definition 33; but
then, since PosFD(Σ) was defined as the maximal set satisfying these conditions, the two
definitions of FD coincide.

We next show that WA is strictly contained in FD. To this end, we first prove that WA
is contained in FD, and then we present an example showing that the inclusion is strict.

Proposition 34. If a set of rules Σ is WA, then Σ is FD.

Proof. Let Σ be a set of rules that is not FD. Then, there exist a rule r ∈ Σ, an atom Q(~t)
in the head of r, a j-th term of ~t equal to an existential variable y, and a variable x ∈ ~x such
that each position P |i ∈ PosB(x) is Σ-recursive with Q|j . The set PosB(x) is not empty (~x
contains precisely those variables occurring both in the body and the head of the rule),
so choose an arbitrary position P |i ∈ PosB(x). The WA dependency graph WA(Σ) then
contains a special edge from P |i to Q|j . Furthermore, since Q|j is Σ-recursive with P |i,
graph WA(Σ) contains a cycle going through P |i and Q|j . Thus, WA(Σ) clearly contains a
cycle containing a special edge, so Σ is not WA.

Example 35. Let Σ be the set containing rules (72) and (73).

r1 = R(z, x) ∧A(x)→ ∃y.S(x, y) (72)

r2 = S(x1, x2)→ R(x1, x2) (73)

771

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Set Σ is not WA since the WA dependency graph contains a special edge from R|2 to S|2 and
a regular edge from S|2 to R|2. However, Σ is FD because position S|2 is not Σ-recursive
with A|1 ∈ PosB(x). Together with Proposition 34, we can conclude that WA (FD.

In addition, we have r1 ≺ r2 and r2 ≺ r1. In Section 4.3.2 we will prove that FD ⊆ JA;
hence, FD (FD≺, WA≺ (FD≺, and FD 6⊆WA≺ from Propositions 27, 28, and 34. ♦

4.3.2 Argument-Restricted Rule Sets

Lierler and Lifschitz (2009) proposed the notion of argument-restricted rule sets, whose
definition we summarise next.

Definition 36. An argument ranking for a set of rules Σ is a function α that assigns a
nonnegative integer to each position in Σ such that the following conditions are satisfied for
each rule r ∈ Σ, each universally quantified variable x in r, and each existentially quantified
variable y in r:

1. for each P |i ∈ PosH(x), some Q|j ∈ PosB(x) exists such that α(P |i) ≥ α(Q|j); and

2. for each P |i ∈ PosH(y), some Q|j ∈ PosB(x) exists such that α(P |i) > α(Q|j).

Set Σ is argument restricted (AR) if an argument ranking for Σ exists.

An argument-restricted set of rules has a finite skolem chase on an arbitrary instance:
by a straightforward induction on the chase sequence, one can show that dep(ti) ≤ α(P |i)
for each ground fact P (t1, . . . , tn) derived by the chase and each 1 ≤ i ≤ n.

We next show that JA is strictly more general than AR. Towards this goal, we first
prove an auxiliary lemma that establishes a relationship between the set Move from the
definition of JA and an argument ranking; next, we use this lemma to prove that AR ⊆ JA;
and finally we present an example that shows this inclusion to be proper.

Lemma 37. Let Σ be a set of rules, let α be an argument ranking for Σ, let y be an
existentially quantified variable in Σ, and let Move(y) be the set of positions used in the
definition of JA. For each position P |i ∈ Move(y), some position Q|j ∈ PosH(y) exists such
that α(P |i) ≥ α(Q|j) holds.

Proof. Let y be an existentially quantified variable occurring in some rule r ∈ Σ, and
consider an arbitrary position P |i ∈ Move(y). We prove the claim by induction on the
definition of Move(y). The base case when P |i ∈ PosH(y) is trivial. Assume now that
P |i ∈ PosH(x) for some variable x occurring in a rule r′ ∈ Σ, and that PosB(x) ⊆ Move(y),
so P |i needs to be added to Move(y). By the definition of an argument ranking and since
P |i ∈ PosH(x), position P ′|` ∈ PosB(x) exists such that α(P |i) ≥ α(P ′|`). But then, since
P ′|` ∈ PosB(x) ⊆ Move(y), by the induction hypothesis we have that position Q|j ∈ PosH(y)
exists such that α(P ′|`) ≥ α(Q|j). Thus, α(P |i) ≥ α(Q|j) holds, as required.

Theorem 38. If a set of rules Σ is AR, then Σ is JA.

Proof. Assume that Σ is AR, let α be an argument ranking for Σ, and let JA(Σ) be the JA
dependency graph for Σ. We next prove the following claim: for each edge in JA(Σ) from
a variable y1 to a variable y2, and for each position Q|j ∈ PosH(y2), there exists a position

772

Acyclicity Notions for Existential Rules

P |i ∈ PosH(y1) such that α(P |i) < α(Q|j). Consider an arbitrary edge from y1 to y2 in
JA(Σ) and an arbitrary position Q|j ∈ PosH(y2). By the definition of the JA dependency
graph, then the rule r that contains y2 also contains a universally quantified variable x such
that x occurs in the head of r and PosB(x) ⊆ Move(y1). Since α is an argument ranking for
Σ, some position P ′|` ∈ PosB(x) exists such that α(P ′|`) < α(Q|j). Since P ′|` ∈ Move(y1),
by Lemma 37 position P |i ∈ PosH(y1) exists such that α(P |i) ≤ α(P ′|`). Thus, we have
α(P |i) < α(Q|j), and so our claim holds. But then, this claim clearly implies that the JA
dependency graph JA(Σ) is acyclic, and therefore Σ is JA.

Example 39. Let Σ be the set consisting of the following rules:

r1 = R(z1, x1)→ ∃y1.S(x1, y1) (74)

r2 = R(z2, x2)→ ∃y2.S(y2, x2) (75)

r3 = S(x3, x4)→ T (x3, x4) (76)

r4 = T (x5, x6) ∧ T (x6, x5)→ R(x5, x6) (77)

Let α be an argument ranking for Σ. Then, α(R|2) < α(S|2) due to (74); α(R|2) < α(S|1)
due to (75); α(S|1) ≤ α(T |1) and α(S|2) ≤ α(T |2) due to (76); and α(T |2) ≤ α(R|2) or
α(T |1) ≤ α(R|2) due to (77). Together, these observations are contradictory, so such α can-
not exist and Σ is not AR. In contrast, Move(y1) = {S|2, T |2} and Move(y2) = {S|1, T |1},
and so Σ is JA.

In addition, we have r1 ≺ r3, r2 ≺ r3, r3 ≺ r4, r4 ≺ r1, and r4 ≺ r2; hence, we have
AR (AR≺, AR≺ (JA≺, and JA 6⊆ AR≺ from Theorem 38 and Propositions 27 and 28. ♦

Lierler and Lifschitz (2009, Thm. 4) proved that AR is strictly more general than FD.
We next present an example that shows FD (AR, but that also settles the relationships
between FD≺ and AR≺.

Example 40. Let Σ be the set consisting of the following rules:

r1 = A(x)→ ∃y.R(x, y) (78)

r2 = R(x1, x2)→ S(x1, x2) (79)

r3 = S(z, x) ∧B(x)→ A(x) (80)

The WA dependency graph for Σ contains a special edge from A|1 to R|2, as well as regular
edges from R|2 to S|2 and from S|2 to A|1; thus, R|2 is Σ-recursive with A|1. Consequently,
rule (78) cannot satisfy the conditions in Definition 33, so we have R|2 6∈ PosFD(Σ), and
thus Σ is not FD. In contrast, Σ is AR, as evidenced by the following argument ranking:

α = {A|1 7→ 0, B|1 7→ 0, R|1 7→ 0, R|2 7→ 1, S|1 7→ 0, S|2 7→ 1}

In addition, we have r1 ≺ r2, r2 ≺ r3, and r3 ≺ r1; hence, FD (FD≺, FD≺ (AR≺,
and AR 6⊆ FD≺ from Propositions 27 and 28. ♦

Finally, we note that λ-restricted programs by Gebser et al. (2007) and ω-restricted
programs by Syrjänen (2001) are both included in FD and AR; thus, when restricted to
skolemised existential rules, these notions are also included in JA.

773

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

4.3.3 Γ-Acyclicity

Greco et al. (2012) recently proposed the notion of Γ-acylicity for logic programs with
function symbols. The original definition of Γ-acyclicity is rather complex, so we next
present a simplified version of Γ-acyclicity that is applicable to existential rules. To unify
the naming style for the notions in this paper, we often write Γ-acyclicity as ΓA.

Greco et al. (2012) introduce a notion of an activation graph, which tracks whether a rule
can trigger another rule. This notion is closely related to the notion of rule dependencies
from Definition 23, but with the requirement that I is an arbitrary finite set of ground facts
(possibly containing functional terms). To understand why the latter is needed in logic
programming, consider the following logic program:

r1 = A(x) ∧B(x)→ A(f(x)) (81)

r2 = A(x) ∧B(x)→ B(f(x)) (82)

If we restrict the set I in Definition 23 to be an instance, then r1 6≺ r2 and r2 6≺ r1; however,
the skolem chase of r1, r2, and facts A(a) and B(a) is infinite. Intuitively, r1 and r2 contain
the same function symbol f , so to determine whether an application of r1 can trigger an
application of r2, we must allow the set I in Definition 23 to contain facts such as B(f(a)).
In our setting, however, function symbols are introduced by skolemisation and are thus
‘private’ to each rule, which allows us to restrict the set I in Definition 23 to facts without
functional terms. Thus, in the rest of this section, we simply reuse the rule dependency
relation ≺ from Definition 23, which gives us a slightly stronger version of ΓA for existential
rules than the one proposed by Greco et al. (2012).

Furthermore, Greco et al. (2012) handle logic programming rules with functional terms
in the body. Such rules, however, are not considered in this paper, which allows us to omit
the definition of a labelled argument graph and simplify the notion of a propagation graph
to a subset of the WA dependency graph.

We are now ready to present a simplified version of Γ-acyclicity that is applicable to
existential rules.

Definition 41. Let Σ be a set of rules. The rule dependency relation ≺ is taken from
Definition 23, and the set of finite domain positions PosFD(Σ) is taken from Definition 33.

The set of safe positions of Σ, written PosS(Σ), is the least set of the positions of Σ
such that PosFD(Σ) ⊆ PosS(Σ), and P |i ∈ PosS(Σ) if and only if, for each rule r ∈ Σ, at
least one of the following conditions is satisfied:

• if P occurs in the head of r, then ≺ does not contain a cycle going through r, or

• for each atom P (~t) in the head of sk(r) and each variable x that occurs in i-th com-
ponent of ~t, we have PosB(x) ∩ PosS(Σ) 6= ∅.

A position is affected if it is not safe. The propagation graph PG(Σ) for Σ has the
affected positions of Σ as vertices, and the edges of PG(Σ) are defined as in weak acyclicity,
but restricted to affected positions. The set Σ is Γ-acyclic (ΓA) if PG(Σ) does not contain
a cycle that involves a special edge.

774

Acyclicity Notions for Existential Rules

In order to relate ΓA to the notions considered thus far, we first establish some contain-
ment relationships. It is obvious from Definition 41 that FD ⊆ ΓA: if all positions in Σ are
finite domain, then they are also safe and so the propagation graph is empty. Furthermore,
the set of rules in Example 40 is actually ΓA (all positions are safe), but not FD; hence, by
Proposition 27, we have that FD (ΓA, FD≺ (ΓA≺, and ΓA 6⊆ FD≺. Next, Proposition 42
observes that aGRD is contained in ΓA, and Theorem 43 shows that, perhaps somewhat
surprisingly, ΓA≺ is contained in AR≺.

Proposition 42. If a set of rules Σ is aGRD, then Σ is ΓA.

Proof. If the rule dependency relation ≺ on Σ is acyclic, then by the first safety condition
in Definition 41 all positions in Σ are safe; but then, PG(Σ) is empty, and so Σ is ΓA.

Theorem 43. If a set of rules Σ is ΓA≺, then Σ is AR≺.

Proof. The claim clearly follows from the following property: if the rule dependency relation
≺ for Σ has just one strongly connected component and Σ is ΓA, then Σ is AR. Thus, assume
that each rule r ∈ Σ occurs on a cycle of ≺. We next construct a mapping α that assigns a
nonnegative integer to each position in Σ, and then we show that α is an argument ranking
for Σ. In the rest of this proof, we write p1 p2 if WA(Σ) (see Section 2.4) contains a path
(consisting of regular and/or special edges) from position p1 to position p2.

Due to our assumption on Σ, the first item in Definition 41 never applies. Furthermore,
let Ψ be the function that maps a set S of positions into another set of positions as follows:

Ψ(S) = S ∪ {P |i | PosB(x) ∩ S 6= ∅ for each r ∈ Σ, each atom P (~t) in the head of sk(r),

and each variable x occurring in the i-th component of ~t}

Let Ψ0(S) = S, Ψk(S) = Ψ(Ψk−1(S)) for each k > 0, and Ψ∞(S) =
⋃

Ψk(S). From Defini-
tion 41 it is obvious that PosS(Σ) = Ψ∞(PosFD(Σ)).

We next define the mapping α. In the rest of this proof, let Y be the set containing
each position p ∈ PosFD(Σ) for which an existentially quantified variable y in Σ exists such
that p ∈ PosH(y). Furthermore, we use a convention that max ∅ = 0.

• For each position p ∈ PosFD(Σ), we define α(p) as follows:

α(p) =

{
|{p′ ∈ Y | p′ p and p′ 6= p}|+ 1 if p ∈ Y
|{p′ ∈ Y | p′ p}| if p 6∈ Y

• For each position p ∈ PosS(Σ) \ PosFD(Σ), we define α(p) as follows:

α(p) =
[
min{k | p ∈ Ψk(PosFD(Σ))}

]
+ [max{α(q) | q ∈ PosFD(Σ)}]

• For each position p in Σ with p 6∈ PosS(Σ), we define α(p) as follows, where m(p) is
the maximum number of special edges occurring in PG(Σ) on a path ending at p:

α(p) = m(p) + 1 + [max{α(q) | q ∈ PosS(Σ)}]

Since Σ is ΓA≺, PG(Σ) does not contain a cycle involving a special edge, so m(p) is
always a nonnegative integer and α(p) is correctly defined.

775

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

We next show that α is an argument ranking—that is, that it satisfies all conditions
of Definition 36. To this end, consider an arbitrary rule r ∈ Σ, an arbitrary existentially
quantified variable y in r, an arbitrary universally quantified variable x in r, and an arbitrary
position P |i ∈ PosH(y); we have the following cases.

• P |i ∈ PosFD(Σ). By Definition 33, position Q|j ∈ PosB(x) ∩ PosFD(Σ) exists that is
not Σ-recursive with P |i. Thus, we have P |i 6 Q|j ; furthermore, Q|j P |i by the
definition of WA(Σ). Together, the latter two properties imply the following:

{p′ ∈ Y | p′ Q|j and p′ 6= Q|j} ⊆ {p′ ∈ Y | p′ P |i and p′ 6= P |i}

If Q|j ∈ Y , this inclusion is strict since Q|j is contained in the set on the right-
hand side, but not in the set on the left-hand side; thus, α(Q|j) < α(P |i) holds, as
required. If Q|j 6∈ Y , then α(Q|j) < α(P |i) holds since the definition of α ensures that
α(P |i)− α(Q|j) is at least 1.

• P |i ∈ PosS(Σ) \ PosFD(Σ). Let k be the smallest number with P |i ∈ Ψk(PosFD(Σ)).
By the definition of Ψ, there exists a position Q|j ∈ PosB(x) ∩Ψk−1(PosFD(Σ)), so
k − 1 ≥ α(Q|j) by the definition of α. Thus, α(P |i) > α(Q|j) holds, as required.

• P |i 6∈ PosS(Σ). The first possibility is that some position Q|j ∈ PosB(x) ∩ PosS(Σ)
exists; but then, by the definition of α, we have α(Q|j) < α(P |i), as required. The
second possibility is that there exists some affected position Q|j ∈ PosB(x); but then,
Q|j has at least one less incoming special edge in PG(Σ) than P |i; thus, we also have
α(Q|j) < α(P |i), as required.

To complete the proof, we must also consider an arbitrary position P |i ∈ PosH(x); however,
the cases are analogous as above, so we omit them for the sake of brevity.

To place ΓA precisely in the landscape of acyclicity notions, we present three examples
that disprove relevant containment relationships. Greco et al. (2012) stated that AR is
strictly contained in ΓA, but we were unable to find a formal proof of that statement;
in fact, Example 44 shows that this is not the case, and that actually ΓA≺ (AR≺ holds.
Moreover, Example 45 shows that ΓA 6⊆ MSA. Finally, Example 46 shows that WA≺ 6⊆ ΓA.

Example 44. Let Σ be the set consisting of the following rules:

r1 = A(x)→ ∃y.R(x, y) (83)

r2 = R(x1, x2)→ S(x1, x2) (84)

r3 = S(z, x) ∧B(x)→ A(x) (85)

r4 = R(z, x)→ T (x, x) (86)

r5 = T (x, z)→ R(x, x) (87)

r6 = T (z1, x) ∧R(z2, x)→ ∃y.T (x, y) (88)

One can readily verify that the following mapping of positions to nonnegative integers is an
argument ranking for Σ:

α = {A|1 7→ 0, B|1 7→ 0, R|1 7→ 1, R|2 7→ 1, S|1 7→ 1, S|2 7→ 1, T |1 7→ 1, T |2 7→ 2}

776

Acyclicity Notions for Existential Rules

We next argue that Σ is not ΓA. First, the rule dependency relation in Σ holds (at least)
between the pairs of rules shown below. Thus, each rule in Σ occurs in ≺ on a cycle, and
so Σ is the only strongly connected component of ≺.

r1 ≺ r2 r2 ≺ r3 r3 ≺ r1 r1 ≺ r4 r4 ≺ r5 r5 ≺ r2 r5 ≺ r6 r6 ≺ r5

Second, the WA dependency graph for Σ contains a special edge from A|1 to R|2 due to
rule r1, a regular edge from R|2 to S|2 due to rule r2, and a regular edge from S|2 to A|1due
to rule r3; consequently, R|2 is Σ-recursive with A|1; but then, rule r1 does not satisfy
the conditions in Definition 33, and so R|2 6∈ PosFD(Σ). Furthermore, due to rule r4, we
have T |1 6∈ PosFD(Σ) and T |2 6∈ PosFD(Σ) as well. Finally, R|1 6∈ PosFD(Σ) due to rule r5.
Consequently, the set of finite domain positions is given by PosFD(Σ) = {A|1, B|1, S|1}.

Third, we argue that PosS(Σ) = PosFD(Σ). In particular, there is no need to extend
PosS(Σ) with R|2: position R|2 occurs in the head of rule r5, but since T |2 is not a finite
domain position and r5 occurs on a cycle of ≺, neither condition from Definition 41 holds.
Analogously, positions T |1 and T |2 do not need to be added to PosS(Σ) either.

Fourth, since positions R|2, T |1, and T |2 are all affected, the propagation graph PG(Σ)
contains a special edge from T |2 to itself due to rule r6. Consequently, Σ is not ΓA.

Finally, since Σ is the only strongly connected component of ≺, this example also shows
that AR 6⊆ ΓA≺ and AR≺ 6⊆ ΓA≺; but then, by Theorem 43, we have ΓA≺ (AR≺. ♦

Example 45. Let Σ be the set of rules from Example 29. As explained in the example, Σ
is aGRD, but not MSA and thus also not JA, AR, or FD. By Proposition 42, Σ is ΓA,
which implies ΓA 6⊆ MSA, and thus ΓA 6⊆ SWA, ΓA 6⊆ JA, ΓA 6⊆ AR, and ΓA 6⊆ FD. ♦

Example 46. Let Σ be the set consisting of the following rules:

r1 = R(x1, x1)→ ∃y1∃y2.[A(x1) ∧ S(y1, x1) ∧ S(x1, y2)] (89)

r2 = A(x2)→ B(x2) (90)

r3 = B(x3)→ R(x3, x3) (91)

r4 = S(x4, x4)→ ∃y3∃y4.[C(x4) ∧R(y3, x4) ∧R(x4, y4)] (92)

r5 = C(x5)→ D(x5) (93)

r6 = D(x6)→ S(x6, x6) (94)

Note that r1 6≺ r4 and r4 6≺ r1, so the rule dependency relation ≺ in Σ has two strongly
connected components: the first one consists of r1, r2, and r3, and the second one consists
of r4, r5, and r6. Moreover, each strongly connected component is WA, so Σ is WA≺.

In contrast, each position in Σ is Σ-recursive with itself, so PosFD(Σ) = ∅. Moreover,
each position in Σ occurs in the head of a rule that (i) appears in ≺ in a cycle and (ii) does
not satisfy the second safety condition in Definition 41; hence, PosS(Σ) = ∅, and all posi-
tions are affected. But then, PG(Σ) = WA(Σ), and so Σ is not ΓA. ♦

It may seem counterintuitive that AR 6⊆ ΓA, but ΓA≺ (AR≺. Intuitively, the notion
of safe positions from Definition 41 uses the rule dependency relation, which allows us to
construct an example that is in ΓA but not in AR. In ΓA≺, this extra condition is always
applied to rules that occur in ≺ on a cycle; thus, the notion of safe positions collapses to a
notion weaker than AR, which in turn allows ΓA≺ to be subsumed by AR≺.

777

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

MFA = MFA≺

MSA MSA≺

SWA SWA≺

JA JA≺

AR AR≺

ΓA ΓA≺

FD FD≺

WA WA≺

aGRD

Adn-WA

Figure 1: The Landscape of Acyclicity Notions

4.4 The Landscape of Acyclicity Notions

To obtain a complete picture of the relative expressiveness of the acyclicity notions consid-
ered in this paper, we make the following observations.

• The rule set from Example 15 is MFA but not MSA, and one can readily verify that
r1 ≺ r2 ≺ r3 ≺ r4 ≺ r1; but then, MSA≺ (MFA≺ = MFA by Proposition 27.

• The rule set from Example 20 is SWA but not JA, and one can readily verify that
r1 ≺ r2 ≺ r3 ≺ r1; but then, JA≺ (SWA≺ and SWA 6⊆ JA≺ by Proposition 27.

• The rule set from Example 1 is MSA but not SWA, and one can readily verify that
r1 ≺ r3 ≺ r4 ≺ r5 ≺ r2 ≺ r1; but then, SWA≺ (MSA≺ and MSA 6⊆ SWA≺ by Propo-
sition 27.

• The rule set from Example 22 is aGRD: we have r1 6≺ r1, r1 6≺ r2, r2 6≺ r1, and r2 6≺ r2.
Thus, aGRD 6⊆ Adn-WA.

• The rule set from Example 22 is FD: we can assume all positions in the rule set to
be finite domain without violating conditions of Definition 33. Thus, FD 6⊆ Adn-WA.

The landscape of the acyclicity notions considered in this paper is shown in Figure 1.
All inclusions between notions shown in the figure are strict: if a notion X is reachable
from a notion Y via one or more (directed) arcs, then X is strictly more general than Y .
Furthermore, all inclusions are also complete: if a notion X is not reachable from a notion
Y via one or more (directed) arcs, then X does not contain Y .

778

Acyclicity Notions for Existential Rules

5. Handling Equality via Singularisation

Most acyclicity notions presented so far provide no special provision for the equality predi-
cate. If a set of rules Σ contains the equality predicate, one can always axiomatise equality
explicitly and then check acyclicity. More precisely, the acyclicity of Σ ∪ Σ≈ (under any
notion introduced thus far) guarantees termination of the skolem chase of Σ. Furthermore,
note that MFA and MSA are defined as entailment checks in first-order logic with equality,
which effectively incorporates the rules of equality into these checks even if rules (1)–(4) are
not explicitly given; however, the effect of such a definition is the same.

While handling equality explicitly may be simple, such an approach does not ensure
termination of the skolem chase in many practically relevant cases. In particular, the
following example shows that the equalities between terms tend to proliferate during skolem
chase, which can lead to non-termination.

Example 47. Consider the set of rules Σ containing rules (95)–(96).

A(x) ∧B(x)→ ∃y.[R(x, y) ∧B(y)] (95)

R(z, x1) ∧R(z, x2)→ x1 ≈ x2 (96)

The skolem chase of I∗Σ and Σ derives the following infinite set of facts:

R(∗, f(∗)) B(f(∗)) ∗ ≈ f(∗) A(f(∗))
R(f(∗), f(f∗))) B(f(f(∗))) . . .

Thus, Σ is not universally MFA by Proposition 5, and by Theorem 14 it is not universally
MSA either. ♦

It is worth noticing that in the presence of equality WA is no longer subsumed by MFA
and hence both notions become incomparable. As explained in Section 2.4, WA can be
applied to rules containing the equality predicate (and without an explicit axiomatisation
of equality). Under such a treatment, the rules in Example 47 are WA. This, however, does
not contradict the results from Section 4: WA does not require an explicit axiomatisation of
equality because it ensures termination of nonoblivious chase—an optimised chase variant
that expands existential quantifiers only if necessary and that handles equality by replacing
equal terms with canonical representatives. In contrast, the results in Section 4 ensure
termination of the skolem chase; since this chase variant uses an explicit axiomatisation of
equality, all of our results hold only for equality-free rules (or, equivalently, for the rules
containing an explicit axiomatisation of equality). The rules in Example 47 are not WA if
equality is axiomatised explicitly, which explains the apparent mismatch with Section 4.

In order to use the skolem chase with rule sets such as the ones in Example 47, Marnette
(2009) proposed the singularisation technique. Roughly speaking, singularisation replaces
the equality predicate ≈ with a fresh binary predicate Eq to clarify that the two are to be
treated differently; furthermore, it axiomatises Eq as reflexive, symmetric, and transitive,
but it does not introduce replacement rules analogous to (4); finally, it modifies the rules in
Σ to take the lack of the replacement rules into account. The chase of the transformed rule
set is not a model of Σ, but it can be used to answer queries over Σ in a particular well-
defined way. The modification of Σ, however, is nondeterministic: there are many ways to
modify Σ and, while some may ensure termination of the skolem chase, not all are required
to do so. We next recapitulate the definition of singularisation by Marnette (2009).

779

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Definition 48. A marking Mr of a rule r of the form (5) is a mapping that assigns to each
variable w ∈ ~x ∪ ~z a single occurrence of w in ϕ; the marked occurrence of w in a rule is
written w�. All other occurrences of w are unmarked, and all occurrences of constants are
unmarked as well. For Σ a set of rules, a marking M of Σ contains exactly one marking Mr

for each r ∈ Σ. Let Eq be a fresh binary predicate not occurring in Σ. The singularisation
of Σ under M is the set Sing(Σ,M) that contain rules

→ Eq(x, x) (97)

Eq(x1, x2)→ Eq(x2, x1) (98)

Eq(x1, x2) ∧ Eq(x2, x3)→ Eq(x1, x3) (99)

and, for each rule r ∈ Σ, the rule obtained from r by replacing each atom s ≈ t with atom
Eq(s, t), and by replacing each unmarked occurrence of a term t in a body atom with a fresh
variable z′ and then adding atom Eq(t, z′) to the rule body.

Note that Sing(Σ,M) is unique up to the renaming of the fresh variables. Furthermore,
note that rule (97) can be transformed into a safe rule as explained in Section 2.2. Finally,
note that Sing(Σ,M) is equality-free (since ≈ and Eq are different predicates); therefore, no
specific treatment of equality is needed when computing its chase or checking its acyclicity.

Example 49. Singularisation of the marked rule (100) produces rule (101).

A(x�) ∧B(x) ∧R(x, z�)→ C(x) (100)

A(x) ∧B(x1) ∧R(x2, z) ∧ Eq(x, x1) ∧ Eq(x, x2)→ C(x) (101)

Note that singularisation should be applied ‘globally’ to all rules, including the ones that do
not contain the equality predicate. ♦

The properties of singularisation can be summarised as follows. Let Σ be a set of rules,
let I be an instance, and let M be a marking for Σ. Furthermore, let Σ′ = Sing(Σ,M),
and let I ′ = I∞Σ′ be the chase of I and Σ′. Finally, note that predicate Eq is interpreted
in I ′ as an equivalence relation, so let ρ be a function that maps each term t occurring in
I ′ to an arbitrarily chosen representative from the equivalence class of t. The first-order
interpretation ρ(I ′) is defined as follows, where rng(ρ) is the range of the mapping ρ, the
set 4ρ(I′) is the universe of ρ(I ′), and (P)ρ(I′) is the interpretation of a predicate P :

4ρ(I′) = rng(ρ)

(P)ρ(I′) = {〈ρ(t1), . . . , ρ(tn)〉 | P (t1, . . . , tn) ∈ I} for each P different from Eq

(Eq)ρ(I′) = {〈x, x〉 | x ∈ 4ρ(I′)}

Note that ρ(I ′) interprets ≈ as true equality—that is, each term t is interpreted in ρ(I ′)
as a representative of the equivalence class that contains t; hence, ρ(I ′) is not a Herbrand
interpretation. Marnette (2010) showed that, for an arbitrary ρ, interpretation ρ(I ′) is
a universal model of Σ and I—that is, ρ(I ′) can be homomorphically embedded into an
arbitrary model of Σ and I. Thus, ρ(I) can be used for query answering: for a Boolean
conjunctive query Q, we have I ∪ Σ |= Q if and only if ρ(I ′) |= Q.

780

Acyclicity Notions for Existential Rules

This result can be reformulated as follows. Let Σ, I, M , and I ′ be as specified above,
and let us assume that Q is of the form Q = ∃~y.ϕ(~y). Furthermore, let r be the following
rule, and let M ′ be an arbitrary marking of r:

r = ϕ(~y)→ H (102)

Then, the above characterisation of singularisation implies that

I ∪ Σ |= Q if and only if
I ∪ Sing(Σ ∪ {r},M ∪M ′) |= H if and only if

I ′ ∪ Sing({r},M ′) |= H.

Hence, we can answer Q w.r.t. Σ and I by evaluating Sing({r},M ′) in the chase of I and
Sing(Σ,M). It is straightforward to generalise this approach to non-Boolean queries.

The absence of replacement rules (4) often allows the skolem chase to terminate on
Sing(Σ,M), but this may depend on the selected marking.

Example 50. Rule (95) from Example 47 admits the following two markings:

A(x�) ∧B(x)→ ∃y.[R(x, y) ∧B(y)] (103)

A(x) ∧B(x�)→ ∃y.[R(x, y) ∧B(y)] (104)

The skolem chase does not universally terminate for the singularisation obtained from (104)
and (96). In contrast, the singularisation obtained from (103) and (96) is JA. ♦

Definition 51. For X ∈ {MFA,MSA, JA}, acyclicity notion X∃ (resp. X∀) contains each
finite set of rules Σ such that Sing(Σ,M) ∈ X for some (resp. each) marking M of Σ.

Clearly, X∀ ⊆ X∃ for each X ∈ {MFA,MSA, JA}, and Example 50 shows this inclusion
to be proper. We next show that JA∀ actually coincides with WA.

Theorem 52. For Σ an arbitrary finite set of rules, Σ is JA∀ if and only if Σ is WA.

Proof. (JA∀ ⊆WA) We prove the contrapositive, so let Σ be an arbitrary set of rules that is
not WA; w.l.o.g. we assume that each variable in Σ occurs in at most one rule. We consider
each edge from p to q in the WA dependency graph WA(Σ) to be a triple e = 〈p, q, t〉, where
t = · if the edge is regular and t = ∗ if the edge is special. By the definition of WA, for
each such e, a rule r ∈ Σ and universally quantified variable x occurring in the head and
the body of r exist such that p ∈ PosB(x), so let xe be one such arbitrarily chosen but fixed
variable; furthermore, if edge e is special, then an existentially quantified variable y exists
such that q ∈ PosH(y), so let ye be one such arbitrarily chosen but fixed variable.

A cycle in WA(Σ) is a sequence of edges e1, . . . , en of the form ei = 〈pi, qi, ti〉 such that
qi = pi+1 for each 1 ≤ i < n and and qn = p1. Such a cycle is dangerous if an edge ek exists
that is special; and such a cycle is simple if xei 6= xej for all 1 ≤ i < j ≤ n.3

Now let Π′ = e1, . . . , en be an arbitrary dangerous cycle in WA(Σ). If Π′ is not simple,
we show how to transform Π′ to a shorter dangerous cycle. Towards this goal, assume that
Π′ contains edges ei = 〈pi, qi, ti〉 and ej = 〈pj , qj , tj〉 such that 1 ≤ i < j ≤ n and xei = xej ;
hence, some rule r ∈ Σ contains body atoms in which xei occurs at positions pi and pj .
Furthermore, let ek be an arbitrarily chosen, but fixed special edge in Π′; such ek exists
since Π′ is dangerous. We have the following possibilities.

3. Note that a cycle of length one is always simple.

781

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

• If i ≤ k < j, let Π′′ = e, ei+1, . . . , ej−1 where e = 〈pj , qi, ti〉. If ei is regular, then xei
occurs in a head atom of r at position qi; furthermore, if ei is special, then some head
atom of r contains an existentially quantified variable at position qi. Either way, e is
an edge of WA(Σ), so Π′′ is a cycle in WA(Σ). Furthermore, e is special if k = i, and
Π′′ contains ek otherwise; hence, Π′′ is dangerous.

• Otherwise, let Π′′ = e1, . . . , ei−1, e, ej+1, . . . , en where e = 〈pi, qj , tj〉. Edges e and ej
are of the same type, so e is an edge of WA(Σ) and Π′′ is a cycle in WA(Σ). Further-
more, e is special if k = j, and Π′′ contains ek otherwise; hence, Π′′ is dangerous.

In both cases, Π′′ contains at least one edge less than Π′. Thus, we can iteratively transform
an arbitrary dangerous cycle in WA(Σ) to a simple dangerous cycle Π.

Now let M be a marking for Σ that marks each variable w occurring in the body of a
rule r ∈ Σ as follows.

• If an edge e = 〈p, q, t〉 in Π exists such that w = xe, then M marks an occurrence of
w in r at position p (if there are multiple such occurrences, one is chosen arbitrarily).
Since Π is simple, edge e is unique, and so M is correctly defined.

• Otherwise, M marks an arbitrarily chosen occurrence of w in r.

Let Σ′ = Sing(Σ,M), and let JA(Σ′) be the JA dependency graph for Σ′. To show that
JA(Σ′) contains a cycle, we first prove the following property (?).

For each subpath e1, . . . , ek of Π where edge e1 is special and each edge ei with
1 < i ≤ k is regular, we have {qi, Eq|1} ⊆ Move(ye1) for each 1 ≤ i ≤ k.4

Since Σ′ contains rule (97), we clearly have Eq|1 ∈ Move(ye1). We next prove (?) by induc-
tion on k. For the base case k = 1, we have q1 ∈ Move(ye1) by the definition of JA. For
the induction step, assume that the claim holds for all subpaths of length k, and consider
a subpath e1, . . . , ek, ek+1. By the induction assumption and the fact that qk = pk+1, we
have pk+1 ∈ Move(ye1). Furthermore, variable xek+1

occurs in the body and the head atom
of some rule r ∈ Σ′ at positions pk+1 and qk+1, respectively. Finally, by the definition of M
and the properties of singularisation, we have that PosB(xek+1

) contains pk+1 and possibly
Eq|1. But then, by the definition of JA, we have qk+1 ∈ Move(ye1), as required.

To complete the proof, consider now an arbitrary subpath e1, . . . , e` of Π where edges
e1 and e` are special and each edge ei with 1 < i < k is regular. By (?) and the fact that
q`−1 = p`, we have {p`, Eq|1} ⊆ Move(ye1). Furthermore, as in the previous paragraph,
PosB(xe`) contains p` and possibly Eq|1; but then, JA(Σ′) contains an edge from ye1 to ye` .
Since Π is a cycle, JA(Σ′) clearly contains a cycle, so Σ′ is not JA, as required.

(JA∀ ⊇WA) Assume that Σ 6∈ JA∀, so there exists a marking M for Σ such that
Σ′ = Sing(Σ,M) is not JA. We assume that Σ does not contain an existentially quanti-
fied variable that occurs in an equality atom; this is w.l.o.g. as we can always replace each
equality atom y ≈ t with an atom R(x, t) and add a rule R(x1, x2)→ x1 ≈ x2 for R a fresh
binary predicate, and such a transformation clearly does not affect the membership of the

4. The notion of a subpath is defined in the obvious way; however, please note that, although Π is defined
as a sequence of edges, subpaths of Π can ‘wrap around’ this sequence as Π is a cycle.

782

Acyclicity Notions for Existential Rules

rule set in JA∀ and WA. Now consider an arbitrary existentially quantified variable y, and
arbitrary positions p ∈ PosH(y) and q ∈ Move(y) that do not involve Eq (both sets are w.r.t.
Σ′); by induction on the construction of Move(v), one can prove that WA(Σ) then contains a
sequence of regular edges from p to q. The proof is straightforward, and we omit the details
for the sake of brevity. Similarly, consider an arbitrary edge from y1 to y2 in JA(Σ′), and
arbitrary positions p ∈ PosH(y1) and q ∈ PosH(y2) that do not involve Eq; by the definition
of JA, a variable x occurring in the rule of y2 and a position s not involving Eq exist such
that s ∈ Move(y1) and s ∈ PosB(x). But then WA(Σ) contains a path consisting of regular
edges from p to s, as well as a special edge from s to q. Since JA(Σ′) is cyclic, WA(Σ)
clearly contains a cycle involving a special edge.

Checking all possible markings may be infeasible: the number of candidates is exponen-
tial in the total number of variables that occur more than once in a rule body. Theorem 52
shows that JA∀ can be decided using WA. For the other cases, the following simple obser-
vation shows how to reduce the number of markings.

Definition 53. A variable x is relevant for a rule r ∈ Σ if x occurs more than once in the
body of r, and the head of r contains an atom P (~t) such that x ∈ ~t and P is not ≈.

Proposition 54. Let M and M ′ be markings for Σ such that, for each rule r ∈ Σ, the
markings for r in M and M ′ coincide on each relevant variable in r. Then, for each
instance I, the result of the skolem chase for I and Sing(Σ,M) coincides with the result of
the skolem chase for I and Sing(Σ,M ′); furthermore, Sing(Σ,M) is JA/MSA/MFA if and
only if Sing(Σ,M ′) is JA/MSA/MFA.

Proof. Consider an arbitrary rule r ∈ Σ. If a variable x occurs only in the body of r, then
marking various occurrences of x in r clearly produces rules equivalent up to the renaming of
variables. Furthermore, assume that a variable x occurs in the head of r only in an equality
atom of the form x ≈ t, and that the markings of x differ. Then, the rules obtained from r by
singularisation will all have the same body (up to the renaming of variables); furthermore,
the bodies contain atoms Eq(xi, x), and the rule heads are of the form Eq(x, t). Since
Sing(Σ,M) and Sing(Σ,M ′) contain rules (97)–(99), the skolem chase for I and Sing(Σ,M)
clearly derives the same ground atoms as the skolem chase for I and Sing(Σ,M ′).

Despite this optimisation, the number of markings to check can still be exponential in the
size of Σ, so we next describe a useful approximation. LetM be a maximal set of markings
for Σ such that, for all M1,M2 ∈M, each rule r ∈ Σ, and each variable x that is not relevant
in r, the markings of x in r under M1 and M2 coincide. Intuitively, such M contains all
possible markings of the relevant variables, but the markings of all other variables coincide.
By Proposition 54 it is clear that, given two such sets M1 and M2, the skolem chase of⋃
M∈M1

Sing(Σ,M) and
⋃
M∈M2

Sing(Σ,M) coincides for an arbitrary instance I; thus, let
M be one arbitrarily chosen such set of markings. Also, let Sing∪(Σ) =

⋃
M∈M Sing(Σ,M),

let MFA∪ be the class containing each rule set Σ such that Sing∪(Σ) ∈ MFA, and let MSA∪

and JA∪ be defined analogously. As the following proposition shows, Sing∪(Σ) provides a
‘lower bound’ on acyclicity that can be obtained via singularisation.

783

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Proposition 55. For each X ∈ {MFA,MSA, JA}, we have that X∪ ⊆ X∀. Furthermore,
the size of Sing∪(Σ) is exponential in the maximal number of relevant variables in a rule in
Σ, and it is linear in the number of rules in Σ.

Proof. The first claim follows from the fact that all considered notions of acyclicity are
monotone in the sense that every subset of an acyclic rule set is also acyclic. The second
claim follows from the fact that, if a rule r exists that contains k relevant variables and
each variable occurs m times in r, then M contains mk different markings for r.

This result is interesting when dealing with rules that are obtained from DLs, where
each rule has at most one relevant variable: on such rule sets, the size of Sing∪(Σ) is linear
in the size of Σ. For the general case, the complexity of acyclicity checking does not increase
despite the exponential increase in the number of rules.

Theorem 56. Deciding whether Σ is in MFA∪ (MFA∃, MFA∀) is 2ExpTime-complete.
Deciding whether Σ is in MSA∪ (MSA∃, MSA∀) is ExpTime-complete.

Proof. If Σ contains no equality, it is easy to see that Σ is in MFA∪ (MFA∃, MFA∀) if and
only if it is in MFA. The same can be observed for MSA. Thus, hardness follows from
Theorems 8 and 13.

For membership, we first consider the cases of MFA∃, MFA∀, MSA∃, and MSA∀. Each
of these properties can be decided by considering all of the at most exponentially many
markings. Since Sing(Σ,M) is linear in the size of Σ, the property can be checked for
each marking for MFA in 2ExpTime (cf. Theorem 8) and for MSA in ExpTime (cf. The-
orem 13). This yields the required bound since an exponential factor is not significant for
the considered complexity classes.

For MFA∪ and MSA∪, membership follows by observing that the membership of MFA
and MSA in 2ExpTime and ExpTime, respectively, is obtained from the double/single
exponential bound on the number of ground facts that potentially need to be derived in
order to decide the required property. While Sing∪(Σ) is exponentially larger than Σ, the
maximal number of relevant ground facts is still the same since no new predicates or constant
symbols are introduced. The increased number of rules leads to an exponential increase of
the time to check applicability of all rules in each of the doubly/singly exponentially many
steps, but this exponential factor does not affect membership of the decision problem in
2ExpTime/ExpTime.

We finish this section by examining the interaction between rule normalisation and
singularisation. Note that normalisation reduces the number of variables in a rule, which
at least at first sight suggests that normalisation could prevent one from finding a marking
that ensures acyclicity of the singularised rules. We next show that this cannot happen if
normalisation is used without structure sharing: if the original set of rules is MFA w.r.t.
some set of markings, then the transformed set of rules is MFA w.r.t. a set of markings as
well. Furthermore, we show that this does not hold if normalisation is used with structure
sharing; hence, normalisation should be applied with care when used with singularisation.

Theorem 57. Let Σ be a set of existential rules, let Σ′ be obtained from Σ by applying a
single normalisation step without structure sharing, and let I be an instance. Then each

784

Acyclicity Notions for Existential Rules

marking M of Σ for which Sing(Σ,M) is MFA w.r.t. I can be extended to a marking M ′ of
Σ′ such that Sing(Σ′,M ′) is MFA w.r.t. I.

Proof. Let M be a marking of Σ such that Sing(Σ,M) is MFA, let r ∈ Σ be the rule of the
form (8) to which the normalisation step is applied, and let Σ′ be the set of rules obtained
from Σ after the application of a normalisation step to r. We next prove that the claim
holds for both a head and a body normalisation step.

(Head Normalisation) Assume that the set of rules Σ′ is obtained by replacing a rule
r ∈ Σ with rules r1 and r2 of the following forms, where ~x = ~x3 ∪ ~x4:

r = ϕ(~x, ~z)→ ∃~y1, ~y2, ~y3.[ψ1(~x3, ~y1, ~y2) ∧ ψ2(~x4, ~y1, ~y3)]

r1 = ϕ(~x, ~z)→ ∃~y1, ~y3.[Q(~x3, ~y1) ∧ ψ2(~x4, ~y1, ~y3)]

r2 = Q(~x3, ~y1)→ ∃~y2.ψ1(~x3, ~y1, ~y2)

Let M ′ be a marking that coincides with M on all rules different from r, that marks r1

in the same way as M marks r, and that marks r2 in the only possible way (note that
the body of this rule does not contain repeated occurrences of variables); furthermore, let
Ω = Sing(Σ,M) and Υ = Sing(Σ′,M ′). We assume that rule r is skolemised by replacing
each variable y ∈ ~y1 with gy1(~x), each variable y ∈ ~y2 with gy2(~x), and each variable y ∈ ~y3

with gy3(~x); rule r1 is skolemised as r; and rule r2 is skolemised by replacing each variable
y ∈ ~y2 with hy(~x3, ~y1). Thus, the skolemised and singularised rules have the following form;
formula ϕ′ is a singularisation of ϕ, and all freshly introduced variables are contained in ~z1:

ϕ′(~x, ~z1)→ ψ1(~x3, ~g1(~x), ~g2(~x)) ∧ ψ2(~x4, ~g1(~x), ~g3(~x))

ϕ′(~x, ~z1)→ Q(~x3, ~g1(~x)) ∧ ψ2(~x4, ~g1(~x), ~g3(~x))

Q(~x3, ~y1)→ ψ1(~x3, ~y1,~h(~x3, ~y1))

Finally, we inductively define a partial mapping µ from terms to terms as follows:

• µ(c) = c for each constant c,

• µ(f(~t)) = f(µ(~t)) for each function symbol f not of the form hy or gy1 and all terms ~t
such that µ(~t) is defined, and

• µ(hy(~s,~g1(~s,~t))) = gy2(µ(~s), µ(~t)) for each function symbols of the form hy, the corre-
sponding symbol gy2 , and all terms ~s and ~t such that µ(~s) and µ(~t) are defined.

We next show the following property (?): for each A(~t) ∈ I∞Υ where A is a predicate
occurring in Ω (i.e., A was not introduced by the normalisation step), µ(t) is defined and
A(µ(~t)) ∈ I∞Ω . The proof is by induction on the chase sequence I0

Υ, I
1
Υ, . . . for I and Υ. The

base case holds trivially. Furthermore, since Ω and Υ coincide on all rules apart from r,
r1, and r2, the proof of the claim is trivial for each conclusion of a rule different from r1

or r2. For the remaining cases, we can assume w.l.o.g. that Ii+1
Υ is obtained from IiΥ by a

single application of r1 of substitution σ and an application of r2 to the result; thus, the
rules together derive the following facts:

Q(~x3σ,~g1(~xσ))

ψ1(~x3σ,~g1(~xσ),~h(~x3σ,~g1(~xσ)))
ψ2(~x4σ,~g1(~xσ), ~g3(~xσ))

785

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

By the induction assumption, ϕ′(µ(~xσ), µ(~zσ)) ⊆ I∞Ω , and so I∞Ω contains the following
facts:

ψ1(µ(~x3σ), ~g1(µ(~xσ)), ~g2(µ(~xσ)))
ψ2(µ(~x4σ), ~g1(µ(~xσ)), ~g3(µ(~xσ)))

Clearly, each term hy(~x3σ,~g1(~xσ)) is of the form hy(~s,~g1(~s,~t)), so the mapping µ is defined
on the term. Furthermore, by the definition of µ, it is clear that property (?) holds.

The proof of (?) also reveals that functions symbols hy occur in I∞Υ always in (sub)terms
of the form hy(~s,~g1(~s,~t)), and that µ(u) is defined for each term u occurring in I∞Υ . This
observation and the following property of µ clearly imply the claim of this theorem: if u is
a cyclic term and µ(u) is defined, then µ(u) is cyclic as well. To prove the latter, it suffices
to consider the following two cases.

• Assume that u is cyclic due to the repetition of a function symbol f not of the form
hy. Thus, u contains a subterm of the form f(~s), and some si ∈ ~s contains a subterm
of the form f(~t). By the definition of µ, then µ(u) contains a term of the form f(µ(~s)),
and some s′i ∈ µ(~s) contains a subterm of the form f(µ(~t)). Clearly, µ(u) is cyclic.

• Assume that u is cyclic due to the repetition of a function symbol of the form hy. By
the above observation, then u contains a subterm of the form hy(~s,~g1(~s,~t)), and some
si ∈ ~s ∪ ~t contains a subterm of the form hy(~v,~g1(~v, ~w)). By the definition of µ, then
µ(u) contains a subterm of the form gy2(µ(~s), µ(~t)), and some s′i ∈ µ(~s) ∪ µ(~t) contains
a subterm of the form gy2(µ(~v), µ(~w)). Clearly, u is cyclic.

(Body Normalisation) Assume that the set of rules Σ′ is obtained by replacing a rule
r ∈ Σ with rules r1 and r2 of the following forms, where ~x = ~x1 ∪ ~x2 ∪ ~x3, and ~x1, ~x2, ~x3,
~z1, ~z2, and ~z3 are all pairwise disjoint:

r = ϕ1(~x1, ~x2, ~z1, ~z2) ∧ ϕ2(~x1, ~x3, ~z1, ~z3)→ ∃~y.ψ(~x, ~y)

r1 = ϕ1(~x1, ~x2, ~z1, ~z2)→ Q(~x1, ~x2, ~z1)

r2 = Q(~x1, ~x2, ~z1) ∧ ϕ2(~x1, ~x3, ~z1, ~z3)→ ∃~y.ψ(~x, ~y)

For each marked variable v, let ~uv be the variables used to replace v in singularisation. Then,
the singularised rule r can be represented as follows, where for clarity we do not show the
free variables of various formulae, ϕ′1 and ϕ′2 do not contain atoms with predicate Eq, and
Γ1 and Γ2 are the conjunctions of atoms with predicate Eq obtained by renaming unmarked
occurrences of the variables in ϕ1(~x1, ~x2, ~z1, ~z2) and ϕ2(~x1, ~x3, ~z1, ~z3), respectively:

ϕ′1 ∧ ϕ′2 ∧ Γ1 ∧ Γ2 → ∃~y.ψ(~x, ~y)

Now let M ′ be a marking that coincides with M on all rules different from r, and that, for
each marked occurrence of a variable w ∈ ~x1 ∪ ~x2 ∪ ~z1 in r, marks r1 and r2 as follows.

• If the marked occurrence of w appears in ϕ1(~x1, ~x2, ~z1, ~z2), then the corresponding
occurrence of w is marked in r1; in addition, if w ∈ ~x1 ∪ ~x2 ∪ ~z1, then the occurrence
of w in atom Q(~x1, ~x2, ~z1) is marked in r2.

786

Acyclicity Notions for Existential Rules

• If the marked occurrence of w appears in ϕ2(~x1, ~x3, ~z1, ~z3), then the corresponding
occurrence of w is marked in r2; in addition, if w ∈ ~x1 ∪ ~x2 ∪ ~z1, then an arbitrary
occurrence of w is marked in r1.

Since there is no structure sharing, Σ does not contain r1, so the above definition is well-
formed. The singularisation of r1 and r2 under M ′ can be represented as follows:

ϕ′′1 ∧ Γ′′1 → Q(~x1, ~x2, ~z1)

Q(~x′1, ~x2, ~z
′
1) ∧ ϕ′2 ∧ Γ′2 → ∃~y.ψ(~x, ~y)

By the definition of M ′, it should be clear that ϕ′′1 ∧ Γ′′1 is isomorphic to a subset of ϕ′1 ∧ Γ′1.
Based on this observation, it is now routine to prove that, if A(~t) ∈ I∞Sing(Σ,M) and A is

different from the newly introduced predicate Q, then A(~t) ∈ I∞Sing(Σ′,M ′), which clearly
implies our claim.

In contrast to Theorem 57, the following example shows that normalisation with struc-
ture sharing can prevent one from finding a marking that makes the normalised rules acyclic.
This example shows that normalisation must be used with care in applications that use sin-
gularisation to deal with equality.

Example 58. Let Σ be the following set of rules marked by a marking M shown below.

A(x) ∧ T (x�, z) ∧B(z�)→ ∃y.[R(x, y) ∧A(y)] (105)

A(x�) ∧ T (x, z) ∧ C(z�)→ ∃y1∃y2.[S(x, y1) ∧ T (y1, y2)] (106)

R(z�, x�1) ∧R(z, x�2)→ x1 ≈ x2 (107)

S(z�, x�1) ∧ S(z, x�2)→ x1 ≈ x2 (108)

T (z�, x�1) ∧ T (z, x�2)→ x1 ≈ x2 (109)

One can show that Sing(Σ,M) is MFA w.r.t. the instance I given below.

I = {A(a), R(a, a), T (a, b), B(b), A(a′), S(a′, a′), T (a′, b′), C(b′)}

Furthermore, let M1 be a marking identical to M but which marks A(x�) in rule (105), and
let M2 be a marking identical to M but which marks T (x�, z) in rule (106). One can show
that neither Sing(Σ,M1) nor Sing(Σ,M2) is MFA w.r.t. I.

Now let Σ′ be obtained from Σ by applying normalisation with structure sharing to rules
(105) and (106); thus, rules (105) and (106) are replaced with the following rules:

Q(x, z) ∧B(z)→ ∃y.[R(x, y) ∧A(y)] (110)

Q(x, z) ∧ C(z)→ ∃y1∃y2.[S(x, y1) ∧ T (y1, y2)] (111)

A(x) ∧ T (x, z)→ Q(x, z) (112)

Note that conjunction A(x) ∧ T (x, z) occurs in Σ′ only in rule (112); therefore, variable x
in this conjunction can be marked in only one way. This, however, has the same effect as
choosing M1 or M2 for Σ: no possible marking M ′ will make Sing(Σ′,M ′) MFA w.r.t. I.
Intuitively, normalisation with structure sharing reduces the space of available markings,
due to which it may be impossible to find a marking that makes the rules acyclic. ♦

787

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

6. Applying Acyclicity to Horn Description Logics

In this section we apply various acyclicity notions to reasoning problems in description
logic (DL) ontologies. Description logics are knowledge representation formalisms that un-
derpin the Web Ontology Language (OWL). DL ontologies are constructed from atomic
concepts (i.e., unary predicates), atomic roles (i.e., binary predicates), and individuals (i.e.,
constants). Special atomic concepts > and ⊥ denote universal truth and falsehood, respec-
tively. For each atomic role R, expression R− is an inverse role; furthermore, a role is
an atomic or an inverse role. DLs provide a rich set of constructors for building concepts
(first-order formulae with one free variable) from atomic concepts and roles. A description
logic TBox is a set of axioms, which correspond to first-order sentences. In this paper
we consider only Horn description logics, in which TBoxes can be translated into existen-
tial rules. Furthermore, in this paper we will consider only normalised TBoxes, in which
concepts do not occur nested in other concepts. The latter assumption is without loss of
generality as each Horn description logic TBox can be normalised in linear time, and the
normalised ontology is a model-conservative extension of the original one.

In this paper we consider several logics all of which are fragments of the description logic
Horn-SROIF , which provides the formal underpinning for a prominent subset of OWL.
A normalised Horn-SROIF TBox T consists of axioms shown on the left-hand side of
Table 1; in the table, A, B, and C are atomic concepts (including possibly > and ⊥), R, S,
and T are (not necessarily atomic) roles, and a is an individual. To guarantee decidability
of reasoning, T must satisfy certain global conditions (Kutz, Horrocks, & Sattler, 2006),
which we omit for the sake of brevity. Roughly speaking, only so-called simple roles are
allowed to occur in axioms of Type 2, and axioms of Type 6 must be regular according to
a particular condition that allows such axioms to be represented using a nondeterministic
finite automaton. We also consider the following fragments of Horn-SROIF .

• Horn-SRI TBoxes are not allowed to contain axioms of Type 2 or 7.

• Horn-SHIF TBoxes are not allowed to contain axioms of Type 7, and all axioms of
Type 6 satisfy R = S = T . Note that all Horn-SHIF TBoxes are regular.

• Horn-SHI TBoxes inherit the restrictions from Horn-SHIF and are further not al-
lowed to contain axioms of type 2.

To simplify the presentation, we do not consider general at-least number restrictions—
that is, concepts of the form ≥nR.A with n > 1. The translation of such concepts into rules
would require an explicit inequality predicate. As explained in Section 2.2, the inequality
predicate can be simulated using an ordinary predicate, and so the extension of our results
to general at-least number restrictions is straightforward.

In the rest of this paper we allow inverse roles to occur in atoms, so we take an atom
of the form R−(t1, t2) with R an atomic role as an abbreviation for R(t2, t1). Then, each
Horn-SROIF axiom corresponds to an existential rule as shown in Table 1. As explained
in Section 2.2, we treat > and ⊥ as ordinary unary predicates where > is explicitly ax-
iomatised. Thus, we can take a substitution θ to be an answer to a CQ Q(~x) w.r.t. a T
and I if T ∪ I |= Q(~x)θ or I ∪ T |= ∃y.⊥(y); the latter condition takes into account that an
unsatisfiable theory entails all possible formulae. Due to this close correspondence between

788

Acyclicity Notions for Existential Rules

1. A v ∃R.B A(x)→ ∃y.[R(x, y) ∧B(y)]
2. A v ≤ 1R.B A(z) ∧R(z, x1) ∧B(x1) ∧R(z, x2) ∧B(x2)→ x1 ≈ x2

3. A uB v C A(x) ∧B(x)→ C(x)
4. A v ∀R.B A(z) ∧R(z, x)→ B(x)
5. R v S R(x1, x2)→ S(x1, x2)
6. R ◦ S v T R(x1, z) ∧ S(z, x2)→ T (x1, x2)
7. A v {a} A(x)→ x ≈ a

Table 1: Axioms of normalised Horn-SROIF ontologies and corresponding rules

description logic axioms and existential rules, in the rest of this paper we identify a TBox
T with the corresponding set of rules.

The complexity of answering Boolean conjunctive queries over general (i.e., not acyclic)
DL TBoxes is 2ExpTime- and ExpTime-complete for Horn-SROIF (Ortiz et al., 2011)
and Horn-SHIF (Eiter et al., 2008), respectively. In the rest of this section we investigate
the complexity of this problem on acyclic ontologies, as well as the complexity of acyclicity
checking. In particular, in Section 6.1 we consider the case when the TBox is expressed
in Horn-SROIF , for which we show that both BCQ answering and MFA checking are
ExpTime-complete. Then, in Section 6.2 we consider Horn-SHIF TBoxes, for which we
show that the complexity of these problems drops to PSpace.

6.1 Acyclic Horn-SROIF TBoxes

We start by showing that BCQ answering for WA Horn-SRI TBoxes is ExpTime-hard.
Intuitively, this is due to the axioms of Type 6, which can be used to axiomatise existence
of non-tree-like structures. Although regularity ensures that axioms of Type 6 can be
represented by a nondeterministic finite automaton, this automaton can be exponential; as
a consequence, axioms of Type 6 can axiomatise exponential non-tree-like structures, which
is the main source of complexity.

Lemma 59. Let T be a WA Horn-SRI TBox, let I be an instance, and let F be a fact.
Then, checking whether I ∪ T |= F is ExpTime-hard.

Proof. LetM = (S,Q, δ, Q0, Qa) be a deterministic Turing machine, where S is a finite set
of symbols, Q is a finite set of states, δ : Q× S → Q× S × {←,→} is a transition function,
Q0 ∈ Q is the initial state, and Qa the accepting state. Furthermore, assume that an integer
k exists such thatM halts on each input of length n in time 2n

k
. Given an arbitrary input

Si1 , . . . , Sin , we construct an MFA set of Horn-SRI rules T and an instance I such that
I ∪ T |= Qa(a) if and only ifM accepts the input. To simplify the presentation, we will use
a slightly more general rule syntax than what is allowed by Table 1; however, all such rules
can be brought into the required form by renaming parts of the rules with fresh predicates.

Let ` = nk; since k is a constant, ` is polynomial in n. Our construction uses a unary
predicate for each symbol and state; for simplicity, we do not distinguish between the
predicate and the symbol/state. In addition, the construction also uses binary predicates
Li, Ri, Ti, Ui, Di, Hi, and Vi for 1 ≤ i ≤ `, unary predicates Ai and Bi for 0 ≤ i ≤ `, and
unary predicates O1, . . . , On+1, N1, and N2. Instance I contains only the fact A0(a). We

789

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

next present the rules of T . The set T will contain only Horn rules without empty heads,
so it will be satisfiable in a minimal Herbrand model. For readability, we divide T into
groups of rules and prove for each group various facts about this minimal Herbrand model
of T ∪ I, which is shown schematically in Figure 2. The construction of T proceeds along
the following lines.

• The first, the second, and the third group of rules construct the exponential grid shown
at the bottom of Figure 2, whose edges are labelled with H` and V`. Each sequence
of V`-edges will be used to encode the contents of the tape of the Turing machine at
some point in time; furthermore, precisely one vertex in each such sequence will be
labelled with a state, thus representing the position of the head. In contrast, H`-edges
will connect different points in time and will be used to encode the transitions of the
Turing machine.

• The fourth group labels the right-most V`-chain with Si1 , . . . , Sin , St, St, . . . , St, St,
where St represents the empty tape symbol.

• The fifth and the sixth groups ensure that the symbols on the tape that are not
modified by a move of a Turing machine are propagated between time points.

• The seventh and the eighth group encode the transitions of the Turing machine.

• The ninth group propagates the acceptance condition to the top of the figure by
labelling the individual a with the accepting state Qa.

We next present the rules of T in detail.

The first group of rules in T contains rules (113)–(115) for each 0 < i ≤ `, and rule (116)
for each 1 < i ≤ `.

Ai−1(x)→ ∃y.[Li(x, y) ∧Ai(y)] (113)

Ai−1(x)→ ∃y.[Ri(x, y) ∧Ai(y)] (114)

Ri(z, x) ∧ Li(z, x′)→ Ti(x, x
′) (115)

Li(z, x) ∧ Ti−1(z, z′) ∧Ri(z′, x′)→ Ti(x, x
′) (116)

On I, these rules axiomatise existence of a triangular structure in the top part of Figure 2
containing Ti links.

The second group of rules in T contains rule (117), rules (118)–(120) for each 0 < i ≤ `,
and rule (121) for each 1 < i ≤ `.

A`(x)→ B0(x) (117)

Bi−1(x)→ ∃y.[Ui(x, y) ∧Bi(y)] (118)

Bi−1(x)→ ∃y.[Di(x, y) ∧Bi(y)] (119)

Ui(z, x) ∧Di(z, x
′)→ Vi(x, x

′) (120)

Di(z, x) ∧ Vi−1(z, z′) ∧ Ui(z′, x′)→ Vi(x, x
′) (121)

These rules axiomatise existence of triangular structures in the bottom part of Figure 2
containing Vi links.

790

Acyclicity Notions for Existential Rules

Legend:
Li

Ri

Ti

Hi

Ui

Di

Vi

L1 R1

L2 R2

T1

T2T2T2

T`

H0

T`

H0
U1

U2V1

V2
V2

V2

V`

V`

O1, Q0

D1

D2

H1

H2

H`H`

H`H`

Figure 2: Grid Model of T

The third group of rules in T contains rule (122), and rules (123) and (124) for each
0 < i ≤ `.

T`(x, x
′)→ H0(x, x′) (122)

Ui(z, x) ∧Hi−1(z, z′) ∧ Ui(z′, x′)→ Hi(x, x
′) (123)

Di(z, x) ∧Hi−1(z, z′) ∧Di(z
′, x′)→ Hi(x, x

′) (124)

These rules axiomatise existence of Hi links, which with Vi links form a grid of size 2i × 2i

shown in Figure 2.
In the rest of this proof, for variables w0 and w`, we use R`(w0, w`) as an abbreviation for

R1(w0, w1) ∧ . . . ∧R`(w`−1, w`), where each wi with 0 < i < m is a variable not occurring
outside the conjunction. Furthermore, we analogously use U `(w0, w`) as an abbreviation
for U1(w0, w1) ∧ . . . ∧ U`(w`−1, w`).

The fourth group of rules in T contains rule (125), rules (126) and (127) for each
1 ≤ j ≤ n, and rules (128)–(129), where St is the empty tape symbol. Remember that
Si1 , . . . , Sin encodes the input to M.

A0(z) ∧R`(z, z′) ∧ U `(z′, x)→ O1(x) ∧Q0(x) (125)

Oj(z) ∧ V`(z, x)→ Oj+1(x) (126)

Oj(x)→ Sij (127)

On+1(z) ∧ V`(z, x)→ On+1(x) (128)

On+1(x)→ St(x) (129)

791

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Rule (125) labels the grid origin and sets the initial state as shown in Figure 2. Rules
(126) ensure that the n subsequent nodes are labelled with O2, . . . , On+1, and rule (128)
propagates On+1 to the rest of the V`-chain. Finally, rules (127) and (129) ensure that
nodes labelled with Oj are also labelled with Sij , and that nodes labeled with On+1 are
labeled with St. Thus, this group of rules in T ensures that the right-most V`-chain in the
grid contains the initial state of the tape of M.

The fifth group of rules in T contains rules (130)–(131) for each state Qk ∈ Q, and rules
(132)–(133). These rules essentially ensure that all nodes before and after a node labelled
with some state Qk ∈ Q are labeled with N1 and N2, respectively, thus indicating that the
head is not above the node.

Qk(z) ∧ V`(x, z)→ N1(x) (130)

Qk(z) ∧ V`(z, x)→ N2(x) (131)

N1(z) ∧ V`(x, z)→ N1(x) (132)

N2(z) ∧ V`(z, x)→ N2(x) (133)

The sixth group of rules in T contains rules (134)–(135) instantiated for each symbol
Sk ∈ S; these rules ensure that the contents of the tape is copied between successive time
points for all points in the grid not containing the head.

N1(z) ∧ Sk(z) ∧H`(z, x)→ Sk(x) (134)

N2(z) ∧ Sk(z) ∧H`(z, x)→ Sk(x) (135)

The seventh group of rules in T contains rules (136)–(137) instantiated for each symbol
Sk ∈ S and each state Qk ∈ Q such that δ(Qk, Sk) = (Qk′ , Sk′ ,←). These rules encode
moves of M where the head moves left.

Qk(z) ∧ Sk(z) ∧H`(z, x)→ Sk′(x) (136)

Qk(z) ∧ Sk(z) ∧H`(z, z
′) ∧ V`(x, z′)→ Qk′(x) (137)

The eighth group of rules in T contains rules (138)–(139) instantiated for each symbol
Sk ∈ S and each state Qk ∈ Q such that δ(Qk, Sk) = (Qk′ , Sk′ ,→). These rules encode
moves of M where the head moves right.

Qk(z) ∧ Sk(z) ∧H`(z, x)→ Sk′(x) (138)

Qk(z) ∧ Sk(z) ∧H`(z, z
′) ∧ V`(z′, x)→ Qk′(x) (139)

The ninth group of rules in T contains rules (140)–(143) for each 1 ≤ i ≤ `; these rules
simply ensure that acceptance is propagated back to the root of the upper tree.

Qa(z) ∧ Ui(x, z)→ Qa(x) (140)

Qa(z) ∧Di(x, z)→ Qa(x) (141)

Qa(z) ∧ Li(x, z)→ Qa(x) (142)

Qa(z) ∧Ri(x, z)→ Qa(x) (143)

792

Acyclicity Notions for Existential Rules

The above discussion shows that labelling of the nodes in the grid shown in Figure 2
simulates the execution ofM on input Si1 , . . . , Sin , where the contents of the tape at some
time instant is represented by a V`-chain, and H`-links connect tape cells at successive
time instants. Thus, I ∪ T |= Qa(a) if and only if M accepts Si1 , . . . , Sin in time 2`. It is
straightforward to see that T is WA, so the claim of this theorem holds.

The proof of Lemma 59 can be adapted to obtain the lower bound for checking MFA of
Horn-SRI rules.

Lemma 60. Checking whether a Horn-SRI TBox is universally MFA is ExpTime-hard.

Proof. LetM be an arbitrary deterministic Turing machine and let Si1 , . . . , Sin be an input

string on which M terminates in time 2n
k
. For such M and Si1 , . . . , Sin , let T be as in

the proof of Lemma 59. TBox T is WA, it contains only constant-free, equality-free, and
connected rules, and no predicate in T is of zero arity; hence, by Lemma 7, a Horn-SRI
TBox T ′ exists such thatM accepts Si1 , . . . , Sin if and only if T ′ is not universally MFA.

Note that Lemmas 59 and 60 apply to Horn-SRI and thus do not rely on a particular
treatment of equality. We can deal with the equality predicate in Horn-SROIF TBoxes
using singularisation as described in Section 5, which leads us to the following result.

Theorem 61. Let T be a Horn-SROIF TBox, let M be a marking of T , let I be an
instance, and let Q be a BCQ. Then, checking whether Sing(T ,M) is MFA w.r.t. I is
ExpTime-complete. Furthermore, if Sing(T ,M) is MFA w.r.t. I, then checking whether
I ∪ T |= Q holds is ExpTime-complete as well.

Proof. Note that all rules in Table 1 are ∃-1 rules. Since all rules in Sing(T ,M) are ∃-1
rules as well, Theorem 10 gives us an ExpTime upper bound for both of our problems. The
matching lower bounds follow from Lemmas 59 and 60 (note that every Horn-SRI TBox
is also a Horn-SROIF TBox) and the fact that their proofs do not use predicate ≈.

In fact, Theorem 10 provides us with even stronger complexity bounds. In particular,
even if T does not satisfy all the required global conditions, and even if T is extended with
SWRL rules (Horrocks, Patel-Schneider, Bechhofer, & Tsarkov, 2005), the rules in T are
all still ∃-1 rules. Thus, one can decide whether such T is MFA (universally or w.r.t. an
instance) in ExpTime, and if that is the case, one can answer BCQs in ExpTime as well.
Consequently, ontology-based applications can freely use the expressivity beyond what is
currently available in OWL without an increase in the complexity of reasoning, assuming
that the resulting TBox is acyclic.

We conclude this section by observing that MSA provides us with a tractable notion
for Horn-SROIF rules. Intuitively, all rules in MSA(T) have a bounded number of vari-
ables and all predicates in MSA(T) are of bounded arity, which eliminates all sources of
intractability in datalog reasoning. We prove the matching lower bound in Section 6.2 for
the more specific case of Horn-SHIF ontologies.

Theorem 62. Let T be Horn-SROIF TBox, let M be a marking, and let I be an instance.
Then, checking whether Sing(T ,M) is MSA w.r.t. I is in PTime.

793

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Proof. As one can see in Table 1, the rules in T all contain a bounded number of vari-
ables and atoms in the body, and so the number of variables in the body of each rule in
MSA(Sing(T ,M)) is bounded as well. Furthermore, the datalog program MSA(Sing(T ,M))
contains predicates of bounded arity, so its chase w.r.t. I is polynomial in size. Thus, the
chase of I and MSA(T) can be computed in polynomial time, which implies our claim.

6.2 Acyclic Horn-SHIF TBoxes

The exponential lower bound of Lemmas 59 and 60 critically depend on axioms of Type 6,
which can be used to encode exponential structures; furthermore, a combination of inverse
roles and axioms of Types 2 and 7 (i.e., of inverse roles, number restrictions, and nominals)
is also well known to be problematical (Horrocks & Sattler, 2007). In practice, however,
TBoxes are often expressed in Horn-SHIF , which disallows such axioms in TBoxes. We
next show that, for such TBoxes, the complexity of both problems drops to PSpace.

We first prove PSpace-hardness for both problems. Note that the PSpace-hardness
proof of concept satisfiability checking by Baader, Calvanese, McGuinness, Nardi, and Patel-
Schneider (2007) is not applicable to Horn ontologies since it uses disjunctive concepts.
Nonetheless, PSpace-hardness can be proved by a reduction from checking QBF validity.

Lemma 63. Let T be a WA Horn-SHI TBox, let I be an instance, and let F be a fact.
Then, checking whether I ∪ T |= F is PSpace-hard.

Proof. Let ϕ = Q1x1 . . . Qnxn.C1 ∧ . . . ∧ Ck be an arbitrary quantified Boolean formula de-
fined over variables x1, . . . , xn, where each Qi ∈ {∃,∀}, 1 ≤ i ≤ n is a quantifier, and each
Cj , 1 ≤ j ≤ k is a clause of the form Cj = Lj,1 ∨ Lj,2 ∨ Lj,3. Checking validity of ϕ is the
canonical PSpace-hard problem.

In the rest of this proof, for a binary predicate P and variables w0 and wm, we use
Pm(w0, wm) as an abbreviation for P (w0, w1) ∧ . . . ∧ P (wm−1, wm), where each wi with
0 < i < m is a variable not occurring outside the conjunction. Let T be the Horn-SHI
TBox containing rules (144)–(147) for each 1 ≤ i ≤ n, rule (148) for each clause Cj and each
literal Lj,m = x` occurring in Cj , rule (149) for each clause Cj and each literal Lj,m = ¬x`
occurring in Cj , rule (150), rule (151) for each 1 ≤ i ≤ n such that Qi = ∃, and rule (152)
for each 1 ≤ i ≤ n such that Qi = ∀.

Ai−1(x)→ ∃y.[X+
i (x, y) ∧Ai(y)] (144)

Ai−1(x)→ ∃y.[X−i (x, y) ∧Ai(y)] (145)

X+
i (x, x′)→ P (x, x′) (146)

X−i (x, x′)→ P (x, x′) (147)

X+
` (z′, z) ∧ Pn−`(z, x) ∧An(x)→ Cj(x) (148)

X−` (z′, z) ∧ Pn−`(z, x) ∧An(x)→ Cj(x) (149)

C1(x) ∧ . . . ∧ Ck(x)→ Fn(x) (150)

P (x, z) ∧ Fi(z)→ Fi−1(x) (151)

X+
i (x, z) ∧ Fi(z) ∧X−i (x, z′) ∧ Fi(z′)→ Fi−1(x) (152)

794

Acyclicity Notions for Existential Rules

Strictly speaking, rules (148), (149), (150), and (152) are not Horn-SHI rules, but they can
be transformed into Horn-SHI rules by replacing parts of their bodies with fresh concepts.
It is straightforward to see that T is WA.

Let I = {A0(a)}, and let I∞T be the chase of I and T . Due to rules (144)–(145), I∞T
contains a binary tree of depth n in which each leaf node is reachable from a via a path
that, for each 1 ≤ i ≤ n, contains either X+

i or X−i . If we interpret the presence of X+
i and

X−i as assigning variable xi to t and f, respectively, then each leaf node corresponds to one
possible assignment of x1, . . . , xn. Rules (148) and (149) then clearly label each leaf node
with the clauses that are true in the node, and rule (150) labels each leaf node with Fn for
which all clauses are true. Finally, rules (151) and (152) label each interior node of the tree
with Fi−1 according to the semantics of the appropriate quantifier of ϕ. Clearly, ϕ is valid
if and only if I ∪ T |= F0(a), which implies our claim.

We next turn our attention to the upper bounds on the complexity of answering a
BCQ over an MFA TBox, and checking whether a TBox is MFA. While in Section 6.1 we
considered a TBox T singularised according to some marking M , in this section we assume
that equality in T is handled by means of an explicit axiomatisation T≈. As we explain
next, this is because singularised rules are not ‘local’, which makes a PSpace membership
proof quite difficult. For example, consider the following singularised rule:

A(x) ∧ x ≈ x′ ∧B(x′)→ C(x) (153)

Atoms A(x) and B(x′) in the rule do not share variables and therefore need not be matched
‘locally’ in the chase of Sing(T ,M) and I; furthermore, the chase can be exponential in size,
so it is not trivial to see how it can be explored using polynomial space. Nevertheless, we
conjecture that it is possible to extend our proof to singularised rules as well; however, the
details involved seem quite technical, without explaining much about the nature of BCQ
answering under equality. Therefore, we leave this problem open and restrict ourselves to
the technically simpler case when equality in T is encoded explicitly using T≈.

We next show that answering a BCQ Q over an MFA Horn-SHIF TBox T and an
instance I can be performed in polynomial space. The proof uses the well-known tracing
technique of inspecting a model of T ∪ I using polynomial space. The key aspect of this
result, however, is dealing with the transitive roles in the query, which allow the query to
be embedded non-locally into the chase of T and I. Note, however, that we can guess an
embedding of Q into the result of I∞T using nondeterministic polynomial time; furthermore,
since I∞T is a minimal Herbrand model of T (i.e., since T is Horn), we can check the
entailment of each mapped atom of Q separately, and in doing so we can use the well-
known encoding by Demri and de Nivelle (2005) to handle transitive roles.

Theorem 64. Let T be Horn-SHIF TBox, let I be an instance such that T is MFA w.r.t.
I, and let Q be a BCQ. Then, checking whether I ∪ T |= Q is PSpace-complete.

Proof. Hardness follows from Lemma 63. We next present a nondeterministic polynomial
space algorithm that decides I ∪ T |= Q; by Savitch’s Theorem, this algorithm can be trans-
formed into a deterministic polynomial space algorithm, which proves our claim.

Assume that BCQ Q is of the form Q = ∃~y.B1 ∧ . . . ∧Bn. Furthermore, let Υ = sk(T).
Since ⊥ is just a regular atomic concept, I ∪ T is always satisfiable in the chase I∞T of I

795

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

and T . Furthermore, I ∪ T |= Q if and only if a substitution θ from the variables in ~y to
the terms in I∞T exists such that Biθ ∈ I∞T for each 1 ≤ i ≤ n; the latter clearly holds if and
only if I ∪Υ |= Biθ. As shown in the proof of Theorem 10, each term in I∞T is of the form
g1(. . . g`(a) . . .), where ` is less than or equal to the number of function symbols in Υ. Thus,
the first step in deciding I ∪ T |= Q is to examine all possible θ and then check I ∪Υ |= Biθ
for each 1 ≤ i ≤ n; this can clearly be done using a deterministic Turing machine that uses
polynomial space to store θ, provided that each individual check I ∪Υ |= Biθ can also be
decided in polynomial space.

If Biθ is of the form C(t), then let Υ′ = Υ, and let D = C. Alternatively, if Biθ is of
the form R(t′, t), then let Υ′ be Υ extended with the following rules, where D and E are
fresh concepts not occurring in Υ and I:

→ E(t′) (154)

E(z) ∧R(z, x)→ D(x) (155)

It is straightforward to see that I ∪Υ |= R(t′, t) if and only if I ∪Υ′ |= D(t). Let Υ′′ be
obtained from Υ′ by deleting each rule in Υ′ of the form

R(x1, z) ∧R(z, x2)→ R(x1, x2) (156)

and, for each role R occurring in such a rule, replacing each rule of the form

A(z) ∧R(z, x)→ B(x) (157)

with the following rules, where QA,R,B is a fresh concept unique for A, R, and B:

A(z) ∧R(z, x)→ QA,R,B(x) (158)

QA,R,B(z) ∧R(z, x)→ QA,R,B(x) (159)

QA,R,B(x)→ B(x) (160)

This transformation corresponds to the well-known elimination of transitivity by Demri and
de Nivelle (2005), so I ∪Υ′ |= D(t) if and only if I ∪Υ′′ |= D(t); the proof of this claim is
straightforward and we omit it for the sake of brevity.

Let Ξ be Υ′′ extended with the equality axioms (2) and (4). Since ≈ does not occur
in the body of the rules in Υ′′, we have that I ∪Υ′′ 6|= D(t) if and only if I ∪ Ξ 6|=≈ D(t).
Let I∞Ξ be the chase for I and Ξ; then I ∪ Ξ 6|=≈ D(t) if and only if D(t) 6∈ I∞Ξ . Note that
Ξ contains rules of Types 1–5 from Table 1, rules (2) and (4), and possibly rules of the
form → E(t1). These facts can be used to show that each assertion in I∞Ξ is of one of the
following forms, where a and b are constants, t is a constant or a term that contains only
unary function symbols, f and g are unary function symbols, C is an atomic concept, and
R is an atomic role:

• C(t),

• R(a, b), R(a, f(b)), R(f(b), a), R(t, f(t)), R(f(t), t), or

• t ≈ f(g(t)), f(t) ≈ g(t), a ≈ b, a ≈ f(b), or an equality symmetric to these ones.

796

Acyclicity Notions for Existential Rules

The proof is by induction on the length of the chase sequence for I and Ξ, and the claim
follows straightforwardly from the I∞Ξ form of rules of Types 1–5. Motik et al. (2009b)
prove an analogous claim for a more general description logic, and their proof carries over
to the above setting with only syntactic changes.

We say that x is the central variable in a rule of Type 1 or 3, and that z is the central
variable in a rule of Type 2 or 4. W.l.o.g. we assume that the body of a rule of Type 5 does
not contain inverse roles; then, x1 is the central variable of a rule of Type 5. Finally, in the
equality replacement rules (4), the central variable is the variable being replaced.

Clearly, D(t) 6∈ I∞Ξ if and only if a Herbrand interpretation J exists in which all asser-
tions are of the form mentioned above, such that I∞Ξ ⊆ J , J |=≈ Ξ, and D(t) 6∈ J . We next
show how to check the existence of such J using a nondeterministic Turing machine that
runs in polynomial space.

Let f1, . . . , fm be all function symbols occurring in Ξ. We first guess a Herbrand inter-
pretation J0 over the constants of I satisfying I ⊆ J0, and we check whether all rules in Ξ
not of Type 1 are satisfied in J0. If that is the case, we consider each constant c in J0 and
call the following procedure for s = c and i = 1:

1. If i = m+ 1 return true.

2. Guess a Herbrand interpretation J i such that each assertion in J i is of a form as
specified earlier and involves at least one term among f1(s), . . . , fm(s).

3. If D(t) ∈ J i, return false.

4. Check whether the equality symmetry rule (4) is satisfied in J i; if not, return false.

5. Check whether J i ∪ J i−1 ∪ . . . ∪ J0 satisfies each rule in Ξ if the central variable of
the rule is mapped to s; if this is not the case for each rule, return false.

6. For each 1 ≤ k ≤ m, recursively call this procedure for fk(s) and i+ 1; if one of this
calls returns false, return false as well.

7. Return true.

Assume that this procedure returns true for each constant c, and let J be the union of all J i

considered in the process. It is straightforward to see that I ⊆ J and D(t) 6∈ J ; furthermore,
J |=≈ Ξ holds since the satisfaction of each rule r ∈ Ξ in J can be ascertained ‘locally’, by
inspecting the vicinity of the ground term that is mapped to the central variable of r.
Furthermore, the recursion depth of our algorithm is m and at each recursion level we need
to keep a polynomially sized interpretation J i, so our algorithm can be implemented using
a nondeterministic Turing machine that uses polynomial space.

Theorem 65. Let T be Horn-SHIF TBox, and let I be an instance. Then, deciding
whether T is MFA w.r.t. I is in PSpace, and deciding whether T is universally MFA is
PSpace-hard.

Proof. (Membership) Rules in MFA(T) are ‘almost’ Horn-SHIF rules: rule (19) can be
made a Horn-SHIF rule by replacing S in the body with D (which clearly does not affect
the consequences of the rule), and the fact that rule (20) contains a nullary atom in the

797

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

head is immaterial. Thus, the claim can be proved by a straightforward adaptation of
the membership proof of Theorem 64. The main difference in the algorithm is that, with n
function symbols, we need to examine the models to depth n+1; however, such an algorithm
still uses polynomial space.

(Hardness) Let ϕ be an arbitrary QBF, and let T be as in the hardness proof of
Lemma 63. TBox T is WA; it contains only constant-free, equality-free, and connected
rules; and it does not contain a predicate of zero arity. Hence, by Lemma 7, a Horn-SHI
TBox T ′ exists such that ϕ is valid if and only if T ′ is not universally MFA.

We finish this section by proving that checking whether a set of Horn-SHI rules is
universally MSA is PTime-hard; in this way, we also obtain a matching lower bound for
theorem Theorem 62 from Section 6.1.

Theorem 66. Checking whether a Horn-SHI TBox T is universally MSA is PTime-hard.

Proof. Let N be a set of Horn propositional clauses of the form ¬v1 ∨ . . . ∨ ¬vn ∨ vn+1 and
let v be a propositional variable; deciding N |= v is well known to be PTime-hard. Let
Vi be a concept uniquely associated with each propositional variable vi; let A be a fresh
concept; and let T be the TBox obtained by transforming each propositional clause in N
of the above form into rule (161).

A(x) ∧ V1(x) ∧ . . . ∧ Vn(x)→ Vn+1(x) (161)

Finally, let I = {A(a)}. Clearly, N |= v holds if and only if I ∪ T |= V (a) holds. TBox T is
WA, it contains only constant-free, equality-free, and connected rules, and no predicate in
T is of zero arity; hence, by Lemma 7, a Horn-SHI TBox T ′ exists such that N 6|= v holds
if and only if T ′ is universally MFA. Finally, the only existential variable in T ′ occurs in a
rule of the form (23), so it is straightforward to see that T ′ is universally MFA if and only
if T ′ is universally MSA.

7. Experiments

To estimate the extent to which various acyclicity notions can be used in practice, we con-
ducted two sets of experiments. First, we implemented MFA, MSA, JA, and WA checkers,
and we used them to check acyclicity of a large corpus of Horn ontologies. Our goal was
to see how many ontologies are acyclic and could thus be used with (suitably extended)
materialisation-based OWL reasoners. Second, we computed the materialisation of the
acyclic Horn ontologies and compared the number of facts before and after materialisation.
The goal of these tests was to see whether materialisation-based reasoning with acyclic
ontologies is practically feasible.

Tests were performed on a Windows R2 Server with two Intel Xeon 3.06GHz processors.
We used a repository of 336 OWL ontologies whose TBox axioms can be transformed into
existential rules where at least one rule contains an existential quantifier in the head. These
ontologies include a large subset of the Gardiner ontology corpus (Gardiner, Tsarkov, &
Horrocks, 2006), the LUBM ontology, several Phenoscape ontologies, and a number of
ontologies from two versions of the Open Biomedical Ontology (OBO) corpus. Please note

798

Acyclicity Notions for Existential Rules

that no test ontology has been obtained from conceptual models (e.g., the ER models or
UML diagrams): due to the specific modelling patterns used in conceptual modelling, such
ontologies are less likely to be acyclic. Each test ontology can be accessed online from our
ontology repository by means of a unique ID.5 Each ID identifies one self-contained OWL
ontology ‘frozen in time’ with all of its imports resolved at the time the ontology was added
to the repository; furthermore, any possible future version of the ontology will be assigned a
fresh ID. These measures should ensure that our experiments can be independently repeated
at any point in the future.

7.1 Acyclicity Tests

We implemented all acyclicity checks by adapting the HermiT reasoner.6 HermiT was
used to transform an ontology into DL-clauses—formulae quite close to existential rules.
In the result, at-least number restrictions in head atoms were replaced with existential
quantification, atoms involving datatypes were eliminated, and the DL-clauses with no
head atoms were removed: datatypes and empty heads can cause inconsistencies, but they
cannot prevent the skolem chase from terminating.

Each set of rules Σ obtained by the above preprocessing steps was considered in combina-
tion with each acyclicity notion X ∈ {WA, JA,MSA,MFA} as follows. If Σ did not contain
the equality predicate, we simply checked whether Σ ∈ X. If Σ contained the equality pred-
icate, we checked whether Σ ∈ X∪, and we also checked whether Σ′ ∈ X for Σ′ ⊆ Σ the set
of all rules of Σ that do not contain the equality predicate; these tests provided us with a
‘lower’ and an ‘upper’ bound for acyclicity, respectively. Each acyclicity test was performed
by modifying Σ (or Σ′) as required by X and then running HermiT to check for a particular
logical entailment on the critical instance.

Our tests revealed MFA and MSA to be indistinguishable for all 336 test ontologies; that
is, all MFA ontologies were found to be MSA as well (the converse holds per Theorem 14).
A total of 213 (63.4%) ontologies were found to be MSA, including 43 of the 49 (87.8%)
ontologies from the Gardiner corpus, 164 of the 208 (78.8%) OBO ontologies, and the
LUBM ontology. In contrast, the GALEN ontology and its variants, the GO ontology
and its extensions, and the 55 Phenoscape ontologies were found not to be MFA. These
results are summarised in Table 2. Given the large number of ontologies tested, it would
be impractical to present the results for each ontology individually. Instead, the ontologies
are grouped by number of generating rules (G-rules), which are the rules containing an
existential quantifier; for each group, Table 2 shows the total number of ontologies, as well
as the numbers of ontologies found to be MSA, JA, and WA. Of the 123 ontologies that
are not MFA, seven ontologies are in ELHr, so CQ answering over these ontologies can be
realised using the combined approaches by Lutz et al. (2009) and Kontchakov et al. (2011).

The five older versions of OBO ontologies (IDs 00359, 00374, 00376, 00382, and 00486)
are MSA, whereas their newer versions (IDs 00360, 00375, 00377, 00383, and 00487) are
not MFA. In contrast, two older versions of OBO ontologies are not MFA (IDs 00432 and
00574), but their newer versions (IDs 00433 and 00575) are MSA.

5. URL http://www.cs.ox.ac.uk/isg/ontologies/UID/xxxxx.owl can be used to download an ontology
that has been assigned ID ‘xxxxx’.

6. http://www.hermit-reasoner.com/

799

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

ontologies without equality ontologies with equality

G-rules Total MSA JA WA Total MSA JA WA

< 100 44 42 42 41 48 39 39 39

100–1K 69 62 62 41 41 1 0 0

1K–5K 38 31 30 24 17 2 1 1

5K–12K 28 23 16 14 10 5 0 0

12K–160K 18 7 6 5 23 1 0 0

Table 2: Results of acyclicity tests

Finally, we found 15 large OBO ontologies (including different versions of the same
ontologies) that are MSA but not JA. Thus, MSA seems to be particularly useful on
complex ontologies since it analyses implications between existentially quantified variables
more precisely than the previously known notions. Table 3 shows for each of these ontologies
the number of generating rules (G-rules), whether the ontology uses the equality predicate
(Eq), the ontology expressivity in the description logic family of languages (DL), and the
number of classes (C), properties (P), and axioms (A) that the ontology contains. Different
versions of the same ontology are distinguished in the table as ‘old’ and ‘new’. Two further
ontologies (IDs 00762 and 00766) containing the equality predicate are MSA∪, but their
status regarding joint acyclicity is unknown: they are JA when the rules involving the
equality predicate are deleted, but are not JA∪.

7.2 Materialisation Tests

To estimate the practicability of materialisation in acyclic ontologies, we measured the
maximal depth of function symbol nesting in terms generated by materialisation on critical
instances. This measure, which we call ontology depth, is of interest as it provides us
with a bound on the size of the materialisation. Out of the 213 MSA ontologies, our test
succeeded on 207 of them (tests were aborted if they did not finish in three hours). On the
latter ontologies, depth was distributed as follows:

• 123 (59.4%) ontologies have depth less than 5;

• 30 (14.5%) ontologies have depth between 5 and 9;

• 47 (22.7%) ontologies have depth between 10 to 19;

• 5 (2.4%) ontologies have depth between 20 and 49; and

• 2 (1.0%) ontologies have depth between 50 to 70.

These results leads us to believe that many (but clearly not all) ontologies have manageable
depths, which should allow for successful materialisation-based query answering.

We also computed the materialisation for several acyclic ontologies. As our implemen-
tation is prototypical, our primary goal was not to evaluate the performance of computing
the materialisation, but rather to estimate the blowup in the number of facts. We clearly do

800

Acyclicity Notions for Existential Rules

Ontology ID G-rules Eq DL C P A

biological process xp cell.imports-local.owl

00371 7464 yes SHIF 17296 178 117925

biological process xp cellular component.imports-local.owl (old)

00374 8270 yes SHIF 18673 186 126796

biological process xp multi organism process.imports-local.owl (old)

00382 8378 no EL++ 27900 18 295396

biological process xp plant anatomy.imports-local.owl (old)

00386 7559 yes SHIF 19146 193 122062

biological process xp plant anatomy.imports-local.owl (new)

00387 12025 yes SRIF 27412 215 213956

bp xp cell.imports-local.owl

00398 7419 yes SHIF 17296 177 117881

bp xp cellular component.imports-local.owl

00400 7999 yes SHIF 18676 175 126540

cellular component xp go.imports-local.owl (old)

00415 7752 no EL++ 27890 8 210765

cellular component xp go.imports-local.owl (new)

00416 12269 no EL++ 37254 9 334762

fypo.owl

00476 1834 no EL++ 1677 22 8027

go xp regulation.imports-local.owl (old)

00486 7777 no EL++ 27891 5 295138

go xp regulation.owl (old)

00488 7777 no EL++ 27883 5 214080

go xp regulation.owl (new)

00489 9507 no EL++ 30170 6 238200

molecular function xp regulators.imports-local.owl (old)

00536 6762 no EL++ 25521 5 198170

molecular function xp regulators.imports-local.owl (new)

00537 11089 no EL++ 34135 8 316057

Table 3: MSA but not JA ontologies

not expect this blowup to depend linearly on size of the input number of facts; however, our
results should provide us with a rough estimate of the performance of materialisation-based
reasoning in practice. Most of our test ontologies, however, do not contain many facts:
ontologies are often constructed as general vocabularies, while facts are often application-
specific and are thus not publicly available. To overcome this problem, we conducted two
kinds of experiments.

First, we computed the materialisation of two ontologies that contain facts: LUBM with
one university (ID 00347), and the ‘kmi-basic-portal’ ontology (ID 00078). The TBox of
LUBM has eight generating rules and depth one, and there are 100, 543 facts before ma-

801

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Depth # time gen. size mat. size
max avg max avg max avg

< 5 123 38 0.7 65 2 89 8

5–9 30 71 7 122 30 132 38

10–70 54 9396 1807 1286 175 1297 189

Table 4: Materialisation times (in seconds) and sizes

terialisation. Materialisation took only 2 seconds, and it produced 231, 200 new facts, of
which 97, 860 were added by the generating rules. The ‘kmi-basic-portal’ ontology has ten
generating rules and depth two, and there were 198 facts before materialisation. Materiali-
sation took only 0.03 seconds, and it produced 744 new facts, of which 145 were added by
the generating rules.

Second, for each of the ontologies identified as MSA, we instantiated each class and
each property with fresh individuals. We then computed the materialisation and measured
the generated size (the number of facts introduced by the generating rules divided by the
number of facts before materialisation), the materialisation size (the number of facts after
materialisation divided by the number of facts before materialisation), and the time needed
to compute the materialisation. Since most generating rules in these ontologies have single-
ton body atoms (i.e., they are of the form A(x)→ ∃R.C(x)), these measures should provide
a reasonable estimate of the increase in the number of facts during materialisation. Table 4
summarises the results of our tests for the 207 ontologies on which the test succeeded. On-
tologies are grouped by their depth, and each group shows the number of ontologies (#),
and the maximal and average materialisation time, generated size, and materialisation size.

Thus, materialisation seems practically feasible for many ontologies: for 123 ontologies
with depth less than 5, materialisation increases the ontology size by a factor of 8. This
suggests that principled, materialisation-based reasoning for ontologies beyond the OWL 2
RL profile may be feasible, especially for ontologies with relatively small depths.

8. Conclusions

In this paper, we investigated acyclicity notions—sufficient conditions that ensure termina-
tion for skolem chase on existential rules. We proposed two novel notions, called MFA and
MSA, for which we determined tight complexity bounds for membership checking, as well
as for conjunctive query answering over acyclic existential rules.

We also conducted a thorough investigation of the acyclicity notions known in the liter-
ature, and we produced a complete taxonomy of their relative expressiveness. Our results
show that MFA and MSA generalise most of the previously considered notions.

We next investigated ways to ensure acyclicity of existential rules that contain the
equality predicate. To this end, we presented several optimisations of the singularisation
technique by Marnette (2009). Our optimisations can often reduce the number of acyclicity
checks needed, thus making the singularisation technique more suitable for practical use.

Finally, we studied the problem of answering conjunctive queries over acyclic DL ontolo-
gies. On the theoretical side, we showed that acyclicity can make this problem computation-

802

Acyclicity Notions for Existential Rules

ally easier; furthermore, provided that the result is acyclic, one can extend Horn ontologies
with arbitrary SWRL rules without affecting decidability and the worst-case complexity
of query answering. On the practical side, we investigated the extent to which acyclicity
notions enable principled extensions of materialisation-based ontology reasoners with sup-
port for existential quantification. Our tests show that many ontologies commonly used
in practice are acyclic, and that the blowup in the number of facts due to materialisation
is manageable. This suggests that principled extensions of materialisation-based ontology
reasoners are practically feasible and useful.

An interesting topic for future work is to see whether our acyclicity notions can be used
in a more general logic programming setting. We see several main sources of technical
difficulties towards this goal. First, general logic programs can contain functional terms in
body atoms. Such terms can ‘cancel out’ function symbols introduced by head atoms, and
it is not clear how to take this into account in an acyclicity test. Second, logic programs can
contain atoms under nonmonotonic negation, which are likely to need special treatment;
Magka, Krötzsch, and Horrocks (2013) recently made a first step in that direction. Third, it
might be desirable to modularise the ways in which these different concerns are handled and
thus arbitrarily combine the approaches for handling function symbols in the body and/or
the head with the approaches for dealing with nonmonotonic negation.

Acknowledgments

This work was supported by the Royal Society, the Seventh Framework Program (FP7)
of the European Commission under Grant Agreement 318338, ‘Optique’, and the EPSRC
projects ExODA, Score!, and MaSI3.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison Wesley.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.).
(2007). The Description Logic Handbook: Theory, Implementation and Applications
(2nd edition). Cambridge University Press.

Baget, J.-F. (2004). Improving the Forward Chaining Algorithm for Conceptual Graphs
Rules. In Dubois, D., Welty, C. A., & Williams, M.-A. (Eds.), Proc. of the 9th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR2004), pp. 407–
414, Whistler, BC, Canada. AAAI Press.

Baget, J.-F., Leclère, M., Mugnier, M.-L., & Salvat, E. (2011a). On rules with existential
variables: Walking the decidability line. Artificial Intelligence, 175 (9–10), 1620–1654.

Baget, J.-F., Mugnier, M.-L., & Thomazo, M. (2011b). Towards Farsighted Dependencies
for Existential Rules. In Rudolph, S., & Gutierrez, C. (Eds.), Proc. of the 5th Int.
Conf. on Web Reasoning and Rule Systems (RR 2011), Vol. 6902 of LNCS, pp. 30–45,
Galway, Ireland. Springer.

803

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Baumgartner, P., Furbach, U., & Niemelä, I. (1996). Hyper Tableaux. In Proc. of the
European Workshop on Logics in Artificial Intelligence (JELIA ’96), No. 1126 in
LNAI, pp. 1–17, Évora, Portugal. Springer.

Beeri, C., & Vardi, M. Y. (1981). The Implication Problem for Data Dependencies. In
Even, S., & Kariv, O. (Eds.), Proc. of the 8th Colloquium on Automata, Languages
and Programming (ICALP 1981), Vol. 115 of LNCS, pp. 73–85, Acre (Akko), Israel.
Springer.

Bishop, B., & Bojanov, S. (2011). Implementing OWL 2 RL and OWL 2 QL rule-sets for
OWLIM. In Dumontier, M., & Courtot, M. (Eds.), Proc. of the OWL: Expreiences
and Directions Workshop (OWLED 2011), Vol. 796 of CEUR WS Proceedings, San
Francisco, UCA, USA.

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In Horrocks, I., & Hendler, J. A.
(Eds.), Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002), Vol. 2342 of LNCS,
pp. 54–68, Sardinia, Italy. Springer.

Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., & Pieris, A. (2010a). Datalog±: A
Family of Logical Knowledge Representation and Query Languages for New Applica-
tions. In Proc. of the 25th IEEE Symposium on Logic in Computer Science (LICS
2010), pp. 228–242, Edinburgh, United Kingdom. IEEE Computer Society.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2010b). Query Answering under Non-guarded Rules
in Datalog±. In Hitzler, P., & Lukasiewicz, T. (Eds.), Proc. of the 4th Int. Conf. on
Web Reasoning and Rule Systems (RR 2010), Vol. 6333 of LNCS, pp. 1–17, Bres-
sanone/Brixen, Italy. Springer.

Cal̀ı, A., Gottlob, G., & Pieris, A. (2011). New Expressive Languages for Ontological Query
Answering. In Burgard, W., & Roth, D. (Eds.), Proc. of the 25th National Conference
on Artificial Intelligence (AAAI 2011), pp. 1541–1546, San Francisco, CA, USA. AAAI
Press.

Calimeri, F., Cozza, S., Ianni, G., & Leone, N. (2008). Computable Functions in ASP:
Theory and Implementation. In Garcia de la Banda, M., & Pontelli, E. (Eds.), Proc.
of the 24th Int. Conf. on Logic Programming (ICLP 2008), Vol. 5366 of LNCS, pp.
407–424, Udine, Italy. Springer.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family.
Journal of Automated Reasoning, 9 (3), 385–429.

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K. (2004).
Jena: Implementing the Semantic Web Recommendations. In Feldman, S. I., Uretsky,
M., Najork, M., & Wills, C. E. (Eds.), Proc. of the 13th Int. Conf. on World Wide
Web (WWW 2004)—Alternate Track, pp. 74–83, New York, NY, USA. ACM.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., & Wang, Z.
(2012). Acyclicity Conditions and their Application to Query Answering in Descrip-
tion Logics. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), Proc. of the 13th Int.

804

Acyclicity Notions for Existential Rules

Conf. on the Principles of Knowledge Representation and Reasoning (KR 2012), pp.
243–253, Rome, Italy.

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., & Sattler, U.
(2008). OWL 2: The next step for OWL. Journal of Web Semantics: Science, Services
and Agents on the World Wide Web, 6 (4), 309–322.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Computing Surveys, 33 (3), 374–425.

De Schreye, D., & Decorte, S. (1994). Termination of Logic Programs: The Never-Ending
Story. Journal of Logic Programming, 19–20, 199–260.

Demri, S., & de Nivelle, H. (2005). Deciding Regular Grammar Logics with Converse
Through First-Order Logic. Journal of Logic, Language and Information, 14 (3), 289–
329.

Deutsch, A., Nash, A., & Remmel, J. B. (2008). The chase revisited. In Lenzerini, M., &
Lembo, D. (Eds.), Proc. of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS 2008), pp. 149–158, Vancouver, BC, Canada.

Eiter, T., Gottlob, G., Ortiz, M., & Simkus, M. (2008). Query Answering in the Description
Logic Horn-SHIQ. In Hölldobler, S., Lutz, C., & Wansing, H. (Eds.), Proc. of the
11th European Conference on Logics in Artificial Intelligence (JELIA 2008), Vol. 5293
of LNCS, pp. 166–179, Dresden, Germany. Springer.

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics and
query answering. Theoretical Computer Science, 336 (1), 89–124.

Gardiner, T., Tsarkov, D., & Horrocks, I. (2006). Framework for an Automated Comparison
of Description Logic Reasoners. In Cruz, I. F., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., & Aroyo, L. (Eds.), Proc. of the 5th Int. Semantic
Web Conference (ISWC 2006), Vol. 4273 of LNCS, pp. 654–667, Athens, GA, USA.
Springer.

Gebser, M., Schaub, T., & Thiele, S. (2007). GrinGo: A New Grounder for Answer Set
Programming. In Baral, C., Brewka, G., & Schlipf, J. S. (Eds.), Proc. of the 9th
Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007), Vol.
4483 of LNCS, pp. 266–271, Tempe, AZ, USA.

Glimm, B., Horrocks, I., Lutz, C., & Sattler, U. (2008). Conjunctive Query Answering for
the Description Logic SHIQ. Journal of Artificial Intelligence Research, 31, 151–198.

Greco, S., Spezzano, F., & Trubitsyna, I. (2012). On the Termination of Logic Programs
with Function Symbols. In Dovier, A., & Santos Costa, V. (Eds.), Proc. of the 8th Int.
Conf. on Logic Programming (ICLP 2012), Vol. 17 of Leibniz International Proceedings
in Informatics, pp. 323–333, Budapest, Hungary.

Hastings, J., Magka, D., Batchelor, C., Duan, L., Stevens, R., Ennis, M., & Steinbeck, C.
(2012). Structure-based classification and ontology in chemistry. Journal of Chemin-
formatics, 4 (8).

Horrocks, I., & Patel-Schneider, P. F. (2004). A Proposal for an OWL Rules Language. In
Proc. of the 13th Int. World Wide Web Conference (WWW 2004), pp. 723–731, New
York, NY, USA. ACM Press.

805

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Horrocks, I., & Sattler, U. (2007). A Tableau Decision Procedure for SHOIQ. Journal of
Automated Reasoning, 39 (3), 249–276.

Horrocks, I., Patel-Schneider, P. F., Bechhofer, S., & Tsarkov, D. (2005). Owl rules: A
proposal and prototype implementation. J. Web Sem., 3 (1), 23–40.

Hustadt, U., Motik, B., & Sattler, U. (2005). Data Complexity of Reasoning in Very Expres-
sive Description Logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pp. 466–471, Edinburgh, UK. Morgan Kaufmann Publishers.

Johnson, D. S., & Klug, A. C. (1984). Testing Containment of Conjunctive Queries under
Functional and Inclusion Dependencies. Journal of Computer and System Sciences,
28 (1), 167–189.

Kiryakov, A., Ognyanov, D., & Manov, D. (2005). OWLIM – A Pragmatic Semantic Repos-
itory for OWL. In Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan,
Z., & Sheng, Q. Z. (Eds.), Proc. of the Int. Workshop on Web Information Systems
Engineering (WISE 2005), Vol. 3807 of LNCS, pp. 182–192, New York, NY, USA.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., & Zakharyaschev, M. (2011). The Com-
bined Approach to Ontology-Based Data Access. In Walsh, T. (Ed.), Proc. of the 22nd
Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 2656–2661, Barcelona,
Spain.

Krötzsch, M., & Rudolph, S. (2011). Extending Decidable Existential Rules by Joining
Acyclicity and Guardedness. In Walsh, T. (Ed.), Proc. of the 22nd Int. Joint Conf.
on Artificial Intelligence (IJCAI 2011), pp. 963–968, Barcelona, Spain.

Krötzsch, M., & Rudolph, S. (2013). On the Relationship of Joint Acyclicity and Super-
Weak Acyclicity. Tech. rep. 3037, Institute AIFB, Karlsruhe Institute of Technology.
Available online at http://www.aifb.kit.edu/web/Techreport3013.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2007). Conjunctive Queries for a Tractable Frag-
ment of OWL 1.1. In Aberer, K., Choi, K.-S., Noy, N. F., Allemang, D., Lee, K.-I.,
Nixon, L. J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
& Cudré-Mauroux, P. (Eds.), Proc. of the 6th Int. Semantic Web Conference (ISWC
2007), Vol. 4825 of LNCS, pp. 310–323, Busan, Korea. Springer.

Kutz, O., Horrocks, I., & Sattler, U. (2006). The Even More Irresistible SROIQ. In
Doherty, P., Mylopoulos, J., & Welty, C. A. (Eds.), Proc. of the 10th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2006), pp. 68–78, Lake
District, UK. AAAI Press.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7 (3), 499–562.

Lierler, Y., & Lifschitz, V. (2009). One More Decidable Class of Finitely Ground Pro-
grams. In Hill, P. M., & Warren, D. S. (Eds.), Proc. of the 25th Int. Conf. on Logic
Programming (ICLP 2009), Vol. 5649 of LNCS, pp. 489–493, Pasadena, CA, USA.
Springer.

Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive Query Answering in the Description
Logic EL Using a Relational Database System. In Boutilier, C. (Ed.), Proc. of the 21st

806

Acyclicity Notions for Existential Rules

Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 2070–2075, Pasadena, CA,
USA.

Magka, D., Krötzsch, M., & Horrocks, I. (2013). Computing Stable Models for Nonmono-
tonic Existential Rules. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2013). AAAI Press/IJCAI. To appear.

Magka, D., Motik, B., & Horrocks, I. (2012). Modelling Structured Domains Using De-
scription Graphs and Logic Programming. In Simperl, E., Cimiano, P., Polleres, A.,
Corcho, Ó., & Presutti, V. (Eds.), Proc. of the 9th Extended Semantic Web Conference
(ESWC 2012), Vol. 7295 of LNCS, pp. 330–344, Heraklion, Greece. Springer.

Maier, D., Mendelzon, A. O., & Sagiv, Y. (1979). Testing Implications of Data Dependen-
cies. ACM Transactions on Database Systems, 4 (4), 455–469.

Marnette, B. (2009). Generalized schema-mappings: from termination to tractability. In
Paredaens, J., & Su, J. (Eds.), Proc. of the 28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 2009), pp. 13–22, Providence,
RI, USA.

Marnette, B. (2010). Tractable Schema Mappings Under Oblivious Termination. Ph.D.
thesis, University of Oxford, Oxford, UK.

Meditskos, G., & Bassiliades, N. (2008). Combining a DL Reasoner and a Rule Engine for
Improving Entailment-Based OWL Reasoning. In Sheth, A. P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T. W., & Thirunarayan, K. (Eds.), International
Semantic Web Conference, Vol. 5318 of LNCS, pp. 277–292, Karlsruhe, Germany.

Meier, M. (2010). On the Termination of the Chase Algorithm. Ph.D. thesis, Universität
Freiburg.

Meier, M., Schmidt, M., & Lausen, G. (2009). On Chase Termination Beyond Stratification.
Proceedings of the VLDB Endowment, 2 (1), 970–981.

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009a). OWL 2
Web Ontology Language: Profiles, W3C Recommendation.
http://www.w3.org/TR/owl2-profiles/.

Motik, B., Shearer, R., & Horrocks, I. (2009b). Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research, 36, 165–228.

Mungall, C. (2009). Experiences Using Logic Programming in Bioinformatics. In Hill,
P. M., & Warren, D. S. (Eds.), Proc.óf the 25th Int. Conf. on Logic Programming
(ICLP 2009), Vol. 5649 of LNCS, pp. 1–21, Pasadena, CA, USA. Springer.

Ortiz, M., Calvanese, D., & Eiter, T. (2008). Data Complexity of Query Answering in
Expressive Description Logics via Tableaux. Journal of Automated Reasoning, 41 (1),
61–98.

Ortiz, M., Rudolph, S., & Simkus, M. (2011). Query Answering in the Horn Fragments of
the Description Logics SHOIQ and SROIQ. In Walsh, T. (Ed.), Proc. of the 22nd
Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 1039–1044, Barcelona,
Spain.

807

Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang

Pérez-Urbina, H., Motik, B., & Horrocks, I. (2009). Tractable Query Answering and Rewrit-
ing under Description Logic Constraints. Journal of Applied Logic, 8 (2), 151–232.

Rudolph, S., & Glimm, B. (2010). Nominals, Inverses, Counting, and Conjunctive Queries
or: Why Infinity is your Friend!. Journal of Artificial Intelligence Research, 39, 429–
481.

Spezzano, F., & Greco, S. (2010). Chase Termination: A Constraints Rewriting Approach.
Proceedings of the VLDB Endownment, 3 (1), 93–104.

Syrjänen, T. (2001). Omega-Restricted Logic Programs. In Eiter, T., Faber, W., &
Truszczynski, M. (Eds.), Proc. of the 6th Int. Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2001), Vol. 2173 of LNCS, pp. 267–279, Vienna,
Austria. Springer.

Syrjänen, T., & Niemelä, I. (2001). The Smodels System. In Eiter, T., Faber, W., &
Truszczynski, M. (Eds.), Proc. of the 6th Int. Conf. on Logic Programming and Non-
monotonic Reasoning (LPNMR 2001), Vol. 2173 of LNAI, pp. 434–438, Vienna, Aus-
tria. Springer.

Wu, Z., Eadon, G., Das, S., Chong, E. I., Kolovski, V., Annamalai, M., & Srinivasan, J.
(2008). Implementing an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In Alonso, G., Blakeley, J. A., & Chen, A. L. P. (Eds.), Proc.
of the 24th Int. Conf. on Data Engineering (ICDE 2008), pp. 1239–1248, Cancún,
México. IEEE.

808

