Querying Distributed RDF Graphs:
The Effects of Partitioning

Anthony Potter, Boris Motik, and Ian Horrocks

Oxford University
first.last@cs.ox.ac.uk

Abstract. Web-scale RDF datasets are increasingly processed using dis-
tributed RDF data stores built on top of a cluster of shared-nothing
servers. Such systems critically rely on their data partitioning scheme
and query answering scheme, the goal of which is to facilitate correct
and efficient query processing. Existing data partitioning schemes are
commonly based on hashing or graph partitioning techniques. The latter
techniques split a dataset in a way that minimises the number of connec-
tions between the resulting subsets, thus reducing the need for commu-
nication between servers; however, to facilitate efficient query answering,
considerable duplication of data at the intersection between subsets is
often needed. Building upon the known graph partitioning approaches,
in this paper we present a novel data partitioning scheme that employs
minimal duplication and keeps track of the connections between par-
tition elements; moreover, we propose a query answering scheme that
uses this additional information to correctly answer all queries. We show
experimentally that, on certain well-known RDF benchmarks, our data
partitioning scheme often allows more answers to be retrieved without
distributed computation than the known schemes, and we show that our
query answering scheme can efficiently answer many queries.

1 Introduction

While the flexibility of the RDF data model offers many advantages, efficient
management of large RDF datasets remains an open research topic. RDF data
management systems can be conceived as single-machine systems constructed
using techniques originating from relational databases [12,2,1,20,4], but the
size of some RDF datasets exceeds the capacity of such systems. As a possible
solution, distributed architectures based on a cloud of shared-nothing servers
have been developed [9,11,21]. Such systems are promising, but research is still
at a relatively early stage and scalability remains an open and critical problem.

The two main challenges in developing a distributed RDF system are (i) how
to split up the data across multiple servers (i.e., data partitioning), and (ii) how
to answer queries in a distributed environment (i.e., distributed query answer-
ing). These two challenges are closely connected: knowledge about data parti-
tioning is relevant for query answering, and knowledge of typical query structure
can be used to inform the data partitioning scheme. Nevertheless, one can inves-
tigate independently from query answering the extent to which a specific data

partitioning scheme reduces the need for distributed processing; for example,
one can identify the percentage of the query answers that can be computed
locally—that is, by evaluating queries on each server independently.

Data partitioning via hashing is a well-known partitioning scheme from the
database community, and it has been applied in several RDF systems [21, 15,4,
8,13,7]. In its simplest form, it distributes RDF data in a cluster by applying a
hash function to a component of an RDF triple. Triples are commonly hashed
by their subject to guarantee that star queries (i.e., queries containing only
subject—subject joins) can be evaluated locally. Hashing has often been imple-
mented using the MapReduce framework [3, 5, 19]; although hashing is typically
not discussed explicitly in such systems, it is implicit in the map phase of dis-
tributed join processing. This approach, however, does not take into account the
graph structure of RDF data, so nodes that are close together in the graph may
not be stored on the same server, resulting in considerable distributed processing
for many queries. As an alternative, an approach based on graph partitioning
has been developed [9]. The goal of graph partitioning is to divide the nodes
of the graph into several subsets while minimising the number of links with
endpoints in different subsets. Thus, by partitioning RDF data using graph par-
titioning, one increases the chance that highly interconnected nodes are placed
on the same server, which in turn increases the likelihood that query answers can
be computed locally. This scheme, however, does not guarantee that common
queries (such as star queries) can be evaluated locally, and it may thus require a
significant amount of distributed computation to guarantee completeness, even
in cases where locally computed answers fully answer the query.

These approaches can be augmented by duplicating data on partition bound-
aries [9,11]. For sufficiently small queries, data duplication ensures that each
query answer can be computed locally, and it can be used to provide the local
evaluation guarantee for star-shaped queries in the graph partitioning setting [9].
Data duplication, however, can incur considerable storage overhead, potentially
increasing the number of servers required to store a given RDF graph.

Our Approach We present a novel RDF data partitioning scheme that aims to
reduce the need for distributed computation on common queries, but with min-
imal duplication and storage overhead; moreover, we present a query answering
scheme that can correctly answer conjunctive queries over the partitioned data.
Our main idea is to keep track of places where each data subset makes connec-
tions to other data subsets, and to exploit this information during query answer-
ing in order to identify possible non-local answers. In this way we can enjoy the
benefits of graph partitioning and reduce the need for distributed processing,
with only a minimal overhead of data duplication.

In this paper we focus mainly on the effects of our data partitioning scheme,
which we experimentally show to be very promising on the LUBM [6] and the
SP2B [16] benchmarks. For all queries from these two benchmarks, our data
partitioning scheme ensures that a higher proportion of query answers can be
retrieved without any distributed processing than with subject-based hashing
[8,13,7] or the semantic hash partitioning (SHAPE) [11] approach. We do not

explicitly compare our approach with the original graph partitioning approach
[9] because the SHAPE approach has already been shown to be more effective.

We also experimentally evaluate our query answering scheme, which we show
can effectively answer many queries from the LUBM and SP2B benchmarks with
little or no distributed processing. On some queries, however, our scheme be-
comes impractical as it requires the computation of a large number of partial
matches (see Section 4 for details)—a drawback we look to overcome in our fu-
ture work. These results are preliminary in the absence of a complete distributed
system that would allow us to measure query processing times; instead, we mea-
sure the amount of work (in a sense that we make precise in Section 4) involved
in distributed query processing.

2 Preliminaries

2.1 RDF

Let R be a set of resources. An RDF term is either a variable or a resource from
R; a term is ground if it is not a variable. An RDF atom A is an expression
of the form (s,p,o0) where s, p, and o are RDF terms; the vocabulary of A is
defined as voc(A) = {s,p, o}; var(A) is the set of all variables in voc(A); atom A
is ground if var(A) = 0; a triple is a ground atom; and an RDF graph G is a set
of triples. The vocabulary of G is defined as voc(G) = [J 4 voc(A). As in the
SPARQL query language, all variables in this paper start with a question mark.
A wvariable assignment p (or just assignment) is a partial mapping of variables
to resources. For r a resource, let u(r) = r; for A = (s,p,0) an RDF atom, let
p(A) = (u(s), u(p), u(o)); and for S a set of atoms, let u(S) = J,cgp(A). The
domain dom(u) of p is the set of variables that p is defined on; and the range
rg(p) of wis rmg(p) = {p(x) | € dom(p)}. An RDF conjunctive query @ is an
expression of the form (1), where each A;, 1 <i < m, is an RDF atom.

Q=A1N...NA, (1)

By a slight abuse of notation, we often identify @) with the set of its atoms. The
vocabulary and the set of variables of @) are defined as follows.

voc(Q) = U voc(A4;) var(Q) = U var(A;) (2)
1<i<m 1<i<m

We sometimes write queries using the SPARQL syntax. An answer to a query
Q@ over an RDF graph G is an assignment g such that dom(u) = var(Q) and
w(Q) € G; and ans(Q, G) is the set of all answers to @) over G. Note that our
definitions do not support variable projection.

2.2 RDF Data Partitioning and Distributed Query Answering

A partition of an RDF graph G is an n-tuple of RDF graphs G = (Gy,...,Gy)
such that G C G; U...UG,. Each G; is called a partition element, and n is the

size of G; an n-partition is a partition of size n. One might expect a partition
to satisfy G = G; U ... U G, but our relaxed condition allows us to capture our
ideas in Section 3. Furthermore, we allow triples to be duplicated across partition
elements—that is, we do not require G; N G; = 0 for ¢ # j. A partitioning
scheme is a process that, given an RDF graph G, produces a partition G. Given
an RDF conjunctive query @, an answer u € ans(Q,G) is local for Q and G
if some 1 <7 <n exists such that u € ans(Q, G;); otherwise, u is non-local for
Q@ and G. When @ and G are clear, we simply call p local or non-local. Since
non-local answers span partition elements, they are more expensive to compute
if each partition element is stored on a separate server; hence, the main aim of
a partitioning scheme is to maximise the number of local answers to common
queries. The quality of a partition G for a set of queries Q is defined as the ratio
of local answers to all answers for all of the queries in Q on G. We often use
this term informally, in which case we consider partition quality with respect to
an unspecified set of queries that can be considered typical.

Allowing duplication of triples in partition elements can improve partition
quality: given a non-local answer u to a query @, answer u becomes local if we
add (@) to some partition element. However, duplication also increases storage
overhead, and in the limit it can result in each partition element containing a
complete copy of G. Hence, another aim of a partitioning scheme is to achieve a
suitable balance between triple duplication and partition quality.

A distributed query answering scheme, or just a query answering scheme, is
a process that, given a partition G and a query @), returns a set of assignments
ans(Q, G) such that ans(Q, G) = ans(@, G). If the shape of @) guarantees that
all answers are local, one can evaluate () against each element of G and take
the union of all answers; otherwise, additional work is required to identify non-
local answers or to detect that no such answers exist. Query answering schemes
differ mainly in how they handle the latter case: answer pieces are spread across
multiple partition elements and they must be retrieved and joined together.
We now have two clear goals for a query answering scheme: the first goal is to
ensure correctness—that is, that ans(Q, G) = ans(Q, G)—and the second goal is
to minimise the amount of work required to construct non-local answers.

2.3 Existing Solutions

Now we present a brief overview of partitioning schemes and query answering
schemes known in the literature.

Hashing is the simplest and most common data partitioning scheme [14, 18,
21]. Typically, a hashing function maps triples of an RDF graph to m buckets,
each of which corresponds to a partition element. The hashing function is often
applied to the triple’s subject or the predicate, with subject being the most
popular choice: this guarantees that triples with the same subject are placed
together, ensuring that all answers to star queries are local.

Graph-based approaches exploit the graph structure of RDF data. In particu-
lar, one can use min-cut graph partitioning software such as METIS [10], which
takes as input a graph G and the partition size n, and outputs n disjoint sets

of nodes of G such that all sets are of similar sizes and the number of edges in
G connecting nodes in distinct sets is minimised. The approach by [9] reduces
RDF data partitioning to min-cut graph partitioning to ensure that highly con-
nected RDF resources are placed together into the same partition element, thus
increasing the likelihood of a query answer being local.

One can combine an arbitrary data partitioning scheme with n-hop duplica-
tion to increase the proportion of local answers. Given an RDF graph G and
a subgraph H C G, the n-hop expansion H,, of H with respect to G is defined
recursively as follows: Hy = H and, for each 1 <i <mn,

H;, = Hi_1 U{(s,p,0) | (s,p,0) € G and {s,0} Nvoc(H,;_1) # 0}. (3)

While n-hop partitioning can considerably improve partition quality [9], it can
also incur a substantial storage overhead. For example, even just 2-hop dupli-
cation can incur a storage overhead ranging from 67% to 435% [11]. Various
optimisations have been developed to reduce this overhead, such as using di-
rected expansion and excluding high degree nodes from the expansion.

Most data partitioning schemes are paired with a specific query answering
scheme. Due to lack of space, we cannot present all such approaches in detail.
Many of them have been implemented using MapReduce [3]—a framework for
handling and processing large amounts of data in parallel across a cluster; a
recent survey of MapReduce solutions can be found in [5]. Moreover, the Trin-
ity.RDF system [21] uses Trinity [17]—a distributed in-memory key-value store.

3 Partitioning RDF Data

3.1 Aims

We now present our novel data partitioning scheme. Similar to [9], we use min-cut
graph partitioning, but we extend the approach by recording the outgoing links in
each partition element so as to facilitate the reconstruction of non-local answers.
More specifically, we introduce a wildcard resource *, and use it to represent all
resources ‘external’ to a given partition element. Thus, we know in each partition
element which resources are connected to resources in other partition elements;
we exploit this feature in Section 4 in order to obtain a correct query answering
scheme. This allows us to attain a high degree of partition quality, while at the
same time answering queries correctly without n-hop duplication.

The quality of partitions critically depends on the structure of the data and
the anticipated query workload. Although application specific, we found the
following assumptions to be common to a large number of applications.

Assumption 1. Subject—subject joins are common.

Assumption 2. Queries often constrain variables to elements of classes—that
is, they often contain atoms of the form (?x, rdf:type, class).

Assumption 3. Joins involving resources representing classes are uncommon—
that is, queries rarely contain atoms (?xq, rdf:type, y) A (?x2, rdf :type, 7y).

Assumption 4. Joins on resources that are literals are uncommon—that is, if
a query contains atoms (?x1,:R, 7y) A (Tx,:S, 7y), it is unlikely that a query
answer will map variable 7y to a literal.

Assumption 5. The number of schema triples in G is small, so all schema
triples can be replicated in each partition element.

Although n-hop duplication can increase partition quality [9,11], it is often
associated with a considerable storage overhead, particularly with real (as op-
posed to synthetic) RDF graphs. With this in mind, we formulate the following
aims for our partitioning scheme:

Aim 1. maximise the number of local answers to star queries,

Aim 2. achieve similar, or better, partition quality than schemes employing
n-hop duplication, and

Aim 3. minimise duplication, particularly compared to n-hop duplication.

3.2 OQOwur Data Partitioning Scheme

Given an RDF graph G, let x be a distinguished wildcard resource such that
* € voc(@G). Now let V C voc(G) be a subset of the vocabulary of G. Given a
resource r, let [r]y = r if r € V and [r]y = * otherwise. Moreover, given an RDF
atom A = (s,p,0), let [Aly = ([s]v,[p]v,[0]v). Finally, given an RDF graph G,
let [G]v be the RDF graph defined by [G]v = {[A]v | A € G}. In the rest of
this section we formalise our data partitioning scheme, and in Section 4 we show
how to use the wildcard resource to answer queries.

Instead of partitioning triples directly, we partition the vocabulary of the
graph and use the result to construct a partition of the triples. More precisely, to

construct an n-partition of G' we first partition voc(G) into n subsets Vi, ..., V,,,
and then we use these to construct a partition G = ([Glw, .., [G]v,) of G. To
ensure that G is a valid partition, we must select V7, ..., V,, such that

G C[Gly, U...U[G]y, (4)

holds. To achieve this, we first partition the vocabulary voc(G) into n disjoint sets
Vi,..., V!, and then we extend these sets so that condition (4) is satisfied. This
extension allows resources to be duplicated in multiple partition elements, which
in turn means triples can also be duplicated. Typically, the duplicated triples
are those that are on, or near, the border between partition elements. Since
resource * is not contained in voc(G), we use the subset relation in condition
(4), rather than a more intuitive equality relation. Furthermore, our approach
ensures that, for each partition element G; = [G]y, and each triple (s, p,0) € G,
if {s,p,0} C voc(G;), then (s,p,0) € G; holds. This property is not satisfied in
previously known partitioning schemes, but it increases partition quality. We
formalise these ideas using the following steps.

Step 1. Compute the undirected graph G’ by removing from G all schema
triples and triples containing class and literal resources (i.e., all triples of
the form (s, rdf:type, o) and (s,p,£) with £ a literal), and by treating each
remaining triple (s, p,0) as an undirected edge connecting s and o.

Step 2. Partition the nodes of G’ into n disjoint sets using min-cut graph parti-
tioning (e.g., using METIS), and let V{, ..., V! be the resulting vocabularies.

Step 3. Extend each V/ to V;* = V/ U {r | r occurs in a schema triple in G}.

Step 4. Extend each V* to V; = V*U{o| (s,p,0) € G and s € V*}.

Step 5. Calculate [G]y, for each V;, and set G = {[G]v,,- .., [G]v, }-

In Step 1, we takes into account Assumption 5 that schema triples can be
replicated in each partition element. Furthermore, in line with our Assumptions
3 and 4 on our query workload, we do not expect triples to participate in joins
on classes and literals; thus, we remove such triples in Step 1 so that the min-cut
graph partitioning algorithm does not attempt to place resources connected via
class or literal resources into the same partition element.

In order to satisfy (4), we must ensure that, for each triple A € G, some
Vi exists such that voc(A) € V;. Thus, we must reintroduce the triples from G
that correspond to edges in G’ that were ‘cut’ during min-cut partitioning, as
well as triples removed in Step 1. Thus, in Step 3 we introduce all resources
occurring in the schema (including all classes and properties) into all partition
elements; note that this ensures an efficient evaluation of queries mentioned in
Assumption 2. Finally, since we assume that subject—subject joins are common
(cf. Assumption 1), in Step 4 we reintroduce the missing triples into the partition
element that contains the triple subject.

Partition element [G]y, is the core owner of a resource r if r € V/. Note that,
if [G]v, is the core owner of a resource r, then [G]y, contains all triples in which
r occurs in the subject position. Hence, if () is a star query in which variable 7x
participates in subject—subject joins, then all answers in which 7z is mapped to
r can be obtained by evaluating @ in [G]y;; in other words, all answers to star
queries are local, which is in line with our Aim 1.

3.3 An Example

To make our scheme clear, we present an extended example. Let G be the RDF
graph containing the following eight triples, shown schematically in Figure 1a.

G ={{a,R,b),(b,R,c),{b,R,d),(d, R, f), e, R,d), (5)
(f,R,a), (f, R, e), (b, rdf :type, s), (e, rdf :type, t) }

To produce a 2-partition of GG, in Step 1 we first remove all triples containing
class and literal resources; in our example, we remove triples (b, rdf :type, s) and
(d, rdf :type,t). In Step 2 we then apply min-cut graph partitioning to the re-
sulting graph to split the resources into two sets while minimising the number
of cut edges; let us assume that this produces the following vocabularies:

Vi ={a,b,c} V3 ={d,e, f} (6)

In Steps 3 and 4 we then extend these vocabularies so that each partition element
that is a core owner of a subject also contains all triples with that subject, and

OO0
oo O

% b@
o 85 o
oD

Do O : o

(a) Example Graph G (b) Partition Element [G]y, (c) Partition Element [G]y,

Fig. 1: Example Graph G and the Resulting Partitioning Elements

so that each partition element includes all class and property resources; in our
example, this produces the following vocabularies:

Vl = {a”b7 C? d? 87 t? R7 rdf‘type} V2 = {a7 d7 e, f? s7t7 R’ rdf'type} (7)

Due to this step, nodes a, d, s and t as duplicated in V; and V5; we explain
using node d why this is necessary. Graph [G]y, must contain all triples whose
subject is in V{; thus, since (b, R,d) is in G and b is in V{ | we must add d to
V1. Finally, we construct [G]y, and [G]y, as shown in Figures 1b and lc.

4 Distributed Query Answering

Although there is considerable variation in the details, existing query answering
schemes, such as [9,11], generally proceed via the following steps: a query is
broken up into pieces, all of which can be evaluated independently within par-
tition elements; each query piece is evaluated in the relevant partition element
to obtain partial matches; and the partial matches are then joined into query
answers. As an example, consider the following query:

Q = (Px, rdf :type, s) A (Tx, R, 7y) A (?z, R, Tx) (8)

The data partitioning scheme critically governs the first step. For example, if the
data partitioning scheme guarantees that subject—subject joins can be evaluated
locally, then the query must be broken up into pieces each of which involves only
subject—subject joins; thus, query @ will be broken into the following pieces:

Q1 = (x, rdf :type, sy A (T, R, 7y) Q2= (?z,R,7x) (9)

If the data partitioning scheme employs n-hop duplication, one can break the
query into pieces that involve joins with n hops; however, as we show in Section 5,
duplication can incur a considerable storage overhead.

The main drawback of such approaches is that they do not take advantage of
local answers. For example, answer u = {7z +— b, 7y — d,?z — b} is local with

respect to the partition [G]y, shown in Figure 1b, but it would not be retrieved
by evaluating @ on [G]y, directly; instead, one must evaluate @1 and Q2 on [G]y,
and then join the results. This can be problematical since evaluating query pieces
might be less efficient than evaluating the entire query at once.

Our query answering scheme uses a completely different approach. Roughly
speaking, we first evaluate each query in each partition element independently,
thus retrieving all local answers without any partial query evaluation or commu-
nication between the servers. However, in this step we may also retrieve answers
containing the wildcard resource, each of which represents a potential match of
the query across partition elements, so we join such answers to obtain all an-
swers to the query. In this way, we restrict communication and partial query
evaluation to (possible) non-local answers, rather than all answers.

4.1 Formalisation

To formalise our query answering scheme, we first introduce some notation. Let
V be a vocabulary not containing *. For @) a conjunctive query of the form (1), let
[Qlv = [A1]v A ... A [Ap]v. Furthermore, for 4 a variable assignment, let [u]y
be the variable assignment such that dom([u]y) = dom(u) and, for each variable
x € dom(p), we have [u]y (z) = p(z) if p(z) € V, and [p]v(x) = * if u(x) € V.

In the rest of this section, we fix an arbitrary conjunctive query @ of the
form (1) with m atoms, an arbitrary RDF graph G, and an arbitrary partition
G = ([Glv;, ..., [G]v,) of G. To evaluate Q in G, we first evaluate [Q]y, in [G]y,
for each 1 < i < n. Note that query Q may contain resources not contained in V;;
therefore, in each partition element [G]y, we evaluate [@]y;, rather than Q. We
then join all answers obtained in the previous step, while assuming that resource
* matches any other resource. We formalise the join procedure as follows.

Definition 1. A wvariable assignment [is a join of assignments pi and ps,
written p = pq > pg, if dom(p) = dom(p1) = dom(usg) and, for each x € dom(u),
(i) 11 () = pa() implies () = i (z) = pa (@), and (i) o1 (z) # pa(w) implies
(@) =+ and p(w) = 1a(x), or pa(w) =+ and p(x) = o (x).

An assignment can be an answer to () on G only if it instantiates all atoms
of @, which we formalise as follows.

Definition 2. Let u be a variable assignment with dom(u) = var(Q). The set of
valid atoms of Q under p is defined asval,,(Q) = {j | * & voc(u(A;))}. Moreover,

p is valid for @ if |val,(Q)| = m.

Furthermore, when evaluating [Q]y, in [G]y,, we can ignore any variable
assignment uy € ans([Q)v;, [G]v;) that is redundant according to the following
definition. Intuitively, p; is redundant if, for each p € ans(Q, G) that ‘extends’
w1 (i-e., such that pq = [p]y;), there exists a variable assignment po obtained by
evaluating [Q]y, in some partition element [G]y, such that u extends pso, and
the set of atoms of @ fully instantiated by pe strictly includes the set of atoms
fully instantiated by p1. Note that this includes the case where no i € ans(Q, G)
extends pq. This idea is formally captured using the following definition.

Definition 3. Consider arbitrary 1 <i <n and p1 € ans([Q]v;, [G]v,). Assign-
ment py is redundant for Q and i if, for each assignment p € ans(Q,G) such
that py = [p]v,, there exist 1 < j < n and an assignment py € ans([Qlv,, [G]v,)
such that piz = [p]y, and valy, ([Qlv;) € val,, ([Qlv,). If such p is neither valid
for Q nor redundant for Q and i, then py is a partial match of @ in [G]y,.

i

As a simple consequence of Definition 3, note that the number of non-
redundant answers in each partition element is at most equal to the number of
non-local query answers. Theorem 1 captures the essence of our query answer-
ing scheme. Intuitively, it says that each answer u to Q on G is obtained either
by evaluating [@]y, on some partition element [G]y, (i.e., it is a local answer),
or by joining non-valid and non-redundant assignments puq, ..., 4, obtained by
evaluating [Q]y, on [G]y, that instantiate all atoms of Q.

Theorem 1. For a variable assignment u, we have p € ans(Q, G) if and only if

1. p is valid for Q and p € ans([Q]v;, [G]v;) for some 1 < i <mn, or
2. variable assignments pi1, ..., [y, exist such that
(a) for each 1 <i <n, either dom(p;) = var(Q) and rmg(u;) = {*}, or we
have p; € ans([Qlv;, [Glv;) and p; is a partial match of @ in [G]v,,
(b) for each 1 <j <m, some 1 <k <n exists such that j € val,, ([Q]v,),
and

(c) p=p1 <. . < .

Proof. (=) Assume that p € ans(Q, G). The claim holds trivially if p satisfies
(1), so assume that p does not satisfy (1). For each 1 < i <mn, let & = [u]v,, and
let p; be such that dom(u;) = var(Q) and rng(u;) = {} if & is redundant for @
and p; = &; otherwise. We next show that each p; satisfies (2a)—(2c).

(2a) Consider an arbitrary 1 <4 < n. The claim holds trivially if & is re-
dundant for @ and 4, so we assume that p; = & is not redundant for @ and .
Since we assume that p € ans(Q, G), assignment &; is not valid for Q. For each
1 <j <m,since u(4;) € G, we clearly have [u(A;)]y, € [G]v,; furthermore, we
have [p(A;)]v, = 1i([45]v;), so wi([4;]v;) € [Gly, holds. Consequently, we have
wi € ans([Qlv;, [G]v,), as required.

(2b) Consider an arbitrary 1 < j < m; then, u € ans(Q, G) clearly implies
p(A;) € G. Since G C | J,;[Gly,, some 1 < i < n exists such that &;(A;) € [G]y;, so
clearly j € valg, ([Q]v;). Now choose 1 < k < n such that val,, ([Q]v,) is a largest
set satisfying valg, ([Q]v;) C valg, ([Q]v,,). Since val,, ([Q]v,) is largest, such & is
not redundant for @ and k, so pp = &; but then, j € val,, ([Q]v,), as required.

(2¢) For each variable € dom(u), some 1 < ¢ < n exists such that u(z) € V;;
hence, it is obvious that pu =& ... <&, holds. We next show that we can
successively replace in this equation each &; that is redundant for @ and i
with p;. To this end, choose an arbitrary ¢; that is redundant for @ and i,
and choose an arbitrary 1 < j <n such that valg, ([Q]v;) C vale, ([Q]v;) and §;
is not redundant for @ and j; clearly, we have [£;]y, > pj = p;. Now consider
an arbitrary variable x € dom(&;) such that & (x) # * and & (x) # &;(x). Since
valg, ([Qlv;) C valg, ([Q]v;) holds, variable occurs in @ only in atoms A, such

that * € voc(§;(Ar)), so £ & valg, ([Q]v;). But then, by (2b), some 1 < k < n ex-
ists such that & (x) = &(x) and & is not redundant for @ and k. But then,
pw=2E DA ... & DXy X &4 X &, clearly holds. We can iteratively replace in
this equation each &; that is redundant for Q and 7 with u; without affecting the
equality, as required.

(<) Assume that (1) is true for some p; then p([A;]v;,) = u(A;) for each
1< j <m, so clearly p € ans(Q, G). Assume now that (2a)—(2c) are true, and
consider an arbitrary 1 < j < m. By (2a) and (2b), some 1 < i < n exists such
that p;([A;]v;) € [G]v, and * & voc(u;([A4;]v,)). But then, u,([A4;]v,) € G; fur-
thermore, by (2¢), p;(x) = pu(zx) for each variable x € Vj, so u(A4;) € G. Conse-
quently, p € ans(Q, G). O

Hence, the answers to a query @ over G can be computed as follows. First,
each i-th server computes ans([Q]v,, [G]v,) in parallel, and it immediately re-
turns all answers that are valid for). Second, the server identifies a sub-
set P; C ans([Q]v;, [G]v,) of partial matches of @ in [G]y,, and it also extends
P; with assignment p such that dom(u) = var(Q) and rng(p) = {*}. Third, all
servers communicate P; to one designated server, which then computes the join
Py ... P, and returns each result that instantiates all atoms of (). Our
query answering scheme thus requires distributed computation only for answers

spanning partition boundaries.

4.2 Identifying Redundant Answers

Checking whether some 1 € ans([Q]v;, [G]y;) is redundant for @ and i requires
one to consider each p € ans(@, G), which is clearly impractical. Thus, in this
section we present an approximate redundancy check. Note that Theorem 1 holds
even if some p; in Condition (2a) is redundant, so using an approximate check
is safe from the correctness point of view.

Our optimisation is based on the fact that our data partitioning scheme
ensures that answers to subject—subject joins are always local. Hence, if, for
some i, each ‘star’ in () contains an atom that is not valid for p, then p is
redundant. This is captured formally in Proposition 1; its proof is trivial, so we
omit it for the sake of brevity.

Proposition 1. Consider an arbitrary 1 <1i <n and an arbitrary variable as-
signment p € ans([Qlv,, [G]v;). Then, u is redundant for Q and i if, for each
term s # * occurring in uw([Qv,) in a subject position, an atom A € @ exists
such that s occurs in the subject position of u([Alv,) and x € voc(u([Alv;)).

i i

4.3 Limitations of our Query Answering Strategy

Practical applicability of our approach depends critically on effective removal of
redundant answers. As we show in Section 5, the optimisation from Proposition 1
is effective on some, but not on all queries. The latter is often the case for long
chain queries (i.e., queries of the form (zg, Ry, z1) A...A{@p_1, Ry, xy)): in each

partition element, the wildcard resource typically has a large fan-out and fan-in,
and it also occurs in triples of the form (x, R;, *), which can give rise to a large
number of answers that are not redundant.

As a possible remedy, we shall explore the possibility of adapting the ap-
proach presented in [21]. We envisage an algorithm that evaluates a query in
each partition element using nested index loop joins; however, as soon as the
algorithm matches some variable to *, the algorithm sends the variable matches
identified thus far to other servers for continued evaluation. Such an algorithm
would still produce all local answers locally and without breaking the query up
into pieces, thus reaping the same benefits as the the approach we presented
in this paper, but it would not explore any redundant answers. The main open
question is to develop a suitable query planning algorithm.

5 Experimental Evaluation

In this section we experimentally evaluate our approach using the Lehigh Uni-
versity Benchmark (LUBM) and the SPARQL Performance Benchmark (SP2B).
Each test dataset was split into a partition of size 20, and we used the queries
available in the respective benchmarks. This size was chosen to make it directly
comparable to related works such as [9,11]. For a fixed dataset, increasing the
partition size is likely to increase the number of non-local answers as the data be-
comes more fragmented; in contrast, fixing partition size while increasing the size
of the dataset is likely to reduce the proportion of non-local answers. The extent
to which these changes affect partition quality is out of the scope of this paper
and we leave it for our future work. As we have already mentioned, we have not
yet implemented a complete system that would allow us to measure end-to-end
query answering times; hence, we only conducted the following experiments.
For each G = (G1,...,Gy) of a test dataset G, we calculated (i) the per-
centage of local answers to test queries, (ii) the storage overhead—that is, the

percentage W, and (iii) the number of partial matches to test

queries, according to Proposition 1. While experiment (i) determines how many
non-local answers must be constructed, experiment (iii) provides us with an
indication of how much work is required for this construction. This is critical be-
cause, in order to ensure the completeness of query answers, all partial matches
in all partition elements must be computed and joined together.

We compared our approach with subject-based hash partitioning (written
Hash) as in [8,21], and semantic hash partitioning (written SHAPFE) [11], which
uses an optimised form of subject hashing and directed 2-hop duplication. We
did not consider the graph partitioning approach by [9] because SHAPE was
shown to offer superior performance. All of these partitioning approaches ensure
that all answers to all star queries are local. Furthermore, Proposition 1 ensures
there are no partial matches to star queries so we did not consider them in our
tests. We used the RDFox system® to compute non-local answers, and so we use
RDFozx as the name of our approach.

! http://www.cs.ox.ac.uk/isg/tools/RDFox/

5.1 Test Datasets

The Lehigh University Benchmark (LUBM) [6] is a commonly used Semantic
Web benchmark. It consists of a synthetic data generator for a simple univer-
sity domain ontology, and 14 test queries, nine of which are star queries. The
generator is parameterised by a number of universities, for which it creates data
from the university domain. We used LUBM-2000, containing approximately 267
million triples. The main drawback of LUBM is that the data for each university
is highly modular: entities in each university contain many more links amongst
themselves than to entities in other universities. We used the five non-star bench-
mark queries and the following manually created circular query Qc:

SELECT DISTINCT ?w ?7x 7y 7z WHERE {
?x ub:worksFor 7y . 7y ub:subOrganizationOf 7z .
?w ub:undergraduateDegreeFrom 7z . ?w ub:advisor 7x }

Some LUBM queries have non-empty results only if the data is extended
according to the axioms from the LUBM ontology; however, since distributed
reasoning is out of scope of this paper, we rewrote the test queries into unions
of conjunctive queries in order to take the ontology axioms into account.

The SPARQL Performance Benchmark (SP2B) [16] is another synthetic
benchmark that produces DBLP-like bibliographic data. We used an SP2B
dataset with approximately 200 million triples. The benchmark provides 12
queries, of which we have used the five non-star queries for our comparison.
Some of these queries contain OPTIONAL clauses, which we simply deleted
because optional matches are currently not supported in our framework.

5.2 Partition Quality

Table 1 shows the percentage of local answers for each LUBM query. RDFox
and SHAPE were able to answer all queries completely, which is in part due
to the modular nature of the data; however, hashing performs poorly on all
queries. Table 2 shows the results for SP2B. Again, hashing performs very poorly.
Furthermore, both RDFox and SHAPE handled queries 4 and 6 well; however,
RDFox significantly outperformed SHAPE on queries 5, 7, and 8.

One can intuitively understand these results as follows. Hashing by subject,
although effective for star queries, performs very poorly for other types of query:
in most cases, it provides almost no local answers. Thus, hashing is likely to be a
poor data partitioning scheme for applications with diverse query loads. SHAPE
considerably improves hashing, to the extent that only two benchmark queries
are problematic. However, by partitioning the data based on its structure, one
can further improve the overall performance: our approach is weakest on query
Q5 from SP2B, but it still provides a high percentage of local answers.

Table 1: LUBM Percentage of Local Answers
System [Q2 Q8 Q9 Q11 Q12 Qc
RDFox [100.00%|100.00%{100.00%100.00%|100.00%|100.00%
SHAPE|100.00%|100.00%|100.00%|100.00%|100.00%100.00%
Hash |0.44% |4.96% [0.23% [5.80% [0.00% [0.04%

Table 2: SP2B Percentage of Local Answers Table 3: Storage Overhead

System |Q4 Q5 Q6 Q7 Q8

RDFox |95.95%|73.00%|99.90% |92.41%|91.45% RDFox|SHAPE|Hash

LUBM|3.60% (84.23% (0.00%

SHAPE|95.23%(9.72% {100.00%|41.97%|73.72% SP2B 10.60% |38.63% [0.00%

Hash |0.01% |0.77% [0.25% |0.08% [0.26%

5.3 Storage Overhead

As we have already discussed, the percentage of local answers can be increased
using n-hop duplication, but at the expense of storage overhead. For example,
with 2-hop duplication, the approach by [9] can incur an overhead up to 430%.
Table 3 shows the overhead for all partitioning schemes and data sets we
considered in our experiments. Hashing clearly incurs no overhead; moreover,
although SHAPE incurs a considerable overhead, that can be acceptable for
some applications. Our partitioning scheme, however, exhibits a negligible over-
head. Intuitively, this is due to the fact that min-cut graph partitioning tries to
minimise the number of cut edges, which leads to a small level of duplication.

5.4 Query Evaluation

We evaluated each test query on each partition element, and we discarded all
valid assignments and some redundant assignments (according to Proposition 1).
For each query, we computed the mean, minimum, maximum, and the sum of
the numbers of partial matches across all partition elements.

On LUBM, queries 2, 8, 11 and 12 had no partial matches, so they can be
evaluated fully locally without the need for any distributed processing. Queries
9 and ¢ had 6 and 11, respectively, partial matches in total, so the necessary
distributed processing is negligible.

On SP2B, evaluating queries 4 and 8 on all partition elements did not finish
within an hour, producing very large numbers of partial matches. Since the
number of partial matches in each partition element is bounded by the number
of non-local answers and the latter is small (cf. Table 2), this result shows that
Proposition 1 is not very efficient in identifying redundant answers for queries
4 and 8. Table 4 summarises the results for the remaining queries; in order to
better understand these numbers, the table also shows the numbers of total
and non-local answers. For queries 5 and 7, the numbers of partial matches are
much smaller than the numbers of non-local answers, suggesting that joining the
partial matches should be practically feasible. In contrast, the number of partial

Table 4: Partial Matches for SP2B
Query Total Non-local Partial Matches
Answers | Answers | Mean Min Max Total
Q5 | 2,970,234] 801,958| 19,128 1,847| 43,755| 382,564
Q6 38,111,881 38,048(819,709(117,781(1,321,781|16,394,172
Q7 184,193 13,989 2,874 642 6,528 57,471

matches to query 6 is orders of magnitude larger than the number of non-local
answers, suggesting that joining the partial answers might be difficult.

To summarise, our approach produces no or few partial matches on many
types of query, but it runs into problems with long chain queries such as SP2B
query 8. We shall try to improve on this using the ideas outlined in Section 4.3.

6 Conclusion

We have presented a new scheme for partitioning RDF data across a cluster
of shared-nothing servers. Our main goal is to minimise the number of connec-
tions between partition elements so as to ensure that most answers to typical
queries are local (i.e., they can be obtained by evaluating the query locally in
all partition elements). We encode in each partition element links to other par-
tition elements, and we use this information in a novel query answering scheme
to correctly compute all answers to queries. Unlike existing systems, our query
answering scheme retrieves all local answers by simply evaluating the query in
each partition element, and it uses the encoded links to reduce the need for dis-
tributed processing. We have shown that, on the LUBM and SP2B benchmarks,
test queries have more local answers under our data partitioning scheme than
with subject-based hashing or semantic partitioning [11], and that our data par-
titioning scheme incurs a negligible storage overhead. Finally, we have shown
that our query answering scheme is effective on many, but not all test queries.

We see two main challenges for our future work. First, we shall try to adapt
the graph exploration technique by [21] to obtain a more robust query answering
scheme. Second, we shall extend the RDFox system to a fully fledged distributed
RDF data store and compare it with existing systems.

Acknowledgements Our work was supported by a doctoral grant by Roke
Manor Research Ltd, an EPSRC doctoral training grant, and the EPSRC project
MaSI3.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-Store: A Vertically
Partitioned DBMS for Semantic Web Data Management. The VLDB Journal
(2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:

Jena: implementing the semantic web recommendations. In: WWW (Alternate
Track Papers & Posters) (2004)

Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM (2008)

Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS. In: Semantic
Web Information Management. Springer Berlin Heidelberg (2010)
Giménez-Garcia, J.M., Fernandez, J.D., Martinez-Prieto, M.A.: MapReduce-based
Solutions for Scalable SPARQL Querying. Open Journal of Semantic Web (OJSW)
(2014)

Guo, Y., Pan, Z., Heflin, J.. LUBM: A Benchmark for OWL Knowledge Base
Systems. Web Semantics (2005)

Harris, S., Lamb, N., Shadbol, N.: 4store: The Design and Implementation of a
Clustered RDF Store. In: Proc. of the 5th Int. Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS2009). Washington DC, USA (October 26
2009)

Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository
for Querying Graph Structured Data from the Web. In: Aberer, K., Choi, K.S.,
Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) Proc. of the 6th Int.
Semantic Web Conf. (ISWC 2007). LNCS, vol. 4825, pp. 211-224. Busan, Korea
(November 11-15 2007)

Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF
Graphs. In: Proceedings of the VLDB Endowment (2011)

Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing (1999)

Lee, K., Liu, L.: Scaling Queries over Big RDF Graphs with Semantic Hash Par-
titioning. In: Proceedings of the VLDB Endowment (2013)

Neumann, T., Weikum, G.: RDF-3X: a RISC-style Engine for RDF. In: Proceedings
of the VLDB Endowment (2008)

Owens, A., Seaborne, A., Gibbins, N.; Schraefel, M.C.: Clustered TDB: A Clustered
Triple Store for Jena. http://eprints.ecs.soton.ac.uk/16974/

Papailiou, N., Konstantinou, I., Tsoumakos, D., Koziris, N.: H2RDF: adaptive
query processing on RDF data in the cloud. In: WWW (2012)

Rohloff, K., Schantz, R.E.: High-performance, Massively Scalable Distributed Sys-
tems Using the MapReduce Software Framework: The SHARD Triple-store. In:
Programming Support Innovations for Emerging Distributed Applications (2010)
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. CoRR (2008)

Shao, B., Wang, H., Li, Y.: The Trinity graph engine. Tech. rep., Microsoft Re-
search (2012)

Sun, J., Jin, Q.: Scalable RDF Store Based on HBase and MapReduce. In: Inter-
national Conference on Advanced Computer Theory and Engineering (2010)
Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.E.: WebPIE: A
Web-scale Parallel Inference Engine using MapReduce. Journal of Web Semantics
10, 59-75 (2012)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. In: Proceedings of the VLDB Endowment (2008)

Zeng, 7., Yang, J., Wang, H., Shao, B., Wang, Z.: A Distributed Graph Engine for
Web Scale RDF Data. In: Proceedings of the VLDB Endowment (2013)

