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Abstract

Consequence-based calculi are a family of reasoning algo-
rithms for description logics (DLs), and they combine hyper-
tableau and resolution in a way that often achieves excellent
performance in practice. Up to now, however, they were pro-
posed for either Horn DLs (which do not support disjunc-
tion), or for DLs without counting quantifiers. In this paper
we present a novel consequence-based calculus for SRIQ—
a rich DL that supports both features. This extension is non-
trivial since the intermediate consequences that need to be
derived during reasoning cannot be captured using DLs them-
selves. The results of our preliminary performance evaluation
suggest the feasibility of our approach in practice.

1 Introduction
Description logics (DLs) (Baader et al. 2003) are a family of
knowledge representation formalisms with numerous appli-
cations in practice. DL-based applications model a domain
of interest by means of an ontology, in which key notions in
the domain are described using concepts (i.e., unary predi-
cates), and the relationships between concepts are described
using roles (i.e., binary predicates). Subsumption is the prob-
lem of determining whether each instance of a concept C is
also an instance of a conceptD in all models of an ontology,
and it is a fundamental reasoning problem in applications of
DLs. For expressive DLs, this problem is of high worst-case
complexity, ranging from EXPTIME up to N2EXPTIME.

Despite these discouraging complexity bounds, highly op-
timised reasoners such as FaCT++ (Tsarkov and Horrocks
2006), Pellet (Sirin et al. 2007), HermiT (Glimm et al. 2014),
and Konclude (Steigmiller, Liebig, and Glimm 2014) have
proved successful in practice. These systems are typically
based on (hyper)tableau calculi, which construct a finite rep-
resentation of a canonical model of the ontology disproving
a postulated subsumption. While such calculi can handle
many ontologies, in some cases they construct very large
model representations, which is a source of performance
problems; this is further exacerbated by the large number
of subsumption tests often required to classify an ontology.

A recent breakthrough in DL reasoning came in the form
of consequence-based calculi. The reasoning algorithm by
Baader, Brandt, and Lutz (2005) for the lightweight logic EL
can be seen as the first such calculus. It was later extended to
the more expressive DLs Horn-SHIQ (Kazakov 2009) and

Horn-SROIQ (Ortiz, Rudolph, and Simkus 2010)—DLs
that support counting quantifiers, but not disjunctions be-
tween concepts. Consequence-based calculi were also devel-
oped for ALCH (Simančı́k, Kazakov, and Horrocks 2011)
and ALCI (Simančı́k, Motik, and Horrocks 2014), which
support concept disjunction, but not counting quantifiers.
Such calculi can be seen as combining resolution and hy-
pertableau (see Section 3 for details): as in resolution, they
describe ontology models by systematically deriving rele-
vant consequences; and as in (hyper)tableau, they are goal-
directed and avoid drawing unnecessary consequences. Ad-
ditionally, they are not only refutationally complete, but
can also (dis)prove all relevant subsumptions in a single
run, which can greatly reduce the overall computational
work. Finally, unlike implemented (hyper)tableau reason-
ers, they are worst-case optimal for the logic they support.
Steigmiller, Glimm, and Liebig (2014) presented a way of
combining a consequence-based calculus with a traditional
tableau-based prover; while such a combination seems to
perform well in practice, the saturation rules are only known
to be complete for EL ontologies, and the overall approach
is not worst-case optimal for SRIQ.

Existing consequence-based algorithms cannot handle
DLs such as ALCHIQ that provide both disjunctions and
counting quantifiers. As we argue in Section 3, extending
these algorithms to handle such DLs is challenging: count-
ing quantifiers require equality reasoning which, together
with disjunctions, can impose complex constraints on ontol-
ogy models; and, unlike existing consequence-based calculi,
such constraints cannot be captured using DLs themselves,
which makes the reasoning process much more involved.

In Section 4 we present a consequence-based calculus for
ALCHIQ; by using the encoding of role chains by Kazakov
(2008), our calculus can also handle SRIQ, which covers
all of OWL 2 DL except for nominals, reflexive roles, and
datatypes. Borrowing ideas from resolution theorem prov-
ing, we encode the calculus’ consequences as first-order
clauses of a specific form, and we handle equality using a
variant of ordered paramodulation (Nieuwenhuis and Ru-
bio 1995)—a state of the art calculus for equational theorem
proving used in modern theorem provers such as E (Schulz
2002) and Vampire (Riazanov and Voronkov 2002). Further-
more, we have carefully constrained the inference rules so
that our calculus mimics existing calculi on ELH ontolo-



gies, which ensures robust performance of our calculus on
‘mostly-ELH’ ontologies.

We have implemented a prototype system and compared
its performance with that of well-established reasoners. Our
results in Section 5 suggest that our system can significantly
outperform FaCT++, Pellet, or HermiT, and often exhibits
comparable performance to that of Konclude.

2 Preliminaries
First-Order Logic. It is usual in equational theorem prov-
ing to encode atomic formulas as terms, and to use a multi-
sorted signature that prevents us from considering mal-
formed terms. Thus, we partition the signature into a set P
of predicate symbols and a set F of function symbols; more-
over, we assume that P has a special constant ℘. A term is
constructed as usual using variables and the signature sym-
bols, with the restriction that predicate symbols are allowed
to occur only at the outermost level; the latter terms are
calledP-terms, while all other terms areF-terms. For exam-
ple, for P a predicate and f a function symbol, f(P (x)) and
P (P (x)) are both malformed; P (f(x)) is a well-formed P-
term; and f(x) and x are both well-formed F-terms. Term
f(t) is an f -successor of t, and t is an f -predecessor of f(t).

An equality is a formula of the form s ≈ t, where s and t
are either both F- or both P-terms. An equality of the form
P (~s) ≈ ℘ is called an atom and is written as just P (~s) when-
ever it is clear from the context that the expression denotes a
formula, and not a P-term. An inequality is a negation of an
equality and is written as s 6≈ t. We assume that≈ and 6≈ are
implicitly symmetric—that is, s ./ t and t ./ s are identical,
for ./ ∈ {≈, 6≈}. A literal is an equality or an inequality.
A clause is a formula of the form ∀~x.[Γ→ ∆] where Γ is
a conjunction of atoms called the body, ∆ is a disjunction
of literals called the head, and ~x contains all variables oc-
curring in the clause; quantifier ∀~x is usually omitted as it is
understood implicitly. We often treat conjunctions and dis-
junctions as sets (i.e., they are unordered and without repe-
tition) and use them in standard set operations; and we write
the empty conjunction (disjunction) as > (⊥). For α a term,
literal, clause, or a set thereof, we say that α is ground if
it does not contain a variable; ασ is the result of applying
a substitution σ to α; and we often write substitutions as
σ = {x 7→ t1, y 7→ t2, . . .}. We use the standard notion of
subterm positions; s|p is the subterm of s at position p; po-
sition p is proper in a term t if t|p 6= t; and s[t]p is the term
obtained by replacing the subterm of s at position p with t.

A Herbrand equality interpretation is a set of ground
equalities satisfying the usual congruence properties. Satis-
faction of a ground conjunction, a ground disjunction, or a
(not necessarily ground) clause α in an interpretation I , writ-
ten I |= α, as well as entailment of a clause Γ→ ∆ from a
set of clauses O, written O |= Γ→ ∆, are defined as usual.
Note that a ground disjunction of literals ∆ may contain in-
equalities so I |= ∆ does not necessarily imply I ∩∆ 6= ∅.

Unless otherwise stated, (possibly indexed) letters x, y,
and z denote variables; l, r, s, and t denote terms;A denotes
an atom or a P-term (depending on the context); L denotes a
literal; f and g denote function symbols; B denotes a unary
predicate symbol; and S denotes a binary predicate symbol.

Orders. A strict order � on a universe U is an irreflex-
ive, asymmetric, and transitive relation on U ; and � is
the non-strict order induced by �. Order � is total if,
for all a, b ∈ U , we have a � b, b � a, or a = b. Given
◦ ∈ {�,�}, element b ∈ U , and subset S ⊆ U , the no-
tation S ◦ b abbreviates ∃a ∈ S : a ◦ b. The multiset ex-
tension �mul of � compares multisets M and N on U
such that M �mul N if and only if M 6= N and, for each
n ∈ N \M , some m ∈M \N exists such that m � n,
where \ is the multiset difference operator.

A term order � is a strict order on the set of all terms.
We extend � to literals by identifying each s 6≈ t with the
multiset {s, s, t, t} and each s ≈ t with the multiset {s, t},
and by comparing the result using the multiset extension of
�. We reuse the symbol� for the induced literal order since
the intended meaning should be clear from the context.

DL-Clauses. Our calculus takes as input a set O of DL-
clauses—that is, clauses restricted to the following form. Let
P1 and P2 be countable sets of unary and binary predicate
symbols, and letF be a countable set of unary function sym-
bols. DL-clauses are written using the central variable x and
variables zi. A DL-F-term has the form x, zi, or f(x) with
f ∈ F ; a DL-P-term has the form B(zi), B(x), B(f(x)),
S(x, zi), S(zi, x), S(x, f(x)), S(f(x), x) with B ∈ P1 and
S ∈ P2; and a DL-term is a DL-F-term or a DL-P-term.
A DL-atom has the form A ≈ ℘ with A a DL-P-term. A
DL-literal is a DL-atom, or it is of the form f(x) ./ g(x),
f(x) ./ zi, or zi ./ zj with ./ ∈ {≈, 6≈}. A DL-clause
contains only DL-atoms of the form B(x), S(x, zi), and
S(zi, x) in the body and only DL-literals in the head, and
each variable zi occurring in the head also occurs in the
body. An ontology O is a finite set of DL-clauses. A query
clause is a DL-clause in which all literals are of the form
B(x). Given an ontology O and a query clause Γ→ ∆, our
calculus decides whether O |= Γ→ ∆ holds.
SRIQ ontologies written using the DL-style syntax can

be transformed into DL-clauses without affecting query
clause entailment. First, we normalise DL axioms to the
form shown on the left-hand side of Table 1: we transform
away role chains and then replace all complex concepts with
fresh atomic ones; this process is well understood (Kaza-
kov 2009; 2008; Simančı́k, Motik, and Horrocks 2014), so
we omit the details. Second, using the well-known corre-
spondence between DLs and first-order logic (Baader et al.
2003), we translate normalised axioms to DL-clauses as
shown on the right-hand side of Table 1. The standard trans-
lation of B1 v 6nS.B2 requires atoms B2(zi) in clause
bodies, which are not allowed in our setting. We address
this issue by introducing a fresh role SB2 that we axiomatise
as S(y, x) ∧B2(x)→ SB2

(y, x); this, in turn, allows us to
clausify the original axiom as if it were B1 v 6nSB2

. For
an ELH ontology, O contains DL-clauses of type DL1 with
m = n+ 1, DL2 with n = 1, DL3, and DL5.

3 Motivation
As motivation for our work, in Section 3.1 we discuss the
drawbacks of existing DL reasoning calculi, and then in Sec-
tion 3.2 we discuss how existing consequence-based calculi



Table 1: Translating Normalised ALCHIQ Ontologies into DL-Clauses

DL1
d

1≤i≤n
Bi v

⊔
n+1≤i≤m

Bi  
∧

1≤i≤n
Bi(x)→

∨
n+1≤i≤m

Bi(x)

DL2 B1 v >nS.B2  
B1(x)→ S(x, fi(x)) for 1 ≤ i ≤ n
B1(x)→ B2(fi(x)) for 1 ≤ i ≤ n
B1(x)→ fi(x) 6≈ fj(x) for 1 ≤ i < j ≤ n

DL3 ∃S.B1 v B2  S(z1, x) ∧B1(x)→ B2(z1)

DL4 B1 v 6nS.B2  S(z1, x) ∧B2(x)→ SB2
(z1, x) for fresh SB2

B1(x) ∧
∧

1≤i≤n+1

SB2
(x, zi)→

∨
1≤i<j≤n+1

zi ≈ zj

DL5 S1 v S2  S1(z1, x)→ S2(z1, x)

DL6 S1 v S−2  S1(z1, x)→ S2(x, z1)

Ontology O1

Bi v ∃Sj .Bi+1  Bi(x)→ Sj(x, fi+1,j(x)) (1)
}

for 0 ≤ i < n and 1 ≤ j ≤ 2Bi(x)→ Bi+1(fi+1,j(x)) (2)
Bn v Cn  Bn(x)→ Cn(x) (3)

∃Sj .Ci+1 v Ci  Sj(z1, x) ∧ Ci+1(x)→ Ci(z1) (4) for 0 ≤ i < n and 1 ≤ j ≤ 2

vB0(x)

B0(x)

Initialisation: > → B0(x) (5)
Hyper[1+5]: > → Sj(x, f1,j(x)) (6)
Hyper[2+5]: > → B1(f1,j(x)) (7)
Pred[19]: > → C0(x) (20)

vB1(x)

B1(x)

Succ[6+7]: > → Sj(y, x) (10)
Succ[6+7]: > → B1(x) (11)
Hyper[1+11]: > → Sj(x, f2,j(x)) (12)
Hyper[2+11]: > → B2(x, f2,j(x)) (13)
Pred[. . . ]: > → C1(x) (18)
Hyper[4+10+18]: > → C0(y) (19)

· · · vBn(x)

Bn(x)

Succ[. . . ]: > → Sj(y, x) (14)
Succ[. . . ]: > → Bn(x) (15)
Hyper[3+15]: > → Cn(x) (16)
Hyper[4+14+16]: > → Cn−1(y) (17)

Succ[6+7]: f1,1 (8)

Succ[6+7]: f1,2 (9)

Figure 1: Example Motivating Consequence-Based Calculi

address these problems by separating clauses into contexts
in a way that considerably reduces the number of inferences.
Next, in Section 3.3 we discuss the main contribution of
this paper, which lies in extending the consequence-based
framework to a DL with disjunctions and number restric-
tions. Handling the latter requires equality reasoning, which
requires a more involved calculus and completeness proof.

3.1 Why Consequence-Based Calculi?
Consider the EL ontology O1 in Figure 1; one can read-
ily check thatO |= Bi(x)→ Ci(x) holds for 0 ≤ i ≤ n. To
proveO |= B0(x)→ C0(x) using the (hyper)tableau calcu-
lus, we start with B0(a) and apply (1)–(4) in a forward-
chaining manner. Since O contains (1) for j ∈ {1, 2}, this
constructs a tree-shaped model of depth n and a fanout of
two, where nodes at depth i are labelled by Bi and Ci.
Forward chaining ensures that reasoning is goal-oriented;
however, all nodes labelled with Bi are of the same type
and they share the same properties, which reveals a weak-
ness of (hyper)tableau calculi: the constructed models can
be large (exponential in our example) and highly redundant;
apart from causing problems in practice, this often prevents
(hyper)tableau calculi from being worst-case optimal. Tech-
niques such as caching (Goré and Nguyen 2007) or any-

where blocking (Motik, Shearer, and Horrocks 2009) can
constrain model construction, but their effectiveness often
depends on the order of rule applications. Thus, model size
is a key limiting factor for (hyper)tableau-based reasoners
(Motik, Shearer, and Horrocks 2009).

In contrast, resolution describes models using (univer-
sally quantified) clauses that ‘summarise’ the model. This
eliminates redundancy and ensures worst-case optimality of
many resolution decision procedures. Many resolution vari-
ants have been proposed (Bachmair and Ganzinger 2001),
each restricting inferences in a specific way. However, to
ensure termination, all decision procedure for DLs we are
aware of perform inferences with the ‘deepest’ and the ‘cov-
ering’ clause atoms, so all of them will resolve all (1) with
all (4) to obtain all 2n2 clauses of the form

Bi(x) ∧ Ck+1(fi+1,j(x))→ Ck(x)
for 1 ≤ i, k < n and 1 ≤ j ≤ 2.

(21)

Of these 2n2 clauses, only those with i = k are relevant to
proving our goal. If we extendO with additional clauses that
contain Bi and Ci, each of these 2n2 clauses can participate
in further inferences and give rise to more irrelevant clauses.
This problem is particularly pronounced when O is satisfi-
able since we must then produce all consequences of O.



3.2 Basic Notions
Consequence-based calculi combine ‘summarisation’ of res-
olution with goal-directed search of (hyper)tableau calculi.
Simančı́k, Motik, and Horrocks (2014) presented a frame-
work for ALCI capturing the key elements of the related
calculi by Baader, Brandt, and Lutz (2005), Kazakov (2009),
Ortiz, Rudolph, and Simkus (2010), and Simančı́k, Kazakov,
and Horrocks (2011). Before extending this framework to
ALCHIQ in Section 4, we next informally recapitulate the
basic notions; however, to make this paper easier to follow,
we use the same notation and terminology as in Section 4.

Our consequence-based calculus constructs a directed
graph D = 〈V, E ,S, core,�〉 called a context structure. The
vertices in V are called contexts. Let I be a Herbrand model
ofO; hence, the domain of I contains ground terms. Instead
of representing each ground term of I separately as in (hy-
per)tableau calculi, D can represent the properties of sev-
eral terms by a single context v. Each context v ∈ V is as-
sociated with a (possibly empty) conjunction corev of core
atoms that must hold for all ground terms that v represents;
thus, corev determines the ‘kind’ of context v. Moreover, v
is associated with a set Sv of clauses that capture the con-
straints that these terms must satisfy. Partitioning clauses
into sets allows us to restrict the inferences between clause
sets and thus eliminate certain irrelevant inferences. Clauses
in Sv are ‘relative’ to corev: for each Γ→ ∆ ∈ Sv , we have
O |= corev ∧ Γ→ ∆—that is, we do not include corev in
clause bodies since corev holds implicitly. Function � pro-
vides each context v ∈ V with a concept order �v that re-
stricts resolution inferences in the presence of disjunctions.

Contexts are connected by directed edges labelled with
function symbols. If u is connected to v via an f -labelled
edge, then the f -successor of each ground term represented
by u is represented by v. Conversely, if u and v are not con-
nected by an f -edge, then each ground term represented by
v is not an f -successor of a ground term represented by u,
so no inference between Su and Sv is ever needed.

Consequence-based calculi are not just complete for refu-
tation: they derive the required consequences. Figure 1
demonstrates this forO1 |= B0(x)→ C0(x). The cores and
the clauses shown above and below, respectively, each con-
text, and clause numbers correspond to the derivation or-
der. To prove B0(x)→ C0(x), we introduce context vB0(x)

with core B0(x) and add clause (5) to it. The latter says
that B0 holds for a, and it is analogous to initialising a (hy-
per)tableau calculus with B0(a). The calculus then applies
rules from Table 2 to derive new clauses and/or extend D.
Hyper is the standard hyperresolution rule restricted to a

single context at a time. Thus, we derive (6) from (1) and (5),
and (7) from (2) and (5). Hyperresolution resolves all body
atoms, which makes the resolvent relevant for the context
and prevents the derivation of irrelevant clauses such as (21).

Context vB0(x) contains atoms with function symbols f1,1
and f1,2, so the Succ rule must ensure that the f1,1- and
f1,2-successors of the ground terms represented by vB0(x)

are adequately represented in D. We can control context in-
troduction via a parameter called an expansion strategy—a
function that determines whether to reuse an existing con-

text or introduce a fresh one; in the latter case, it also deter-
mines how to initialise the context’s core. We discuss possi-
ble strategies in Section 4.1; in the rest of this example, we
use the so-called cautious strategy, where the Succ rule in-
troduces context vB1(x) and initialises it with (10) and (11).
Note that (6) represents two clauses, both of which we sat-
isfy (in separate applications of the Succ rule) using vB1(x).

We construct contexts vB2(x), . . . , vBn(x) analogously,
we derive (16) by hyperresolving (3) and (14), and we de-
rive (17) by hyperresolving (4), (14), and (16). Clause (17)
imposes a constraint on the predecessor context, which we
propagate using the Pred rule, deriving (19) and (20). Since
clauses of vB0(x) are ‘relative’ to the core of vB0(x), clause
(20) represents our query clause, as required.

3.3 Extending the Framework to ALCHIQ
In all consequence-based calculi presented thus far, the con-
straints that the ground terms represented by a context v
must satisfy can be represented using standard DL-style ax-
ioms. For example, for ALCI, Simančı́k, Motik, and Hor-
rocks (2014) represented all relevant consequences using
DL axioms of the following form:

l
Bi v

⊔
Bj t

⊔
∃Sk.Bk t

⊔
∀S`.B` (55)

ALCHIQ provides both counting quantifiers and dis-
junctions, the interplay of which may impose constraints
that cannot be represented in ALCHIQ. Let O2 be as
in Figure 2. To see that O2 |= B0(x)→ B4(x) holds, we
construct a Herbrand interpretation I from B0(a): (22)
and (23) derive S(f1(a), a) and B1(f1(a)); and (25) and
(26) derive S(f1(a), f2(f1(a))) and B2(f2(f1(a))), and
S(f1(a), f3(f1(a))) and B3(f3(f1(a))). Due to (27) we de-
rive B4(f2(f1(a))) and B4(f3(f1(a))). Finally, from (28)
we derive the following clause:

f2(f1(a)) ≈ a ∨ f3(f1(a)) ≈ a ∨
f3(f1(a)) ≈ f2(f1(a))

(56)

Disjunct f3(f1(a)) ≈ f2(f1(a)) cannot be satisfied due to
(24); but then, regardless of whether we choose to satisfy
f3(f1(a)) ≈ a or f2(f1(a)) ≈ a, we derive B4(a).

Our calculus must be able to capture constraint (56) and
its consequences, but standard DL axioms cannot explic-
itly refer to specific successors and predecessors. Instead,
we capture consequences using context clauses—clauses
over terms x, fi(x), and y, where variable x represents the
ground terms that a context stands for, fi(x) represents fi-
successors of x, and y represents the predecessor of x. We
can thus identify the predecessor and the successors of x ‘by
name’, allowing us to capture constraint (56) as

f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x). (57)

Based on this idea, we adapted the rules by Simančı́k, Motik,
and Horrocks (2014) to handle context clauses correctly, and
we added rules that capture the consequences of equality.
The resulting set of rules is shown in Table 2.

Figure 2 shows how to verify O2 |= B0(x)→ B4(x) us-
ing our calculus; the maximal literal of each clause is shown
on the right. We next discuss the inferences in detail.



Ontology O2

B0 v ∃S−.B1  B0(x)→ S(f1(x), x) (22)
B0(x)→ B1(f1(x)) (23)

B1 v ∃S.Bi  B1(x)→ S(x, fi(x)) (25) }
for 2 ≤ i ≤ 3B1(x)→ Bi(fi(x)) (26)

Bi v B4  Bi(x)→ B4(x) (27)
B2 uB3 v ⊥  B2(x) ∧B3(x)→ ⊥ (24)

B1 v ≤2.S  B1(x) ∧
∧

1≤i≤3 S(x, zi)→
∨

1≤j<k≤3 zj ≈ zk (28)

v0

B0(x)

Initialisation: > → B0(x) (29)
Hyper[22+29]: > → S(f1(x), x) (30)
Hyper[23+29]: > → B1(f1(x)) (31)
Pred[51]: > → B2(x) ∨B3(x) (52)
Hyper[27+52]: > → B4(x) ∨B2(x) (53)
Hyper[27+53]: > → B4(x) (54)

v1

S(x, y), B1(x)

Succ[30+31]: > → S(x, y) (33)
Succ[30+31]: > → B1(x) (34)
Hyper[25+34]: > → S(x, f2(x)) (35)
Hyper[26+34]: > → B2(f2(x)) (36)
Hyper[25+34]: > → S(x, f3(x)) (37)
Hyper[26+34]: > → B3(f3(x)) (38)
Hyper[28+33+34+35+37]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x) (39)
Eq[38+39]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨B3(f2(x)) (40)
Pred[40+45]: > → f2(x) ≈ y ∨ f3(x) ≈ y (49)
Eq[38+49]: > → B3(y) ∨ f2(x) ≈ y (50)
Eq[36+50]: > → B2(y) ∨B3(y) (51)

v2

S(y, x), B2(x)

Succ[35+36+40]: > → S(y, x) (42)
Succ[35+36+40]: > → B2(x) (43)
Succ[35+36+40]: B3(x)→ B3(x) (44)
Hyper[24+43+44]: B3(x)→ ⊥ (45)

v3

S(y, x), B3(x)

Succ[37+38]: > → S(y, x) (47)
Succ[37+38]: > → B3(x) (48)

Succ[30+31]: f1 (32) Succ[35+36+40]: f2 (41)

Succ[37+38]: f3 (46)

Figure 2: Challenges in Extending the Consequence-Based Framework to ALCHIQ

We first create context v0 and initialise it with (29); this
ensures that each interpretation represented by the con-
text structure contains a ground term for which B0 holds.
Next, we derive (30) and (31) using hyperresolution. At
this point, we could hyperresolve (25) and (31) to obtain
> → S(f1(x), f2(f1(x))); however, this could easily lead
to nontermination of the calculus due to increased term nest-
ing. Therefore, we require hyperresolution to map variable x
in the DL-clauses to variable x in the context clauses; thus,
hyperresolution derives in each context only consequences
about x, which prevents redundant derivations.

The Succ rule next handles function symbol f1 in clauses
(30) and (31). To determine which information to propa-
gate to a successor, Definition 2 in Section 4 introduces a
set Su(O) of successor triggers. In our example, DL-clause
(28) contains atoms B1(x) and S(x, zi) in its body, and zi
can be mapped to a predecessor or a successor of x; thus, a
context in which hyperresolution is applied to (28) will be
interested in information about its predecessors, which we
reflect by adding B1(x) and S(x, y) to Su(O). In this exam-
ple we use the so-called eager strategy (see Section 4.1), so
the Succ rule introduces context v1, sets its core to B1(x)
and S(x, y), and initialises the context with (33) and (34).

We next introduce (35)–(38) using hyperresolution, at
which point we have sufficient information to apply hyper-
resolution to (28) to derive (39). Please note how the pres-
ence of (33) is crucial for this inference.

We use paramodulation to deal with equality in clause

(39). As is common in resolution-based theorem proving,
we order the literals in a clause and apply inferences only to
maximal literals; thus, we derive (40).

Clauses (35), (36), and (40) contain function symbol f2,
so the Succ rule introduces context v2. Due to clause (36),
B2(x) holds for all ground terms that v2 represents; thus, we
add B2(x) to corev2 . In contrast, atom B3(f2(x)) occurs in
clause (40) in a disjunction, which means it may not hold
in v2; hence, we add B3(x) to the body of clause (44). The
latter clause allows us to derive (45) using hyperresolution.

Clause (45) essentially says ‘B3(f2(x)) should not hold
in the predecessor’, which the Pred rule propagates to v1 as
clause (49); one can understand this inference as hyperres-
olution of (40) and (45) while observing that term f2(x) in
context v1 is represented as variable x in context v2.

After two paramodulation steps, we derive clause (51),
which essentially says ‘the predecessor must satisfy B2(x)
or B3(x)’. The set Pr(O) of predecessor triggers from Def-
inition 2 identifies this as relevant to v0: the DL-clauses in
(27) containB2(x) andB3(x) in their bodies, which are rep-
resented in v1 as B2(y) and B3(y). Hence Pr(O) contains
B2(y) and B3(y), allowing the Pred rule to derive (52).

After two more steps, we finally derive our target clause
(54). We could not do this if B4(x) were maximal in (53);
thus, we require all atoms in the head of a goal clause to be
smallest. A similar observation applies to Pr(O): if B3(y)
were maximal in (50), we would not derive (51) and propa-
gate it to v0; thus, all atoms in Pr(O) must be smallest too.



4 Formalising the Algorithm
In this section, we first present our consequence-based algo-
rithm for ALCHIQ formally, and then we present an out-
line of the completeness proof; full proofs are given in the
appendix.

4.1 Definitions
Our calculus manipulates context clauses, which are con-
structed from context terms and context literals as described
in Definition 1. Unlike in general resolution, we restrict con-
text clauses to contain only variables x and y, which have
a special meaning in our setting: variable x represents a
ground term in a Herbrand model, and y represents the pre-
decessor of x; this naming convention is important for the
rules of our calculus. This is in contrast to the DL-clauses
of an ontology, which can contain variables x and zi, and
where zi refer to either the predecessor or a successor of x.
Definition 1. A context F-term is a term of the form x,
y, or f(x) for f ∈ F; a context P-term is a term of the
form B(y), B(x), B(f(x)), S(x, y), S(y, x), S(x, f(x)),
or S(f(x), x) for B,R ∈ P and f ∈ F; and a context term
is an F-term or a P-term. A context literal is a literal of
the form A ≈ ℘ (called a context atom), f(x) ./ g(x), or
f(x) ./ y, y ./ y, forA a context P-term and ./ ∈ {≈, 6≈}.
A context clause is a clause with only function-free context
atoms in the body, and only context literals in the head.

Definition 2 introduces sets Su(O) and Pr(O), that iden-
tify the information that must be exchanged between adja-
cent contexts. Intuitively, Su(O) contains atoms that are of
interest to a context’s successor, and it guides the Succ rule
whereas Pr(O) contains atoms that are of interest to a con-
text’s predecessor and it guides the Pred rule.
Definition 2. The set Su(O) of successor triggers of an on-
tology O is the smallest set of atoms such that, for each
clause Γ→ ∆ ∈ O,
• B(x) ∈ Γ implies B(x) ∈ Su(O),
• S(x, zi) ∈ Γ implies S(x, y) ∈ Su(O), and
• S(zi, x) ∈ Γ implies S(y, x) ∈ Su(O).
The set Pr(O) of predecessor triggers of O is defined as

Pr(O) = {A{x 7→ y, y 7→ x} | A ∈ Su(O) } ∪
{B(y) | B occurs in O}.

As in resolution, we restrict the inferences using a term
order �. Definition 3 specifies the conditions that the or-
der must satisfy. Conditions 1 and 2 ensure that F-terms are
compared uniformly across contexts; however, P-terms can
be compared in different ways in different contexts. Con-
ditions 1 through 4 ensure that, if we ground the order by
mapping x to a term t and y to the predecessor of t, we
obtain a simplification order (Baader and Nipkow 1998)—
a kind of term order commonly used in equational theorem
proving. Finally, condition 5 ensures that atoms that might
be propagated to a context’s predecessor via the Pred rule
are smallest, which is important for completeness.
Definition 3. Let m be a total, well-founded order on func-
tion symbols. A context term order � is an order on context
terms satisfying the following conditions:

1. for each f ∈ F , we have f(x) � x � y;
2. for all f, g ∈ F with f m g, we have f(x) � g(x);
3. for all terms s1, s2, and t and each position p in t, if
s1 � s2, then t[s1]p � t[s2]p;

4. for each term s and each proper position p in s, we have
s � s|p; and

5. for each atom A ≈ ℘ ∈ Pr(O) and each context term
s 6∈ {x, y}, we have A 6� s.

Each term order is extended to a literal order, also written
�, as described in Section 2.

A lexicographic path order (LPO) (Baader and Nipkow
1998) over context F-terms and context P-terms, in which
x and y are treated as constants such that x � y, satisfies
conditions 1 through 4. Furthermore, Pr(O) contains only
atoms of the form B(y), S(x, y), and S(y, x), which we can
always make smallest in the ordering; thus, condition 5 does
not contradict the other conditions. Hence, an LPO that is
relaxed for condition 5 satisfies Definition 3, and thus, for
any given m, at least one context term order exists.

Apart from orders, effective redundancy elimination tech-
niques are critical to efficiency of resolution calculi. Defini-
tion 4 defines a notion compatible with our setting.

Definition 4. A set of clauses U contains a clause Γ→ ∆
up to redundancy, written Γ→ ∆ ∈̂ U , if

1. {s ≈ s′, s 6≈ s′} ⊆ ∆ or s ≈ s ∈ ∆ for some terms s
and s′, or

2. Γ′ ⊆ Γ and ∆′ ⊆ ∆ for some clause Γ′ → ∆′ ∈ U .

Intuitively, if U contains Γ→ ∆ up to redundancy, then
adding Γ→ ∆ to U will not modify the constraints that U
represents because either Γ→ ∆ is a tautology or U con-
tains a stronger clause. Note that tautologies of the form
A→ A are not redundant in our setting as they are used to
initialise contexts; however, whenever our calculus derives
a clause A→ A ∨A′, the set of clauses will have been ini-
tialised with A→ A, which makes the former clause redun-
dant by condition 2 of Definition 4. Moreover, clause heads
are subjected to the usual tautology elimination rules; thus,
clauses γ → ∆ ∨ s ≈ s and Γ→ ∆ ∨ s ≈ t ∨ s 6≈ t can be
eliminated. Proposition 1 shows that we can remove from
U each clause C that is contained in U \ {C} up to redun-
dancy; the Elim uses this to support clause subsumption.

Proposition 1. For U a set of clauses and C and C ′ clauses
with C ∈̂ U \ {C} and C ′ ∈̂ U , we have C ′ ∈̂ U \ {C}.

We are finally ready to formalise the notion of a context
structure, as well as a notion of context structure soundness.
The latter captures the fact that context clauses from a set
Sv do not contain corev in their bodies. We shall later show
that our inference rules preserve context structure sound-
ness, which essentially proves that all clauses derived by our
calculus are indeed conclusions of the ontology in question.

Definition 5. A context structure for an ontology O is a tu-
ple D = 〈V, E ,S, core,�〉, where V is a finite set of con-
texts, E ⊆ V × V × F is a finite set of edges each labelled
with a function symbol, function core assigns to each con-
text v a conjunction corev of atoms over the P-terms from



Su(O), function S assigns to each context v a finite set Sv
of context clauses, and function � assigns to each context v
a context term order �v . A context structure D is sound for
O if the following conditions both hold.

S1. For each context v ∈ V and each clause Γ→ ∆ ∈ Sv ,
we have O |= corev ∧ Γ→ ∆.

S2. For each edge 〈u, v, f〉 ∈ E , we have

O |= coreu → corev{x 7→ f(x), y 7→ x}.
Definition 6 introduces an expansion strategy—a param-

eter of our calculus that determines when and how to reuse
contexts in order to satisfy existential restrictions.
Definition 6. An expansion strategy is a function strategy
that takes a function symbol f , a set of atoms K, and
a context structure D = 〈V, E ,S, core,�〉. The result of
strategy(f,K,D) is computable in polynomial time and it
is a triple 〈v, core′,�′〉 where core′ is a subset of K; either
v /∈ V is a fresh context, or v ∈ V is an existing context inD
such that corev = core′; and �′ is a context term order.

Simančı́k, Motik, and Horrocks (2014) presented two ba-
sic strategies, which we can adapt to our setting as follows.
• The eager strategy returns for each K1 the context vK1

with core K1. The ‘kind’ of ground terms that vK1
repre-

sents is then very specific so the set SvK1
is likely to be

smaller, but the number of contexts can be exponential.
• The cautious strategy examines the function symbol f : if
f occurs in O in exactly one atom of the form B(f(x))
and if B(x) ∈ K1, then the result is the context vB(x)

with core B(x); otherwise, the result is the ‘trivial’ con-
text v> with the empty core. Context vB(x) is then less
constrained, but the number of contexts is at most linear.

Simančı́k, Motik, and Horrocks (2014) discuss extensively
the differences between and the relative merits of the two
strategies; although their discussion deals with ALCI only,
their conclusions apply to SRIQ as well.

We are now ready to show soundness and completeness.
Theorem 1 (Soundness). For any expansion strategy, ap-
plying an inference rule from Table 2 to an ontology O and
a context structure D that is sound forO produces a context
structure that is sound for O.

Theorem 2 (Completeness). Let O be an ontology, and let
D = 〈V, E ,S, core,�〉 be a context structure such that no
inference rule from Table 2 is applicable to O and D. Then,
ΓQ → ∆Q ∈̂ Sq holds for each query clause ΓQ → ∆Q and
each context q ∈ V that satisfy conditions C1–C3.

C1. O |= ΓQ → ∆Q.
C2. For each atom A ≈ ℘ ∈ ∆Q and each context term

s 6∈ {x, y}, if A �q s, then s ≈ ℘ ∈ ∆Q ∪ Pr(O).
C3. For each A ∈ ΓQ, we have ΓQ → A ∈̂ Sq .
Conditions C2 and C3 can be satisfied by appropriately

initialising the corresponding context. Hence, Theorems 1
and 2 show that the following algorithm is sound and com-
plete for deciding O |= ΓQ → ∆Q.

A1. Create an empty context structure D and select an ex-
pansion strategy.

Table 2: Rules of the Consequence-Based Calculus
Core rule

If A ∈ corev ,
and > → A /∈ Sv ,

then add > → A to Sv .
Hyper rule

If
∧n
i=1Ai → ∆ ∈ O,

σ is a substitution such that σ(x) = x,
Γi → ∆i ∨Aiσ ∈ Sv s.t. ∆i 6�v Aiσ for 1 ≤ i ≤ n,
and

∧n
i=1 Γi → ∆σ ∨

∨n
i=1 ∆i 6∈̂ Sv ,

then add
∧n
i=1 Γi → ∆σ ∨

∨n
i=1 ∆i to Sv .

Eq rule
If Γ1 → ∆1 ∨ s1 ≈ t1 ∈ Sv ,

s1 �v t1 and ∆1 6�v s1 ≈ t1,
Γ2 → ∆2 ∨ s2 ./ t2 ∈ Sv with ./ ∈ {≈, 6≈},
s2 �v t2 and ∆2 6�v s2 ./ t2,
s2|p = s1,
and Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 6∈̂ Sv ,

then add Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 to Sv .
Ineq rule

If Γ→ ∆ ∨ t 6≈ t ∈ Sv
and Γ→ ∆ 6∈̂ Sv ,

then add Γ→ ∆ to Sv .
Factor rule

If Γ→ ∆ ∨ s ≈ t ∨ s ≈ t′ ∈ Sv ,
∆ ∪ {s ≈ t} 6�v s ≈ t′ and s �v t′
and Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ 6∈̂ Sv ,

then add Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ to Sv .
Elim rule

If Γ→ ∆ ∈ Sv and
Γ→ ∆ ∈̂ Sv \ {Γ→ ∆}

then remove Γ→ ∆ from Sv .
Pred rule

If 〈u, v, f〉 ∈ E ,∧l
i=1Ai →

∨l+n
i=l+1Ai ∈ Sv ,

Γi → ∆i ∨Aiσ ∈ Su s.t. ∆i 6�u Aiσ for 1 ≤ i ≤ l,
Ai ∈ Pr(O) for each l + 1 ≤ i ≤ l + n,
and

∧l
i=1 Γi →

∨l
i=1 ∆i ∨

∨l+n
i=l+1Aiσ 6∈̂ Su,

then add
∧l
i=1 Γi →

∨l
i=1 ∆i ∨

∨l+n
i=l+1Aiσ to Su,

where σ = {x 7→ f(x), y 7→ x}.
Succ rule

If Γ→ ∆ ∨A ∈ Su s.t. ∆ 6�u A and A contains f(x),
and, for each A′ ∈ K2 \ corev , no edge 〈u, v, f〉 ∈ E
exists such that A′ → A′ ∈̂ Sv ,

then let 〈v, core′,�′〉 := strategy(f,K1,D);
if v ∈ V , then let �v := �v ∩ �′, and
otherwise let V := V ∪ {v}, �v := �′,

corev := core′, and Sv := ∅;
add the edge 〈u, v, f〉 to E ; and
add A′ → A′ to Sv for each A′ ∈ K2 \ corev;

where σ = {x 7→ f(x), y 7→ x},
K1 = {A′ ∈ Su(O) | > → A′σ ∈ Su }, and
K2 = {A′ ∈ Su(O) | Γ′ → ∆′ ∨A′σ ∈ Su and

∆′ 6�u A′σ }.



A2. Introduce a context q intoD; set coreq = ΓQ; for each
A ∈ ΓQ, add > → A to Sq to satisfy condition C3;
and initialise �q in a way that satisfies condition C2.

A3. Apply the inference rules from Table 2 to D and O.
A4. ΓQ → ∆Q holds if and only if ΓQ → ∆Q ∈̂ Sv .
Propositions 2 and 3 show that our calculus is worst-case

optimal for both ALCHIQ and ELH.
Proposition 2. For each expansion strategy that introduces
at most exponentially many contexts, algorithm A1–A4 runs
in worst-case exponential time.

Proposition 3. For ELH ontologies and queries of the form
B1(x)→ B2(x), algorithm A1–A4 runs in polynomial time
with either the cautious or the eager strategy; and with the
cautious strategy and the Hyper rule applied eagerly, the
inferences in step A3 correspond directly to the inferences of
the ELH calculus by Baader, Brandt, and Lutz (2005).

4.2 An Outline of the Completeness Proof
To prove Theorem 2, we fix an ontology O, a context struc-
ture D, a query clause ΓQ → ∆Q, and a context q such
that properties C2 and C3 of Theorem 2 are satisfied and
ΓQ → ∆Q 6∈̂ Sq holds, and we construct a Herbrand inter-
pretation that satisfies O but refutes ΓQ → ∆Q. We reuse
techniques from equational theorem proving (Nieuwenhuis
and Rubio 1995) and represent this interpretation by a
rewrite system R—a finite set of rules of the form l⇒ r.
Intuitively, such a rule says that that any two terms of the
form f1(. . . fn(l) . . . ) and f1(. . . fn(r) . . . ) with n ≥ 0 are
equal, and that we can prove this equality in one step by
rewriting (i.e., replacing) l with r. Rewrite system R in-
duces a Herbrand equality interpretation R∗ that contains
each l ≈ r for which the equality between l and r can be
verified using a finite number of such rewrite steps. The uni-
verse of R∗ consists of F- and P-terms constructed using
the symbols in F and P , and a special constant c; for conve-
nience, let T be the set of all F-terms from this universe.

We obtainR by unfolding the context structureD starting
from context q: we map each F-term t ∈ T to a context Xt

in D, and we use the clauses in SXt
to construct a model

fragment Rt—the part of R that satisfies the DL-clauses of
O when x is mapped to t. The key issue is to ensure com-
patibility between adjacent model fragments: when moving
from a predecessor term t′ to a successor term t = f(t′), we
must ensure that adding Rt to Rt′ does not affect the truth
of the DL-clauses of O at term t′; in other words, the model
fragment constructed at t must respect the choices made at
t′. We represent these choices by a ground clause Γt → ∆t:
conjunction Γt contains atoms that are ‘inherited’ from t′

and so must hold at t, and disjunction ∆t contains atoms
that must not hold at t because t′ relies on their absence.

The model fragment construction takes as parameters a
term t, a context v = Xt, and a clause Γt → ∆t. Let Nt be
the set of ground clauses obtained from Sv by mapping x to t
and y to the predecessor of t (if it exists), and whose body is
contained in Γt. Moreover, let Sut and Prt be obtained from
Su(O) and Pr(O) by mapping x to t and y to the predecessor
of t if one exists; thus, Sut contains the ground atoms of

interest to the successors of t, and Prt contains the ground
atoms of interest to the predecessor of t. The model fragment
for t can be constructed if properties L1–L3 hold:

L1. Γt → ∆t 6∈̂ Nt.
L2. If t = c, then ∆t = ∆Q; and if t 6= c, then ∆t ⊆ Prt.

L3. For each A ∈ Γt, we have Γt → A ∈̂ Nt.
The construction produces a rewrite system Rt such that

F1. R∗t |= Nt, and

F2. R∗t 6|= Γt → ∆t—that is, all of Γt, but none of ∆t hold
in R∗t , and so the model fragment at t is compatible
with the ‘inherited’ constraints.

We construct rewrite system Rt by adapting the techniques
from paramodulation-based theorem proving. First, we or-
der all clauses in Nt into a sequence Ci = Γi → ∆i ∨ Li,
1 ≤ i ≤ n, that is compatible with the context ordering �v
in a particular way. Next, we initialise Rt to ∅, and then we
examine each clauseCi in this sequence; ifCi does not hold
in the model constructed thus far, we make the clause true
by adding Li to Rt. To prove condition F1, we assume for
the sake of a contradiction that a clause Ci with smallest i
exists such that R∗t 6|= Ci, and we show that an application
of the Eq, Ineq, or Factor rule to Ci necessarily produces
a clause Cj such that R∗t 6|= Cj and j < i. Conditions L1
through L3 allow us to satisfy condition F2. Due to condi-
tion L2 and condition 5 of Definition 3, we can order the
clauses in the sequence such that each clause Ci capable of
producing an atom from ∆t comes before any other clause in
the sequence; and then we use condition L1 to show that no
such clause actually exists. Moreover, condition L3 ensures
that all atoms in Γt are actually produced in R∗t .

To obtain R, we inductively unfold D, and at each step
we apply the model fragment construction to the appropriate
parameters. For the base case, we map constant c to context
Xc = q, and we define Γc = ΓQ and ∆c = ∆Q; then, con-
ditions L1 and L2 hold by definition, and condition L3 holds
by property C3 of Theorem 2. For the induction step, we as-
sume that we have already mapped some term t′ to a context
u = Xt′ , and we consider term t = f(t′) for each f ∈ F .

• If t does not occur in an atom inRt′ , we letRt = {t⇒ c}
and thus make t equal to c. Term t is thus interpreted in
exactly the same way as c, so we stop the unfolding.

• If Rt′ contains a rule t⇒ s, then t and s are equal, and so
we interpret t exactly as s; hence, we stop the unfolding.

• In all other cases, the Succ rule ensures that D con-
tains an edge 〈u, v, f〉 such that v satisfies all precon-
ditions of the rule, so we define Xt = v. Moreover, we
let Γt = R∗t′ ∩ Sut be the set of atoms that hold at t′ and
are relevant to t , and we let ∆t = Prt \R∗t′ be the set of
atoms that do not hold at t′ and are relevant to t. We finally
show that such Γt and ∆t satisfy condition L1: otherwise,
the Pred rule derives a clause inNt′ that is not true inR∗t′ .

After processing all relevant terms, we let R be the union
of all Rt from the above construction. To show that R∗ sat-
isfies O, we consider a DL-clause Γ→ ∆ ∈ O and a sub-
stitution τ that makes the clause ground. W.l.o.g. we can
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assume that τ is irreducible by R—that is, it does not con-
tain terms that can we rewritten using the rules in R. Since
each model fragment satisfies condition F2, we can evalu-
ate Γτ → ∆τ in R∗τ(x) instead of R∗. Moreover, we show
that R∗τ(x) |= Γτ → ∆τ holds: if that were not the case, the
Hyper rule derives a clause in Nτ(x) that violates condi-
tion F1. Finally, we show that the same holds for the query
clause ΓQ → ∆Q, which completes our proof.

5 Evaluation
We have implemented our calculus in a prototype system
called Sequoia. The calculus was implemented exactly as
presented in this paper, with no optimisation other than a
suitable indexing scheme for clauses. The system is written
in Scala, and it can be used via the command line or the
OWL API. It currently handles the SRIQ subset of OWL 2
DL (i.e., it does not support datatypes, nominals, or reflex-
ive roles), for which it supports ontology classification and
concept satisfiability; other standard services such as ABox
realisation are currently not supported.

We have evaluated our system using the methodology by
Steigmiller, Liebig, and Glimm (2014) by comparing Se-

quoia with HermiT 1.3.8, Pellet 2.3.1, FaCT++ 1.6.4, and
Konclude 1.6.1. We used all reasoners in single-threaded
mode in order to compare the underlying calculi; moreover,
Sequoia was configured to use the cautious strategy. All sys-
tems, ontologies, and test results are available online.1

We used the Oxford Ontology Repository2 from which we
excluded 7 ontologies with irregular RBoxes. Since Sequoia
does not support datatypes or nominals, we have systemati-
cally replaced datatypes and nominals with fresh classes and
data properties with object properties, and we have removed
ABox assertions. We thus obtained a corpus of 777 ontolo-
gies on which we tested all reasoners.

We run our experiments on a Dell workstation with two
Intel Xeon E5-2643 v3 3.4 GHz processors with 6 cores per
processor and 128 GB of RAM running Windows Server
2012 R2. We used Java 8 update 66 with 15 GB of heap
memory allocated to each Java reasoner, and a maximum
private working set size of 15 GB for each reasoner in native
code. In each test, we measured the wall-clock classification
time; this excludes parsing time for reasoners based on the
OWL API (i.e., HermiT, Pellet, FaCT++, and Sequoia). Each
test was given a timeout of 5 minutes. We report the average
time over three runs, unless an exception or timeout occurred
in one of the three runs, in which case we report failure.

Figure 3 shows an overview of the classification times for
the entire corpus. The y-axis shows the classification times
in logarithmic scale, and timeouts are shown as infinity. A
number n on the x-axis represents the n-th easiest ontology
for a reasoner with ontologies sorted (for that reasoner) in
the ascending order of classification time. For example, a
point (50, 100) on a reasoner’s curve means that the 50th
easiest ontology for that reasoner took 100 ms to classify.

Sequoia could process most ontologies (733 out of 784)
in under 10s, which is consistent with the other reasoners.
The system was fairly robust, failing on only 22 ontologies;
in contrast, HermiT failed on 42, Pellet on 138, FaCT++ on
132, and Konclude on 8 ontologies. Moreover, Sequoia suc-
ceeded on 21 ontologies on which all of HermiT, Pellet and
FaCT++ failed. Finally, there was one ontology where Se-
quoia succeeded and all other reasoners failed; this was a
hard version of FMA (ID 00285) that uses both disjunctions
and number restrictions.

Figure 4 shows an overview of how each reasoner per-
formed on each type of ontology. We partitioned the ontolo-
gies in the following four groups: within a profile of OWL 2
DL (i.e., captured by OWL 2 EL, QL, or RL); Horn but not
in a profile; disjunctive but without number restrictions; and
disjunctive and with number restrictions. We used the OWL
API to determine profile membership, and we identified the
remaining three groups after structural transformation. In
addition, for each reasoner, we categorise each ontology as
either ‘easy’ (< 10s), ‘medium’ (10s to 5min), and ‘hard’
(timeout or exception). The figure depicts a bar for each rea-
soner and group, where each bar is divided into blocks rep-
resenting the percentage of ontologies in each of the afore-
mentioned categories of difficulty. For Sequoia, over 98% of

1http://krr-nas.cs.ox.ac.uk/2015/KR/cr/
2http://www.cs.ox.ac.uk/isg/ontologies/



profile ontologies and over 91% of out-of-profile Horn on-
tologies are easy, with the remainder being of medium dif-
ficulty. Sequoia timed out largely on ontologies containing
both disjunctions and equality, and even in this case only
Konclude timed out in fewer cases.

In summary, although only an early prototype, Sequoia
is a competitive reasoner that comfortably outperforms Her-
miT, Pellet, and FaCT++, and which exhibits a nice pay-
as-you-go behaviour. Furthermore, problematic ontologies
seem to mostly contain complex RBoxes or large numbers
in cardinality restrictions, which suggests promising direc-
tions for future optimisation.

6 Conclusion and Future Work
We have presented the first consequence based calculus for
SRIQ—a DL that includes both disjunction and counting
quantifiers. Our calculus combines ideas from state of the
art resolution and (hyper)tableau calculi, including the use
of ordered paramodulation for equality reasoning. Despite
its increased complexity, the calculus mimics existing cal-
culi on ELH ontologies. Although it is an early prototype
with plenty of room for optimisation, our system Sequoia is
competitive with well-established reasoners and it exhibits
nice pay-as-you-go behaviour in practice.

For future work, we are confident that we can extend
the calculus to support role reflexivity and datatypes, thus
handling all of OWL 2 DL except nominals. In contrast,
handling nominals seems to be much more involved. In
fact, adding nominals to ALCHIQ raises the complexity
of reasoning to NEXPTIME so a worst-case optimal calcu-
lus must be nondeterministic, which is quite different from
all consequence-based calculi we are aware of. Moreover,
a further challenge is to modify the calculus so that it can
effectively deal with large numbers in number restrictions.
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A Proof of Theorem 1
In this chapter, we show that our calculus is sound, as stated in Theorem 1. The proof is analogous to the soundness proof of
ordered superposition (Nieuwenhuis and Rubio 1995).
Theorem 1 (Soundness). For any expansion strategy, applying an inference rule from Table 2 to an ontology O and a context
structure D that is sound for O produces a context structure that is sound for O.

Proof. Let O be an ontology, let D = 〈V, E ,S, core,�〉 be a context structure that is sound for O, and consider an application
of an inference rule from Table 2 to D and O. We show that each clause produced by the rule is a context clause and that it
satisfies conditions S1 and S2 of Definition 5. Condition S1 holds obviously for the rules different from Hyper, Eq, and Pred.
For condition S2, we rely on soundness of hyperresolution: for arbitrary formulas ω, φi, ψi, and γi, 1 ≤ i ≤ n, we have

{
n∧
j=1

φj → ω} ∪
⋃

1≤i≤n

{γi → ψi ∨ φi} |=
n∧
i=1

γi →
n∨
i=1

ψi ∨ ω. (58)

To prove the claim, we consider each rule from Table 2 and assume that the rule is applied to clauses, contexts, and edges as
shown in the table; then, we show that the clause produced by the rule satisfies condition S1 of Definition 5; moreover, for the
Succ rule, we show in addition that the edge introduced by the rule satisfies condition S2.

(Core) For each A ∈ corev , we clearly have O |= corev → A.

(Hyper) Since D is sound for O, we have O |= corev ∧ Γi → ∆i ∨Aiσ for each i with 1 ≤ i ≤ n. By (58), we have
O |= corev ∧

∧n
i=1 Γi →

∨n
i=1 ∆i ∨∆σ. Moreover, substitution σ satisfies σ(x) = x, all premises are context clauses, and

O contains only DL-clauses; thus, the inference rule can only match an atom S(x, zi) or S(zi, x) in an ontology clause to
atoms S(y, x), S(x, y), S(f(x), x) or S(x, f(x)) in the context clause, and so σ(zi) is either y or f(x); thus, the result is a
context clause.

(Eq) Since D is sound for O, properties (59) and (60) hold. Moreover, clause in (61) is a logical consequence of the clauses in
(59) and (60), so property (61) holds, as required.

O |= corev ∧ Γ1 → ∆1 ∨ s1 ≈ t1 (59)
O |= corev ∧ Γ2 → ∆2 ∨ s2 ./ t2 (60)
O |= corev ∧ Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 (61)

Finally, term s1 is always of the form g(f(x)), term t1 is of the form h(f(x)) or y, and term s2 is of the form g(f(x)),
B(g(f(x))), S(f(x), g(f(x))), or S(g(f(x)), f(x)); thus, s2[t1]p is a context term, and so the result is a context clause.

(Ineq) Since D is sound for O, we have O |= corev ∧ Γ→ ∆ ∨ t 6≈ t; but then, we clearly have O |= corev ∧ Γ→ ∆, as
required.

(Factor) Since D is sound for O, property (62) holds. Moreover, clause in (63) is a logical consequence of the clause in (62),
so property (63) holds, as required.

O |= corev ∧ Γ→ ∆ ∨ s ≈ t ∨ s ≈ t′ (62)

O |= corev ∧ Γ→ ∆ ∨ t 6≈ t′ ∨ s ≈ t′ (63)

(Elim) The resulting context structure contains a subset of the clauses from D, so it is clearly sound for O.

(Pred) Let σ = {x 7→ f(x), y 7→ x}. Since D is sound for O, properties (64)–(66) hold. Now clause in (67) is an instance of
the clause in (64), so property (67) holds. But then, by (58), properties (64) and (65) imply property (68). Finally, properties
(66) and (68) imply property (69), as required.

O |= corev ∧
∧m
i=1Ai →

∨m+n
j=m+1Aj (64)

O |= coreu ∧ Γi → ∆i ∨Aiσ for 1 ≤ i ≤ m (65)
O |= coreu → corevσ (66)

O |= corevσ ∧
∧m
i=1Aiσ →

∨m+n
j=m+1Ajσ (67)

O |= corevσ ∧ corev ∧
∧m
i=1 Γi →

∨m+n
j=m+1Ajσ (68)

O |= coreu ∧
∧m
i=1 Γi →

∨m+n
j=m+1Ajσ (69)

For each m+ 1 ≤ i ≤ m+ n, we have Ai ∈ Pr(O), so Ai is of the form B(y), S(x, y), or S(y, x); but then, the definition of
σ ensures that Aiσ is a context atom, as required.



(Succ) Let σ = {x 7→ f(x), y 7→ x}. For each clause A→ A added to Sv , we clearly have O |= corev ∧A→ A, as required
for condition S1 of Definition 5. Moreover, assume that the inference rule adds an edge 〈u, v, fk〉 to E ; since D is sound for O,
we have (70); by Definition 6, we have corev ⊆ K1.

O |= coreu → Aσ for each A ∈ K1 (70)
O |= coreu → corevσ (71)

But then, property (71) holds, as required for condition S2 of Definition 5.

B Preliminaries: Rewrite Systems
In the proof of Theorem 2 we construct a model of an ontology, which, as is common in equational theorem proving, we
represent using a ground rewrite system. We next recapitulate the definitions of rewrite systems, following the presentation by
Baader and Nipkow (1998).

Let T be the set of all ground terms constructed using a distinguished constant c (of sort F), the function symbols from
F , and the predicate symbols from P . A (ground) rewrite system R is a binary relation on T . Each pair (s, t) ∈ R is called a
rewrite rule and is commonly written as s⇒ t. The rewrite relation→R forR is the smallest binary relation on T such that, for
all terms s1, s2, t ∈ T and each (not necessarily proper) position p in t, if s1 ⇒ s2 ∈ R, then t[s1]p →R t[s2]p. Moreover, ∗→R

is the reflexive–transitive closure of→R, and ∗↔R is the reflexive–symmetric–transitive closure of→R. A term s is irreducible
by R if no term t exists such that s→R t; and a literal, clause, or substitution α is irreducible by R if no term occurring in α is
irreducible by R. Moreover, term t is a normal form of s w.r.t. R if s ∗↔R t and t is irreducible by R. We consider the following
properties of rewrite systems.

• R is terminating if no infinite sequence s1, s2, . . . of terms exists such that, for each i, we have si →R si+1.

• R is left-reduced if, for each s⇒ t ∈ R, the term s is irreducible by R \ {s⇒ t}.

• R is Church-Rosser if, for all terms t1 and t2 such that t1
∗↔R t2, a term z exists such that t1

∗→R z and t2
∗→R z.

If R is terminating and left-reduced, then R is Church-Rosser (Baader and Nipkow 1998, Theorem 2.1.5 and Exercise 6.7). If
R is Church-Rosser, then each term s has a unique normal form t such that s ∗→R t holds. The Herbrand interpretation induced
by a Church-Rosser system R is the set R∗ such that, for all s, t ∈ T , we have s ≈ t ∈ R∗ if and only if s ∗↔R t.

Term orders can be used to prove termination of rewrite systems. A term order � is a simplification order if the following
conditions hold:

• for all terms s1, s2, and t, all positions p in t, and all substitutions σ, we have that s1 � s2 implies t[s1σ]p � t[s2σ]p; and

• for each term s and each proper position p in s, we have s � s|p.

Given a rewrite system R, if a simplification order � exists such that s⇒ t ∈ R implies s � t, then R is terminating (Baader
and Nipkow 1998, Theorems 5.2.3 and 5.4.8), and s→R t implies s � t.

C Proof of Theorem 2
Theorem 2 (Completeness). LetO be an ontology, and letD = 〈V, E ,S, core,�〉 be a context structure such that no inference
rule from Table 2 is applicable to O and D. Then, ΓQ → ∆Q ∈̂ Sq holds for each query clause ΓQ → ∆Q and each context
q ∈ V that satisfy conditions C1–C3.

C1. O |= ΓQ → ∆Q.
C2. For each atom A ≈ ℘ ∈ ∆Q and each context term s 6∈ {x, y}, if A �q s, then s ≈ ℘ ∈ ∆Q ∪ Pr(O).
C3. For each A ∈ ΓQ, we have ΓQ → A ∈̂ Sq .
In this section, we fix an ontology O, a context structure D = 〈V, E ,S, core,�〉, a context q ∈ V , and a query clause

ΓQ → ∆Q such that conditions C3 and C2 of Theorem 2 are satisfied, and we show the contrapositive of condition C1: if
ΓQ → ∆Q 6∈̂ Sq , then O 6|= ΓQ → ∆Q. To this end, we construct a rewrite system R such that the induced Herbrand model
R∗ satisfies all clauses in O, but not ΓQ → ∆Q. We construct the model using a distinguished constant c, the unary function
symbols from F , and the unary and binary predicate symbols from P1 and P2, respectively.

Let t be a term. If t is of the form t = f(s), then s is the predecessor of t, and t is a successor of s; by these definitions, a con-
stant has no predecessor. The F-neighbourhood of t is the set of F-terms containing t, f(t) with f ∈ F , and the predecessor t′
of t if one exists; the P-neighbourhood of t contains P-termsB(t), S(t, f(t)), S(f(t), t),B(f(t)), and, if t has the predecessor
t′, also P-terms S(t′, t), S(t, t′), and B(t′), for all B ∈ P1 and S ∈ P2. Let σt be the substitution such that σt(x) = t and, if t
has the predecessor t′, then σt(y) = t′. Finally, for each term t, we define sets of atoms Prt and Sut as follows:

Sut = {Aσt | A ∈ Su(O) and Aσt is ground } (72)
Prt = {Aσt | A ∈ Pr(O) and Aσt is ground } (73)



C.1 Constructing a Model Fragment
In this section, we show how, given a term t, we can generate a part of the model of O that covers the neighbourhood of t. In
the rest of Appendix C.1, we fix the following parameters to the model fragment generation process:
• t is a ground F-term,
• v is a context in D,
• Γt is a conjunction of atoms, and
• ∆t is a disjunction of atoms.
Let Nt be the set of ground clauses obtained from Sv as follows:

Nt = {Γσt → ∆σt | Γ→ ∆ ∈ Sv, both Γσt and ∆σt are ground, and Γσt ⊆ Γt}
We assume that the following conditions hold.

L1. Γt → ∆t 6∈̂ Nt.
L2. If t = c, then ∆t = ∆Q; and if t 6= c, then ∆t ⊆ Prt.
L3. For each A ∈ Γt, we have Γt → A ∈̂ Nt.
We next construct a rewrite system Rt such that R∗t |= Nt and R∗t 6|= Γt → ∆t holds. Throughout Appendix C.1, we treat

the terms in the F-neighbourhood of t as if they were constants. Thus, even though the rewrite system R will contain terms t
and f(t), we will not consider terms with further nesting.

C.1.1 Grounding the Context Order

To construct Rt, we need an order on the terms in the neighbourhood of t that is compatible with �v . To this end, let >t be
a total, strict, simplification order on the set of ground terms constructed using the F-neighbourhood of t and the predicate
symbols in P that satisfies the following conditions for all context terms s1 and s2 such that s1σt and s2σt are both ground, and
where t′ is the predecessor of t if it exists.

O1. s1 �v s2 implies s1σt >t s2σt.
O2. s1σt ≈ ℘ ∈ ∆t and s1σt >t s2σt and s2σt 6∈ {t, t′} imply s2σt ≈ ℘ ∈ ∆t.

Condition C2 of Theorem 2 and condition 5 of Definition 3 ensure that the order �v on (nonground) context terms can be
grounded in a way compatible with condition L2. Moreover, since in this section we treat all F-terms as constants, we can
make the P-terms of the form B(t′), S(t′, t), and S(t, t′) smaller than other F- and P-terms (i.e., we do not need to worry
about defining the order on the predecessor of t′ or on the ancestors of f(t)). Thus, at least one such order exists, so in the rest
of this section we fix an arbitrary such order >t. We extend >t to ground literals (also written >t) by identifying each s 6≈ t
with the multiset {s, s, t, t} and each s ≈ t with the multiset {s, t}, and then comparing the result using the multiset extension
of the term order (as defined in Section 2). Finally, we further extend >t to disjunctions of ground literals (also written >t) by
identifying each disjunction

∨n
i=1 Li with the multiset {L1, . . . , Ln} and then comparing the result using the multiset extension

of the literal order.

C.1.2 Constructing the Rewrite System Rt

We arrange all clauses in Nt into a sequence C1, . . . , Cn. Since the body of each Ci is a subset of Γt, no Ci can contain ⊥
in its head as that would contradict condition L1; thus, we can assume that each Ci is of the form Ci = Γi → ∆i ∨ Li where
Li >t ∆i, literal Li is of the form Li = li ./ ri with ./ ∈ {≈, 6≈}, and li ≥t ri. For the rest of Appendix C.1, we reserve Ci,
Γi, ∆i, Li, li, and ri for referring to the (parts of) the clauses in this sequence. Finally, we assume that, for all 1 ≤ i < j ≤ n,
we have ∆j ∨ Lj ≥t ∆i ∨ Li.

We next define the sequence R0
t , . . . , R

n
t of rewrite systems by setting R0

t = ∅ and defining each Rit with 1 ≤ i ≤ n induc-
tively as follows:
• Rit = Ri−1t ∪ {li ⇒ ri} if Li is of the form li ≈ ri such that

R1. (Ri−1t )∗ 6|= ∆i ∨ li ≈ ri,
R2. li >t ri,
R3. li is irreducible by Ri−1t , and
R4. s ≈ ri 6∈ (Ri−1t )∗ for each li ≈ s ∈ ∆i; and

• Rit = Ri−1t in all other cases.
Finally, let Rt = Rnt ; we call Rt the model fragment for t, v, Γt, and ∆t. Each clause Ci = Γi → ∆i ∨ li ≈ ri that satisfies
the first condition in the above construction is called generative, and the clause is said to generate the rule li ⇒ ri in Rt.



C.1.3 The Properties of the Model Fragment Rt

Lemma 1. The rewrite system Rt is Church-Rosser.

Proof. To see that Rt is terminating, simply note that, for each rule l⇒ r ∈ Rt, condition R2 ensures l >t r, and that >t is a
simplification order.

To see that Rt is left-reduced, consider an arbitrary rule l⇒ r ∈ Rt that is added to Rt in step i of the clause sequence. By
condition R3, l⇒ r is irreducible by Rit. Now consider an arbitrary rule l′ ⇒ r′ ∈ Rt that is added to Rt at any step j of the
construction where j > i. The definition of the clause order implies l′ ≈ r′ ≥t l ≈ r; since l′ >t r′ and l >t r by condition R2,
by the definition of the literal order we have l′ ≥t l. Since l⇒ r ∈ Rj−1t , condition R3 ensures l 6= l′, and so we have l′ >t l;
consequently, l′ is not a subterm of l, and thus l is irreducible by Rjt .

Lemma 2. For each 1 ≤ i ≤ n and each l 6≈ r ∈ ∆i ∨ Li, we have (Ri−1t )∗ |= l ≈ r if and only if R∗t |= l ≈ r.

Proof. Consider an arbitrary clause Ci = Γi → ∆i ∨ Li and an arbitrary inequality l 6≈ r ∈ ∆i ∨ Li. If l ≈ r ∈ (Ri−1t )∗, then
Ri−1t ⊆ Rt implies l ≈ r ∈ R∗t , and so we have R∗t |= l ≈ r, as required. Now assume that l ≈ r 6∈ (Ri−1t )∗. Let l′ and r′ be
the normal forms of l and r, respectively, w.r.t.Ri−1t . Now consider an arbitrary j with i ≤ j ≤ n such that lj ⇒ rj is generated
by Cj . We then have lj ≈ rj >t l 6≈ r, which by the definition of literal order implies lj >t l ≥t l′ and lj >t r ≥t r′; since >t
is a simplification order, lj is a subterm of neither l′ nor r′. Thus, l′ and r′ are the normal forms of l and r, respectively, w.r.t.
Rjt , and so we have l′ ≈ r′ 6∈ (Rjt )

∗; but then, we have l ≈ r 6∈ (Rjt )
∗, as required.

Lemma 3. For each generative clause Γi → ∆i ∨ li ≈ ri, we have R∗t 6|= ∆i.

Proof. Consider a generative clause Ci = Γi → ∆i ∨ li ≈ ri and a literal L ∈ ∆i; condition R1 ensures that (Ri−1t )∗ 6|= L.
We next show that (Ri−1t )∗ 6|= L.

Assume that L is of the form l 6≈ r. Since l 6≈ r ∈ ∆i ∨ li ≈ ri, by Lemma 2 we have R∗t 6|= L, as required.
Assume that L is of the form l ≈ r with l >t r. We show by induction that, for each j with i ≤ j ≤ n, we have (Rjt )

∗ 6|= L.
To this end, we assume that (Rj−1t )∗ 6|= L. If Cj is not generational, then Rjt = Rj−1t , and so (Rjt )

∗ 6|= L. Thus, assume that Cj
is generational. We consider the following two cases.

• lj = l. We have the following two subcases.
– j = i. Condition R4 then ensures r ≈ ri 6∈ (Ri−1t )∗. Let r′ and r′′ be the normal forms of r and ri, respectively, w.r.t.
Ri−1t ; we have r′ ≈ r′′ 6∈ (Ri−1t )∗. Moreover, l >t r ≥t r′ and l >t ri ≥t r′′ hold; since >t is a simplification order, l is
a subterm of neither r′ nor r′′; therefore, r′ and r′′ are the normal forms of r and ri, respectively, w.r.t. Rit, and therefore
r′ ≈ r′′ 6∈ (Rit)

∗. Finally, since l⇒ ri ∈ Rit, term r′′ is the normal form of l w.r.t. Rit, and so l ≈ r 6∈ (Rit)
∗.

– j > i. But then, lj ≈ rj ≥t li ≈ ri >t l ≈ r implies lj = li = l. Furthermore, Ci is generational, so we have
li ⇒ ri ∈ Rj−1t . But then, lj is not irreducible by Rj−1t , which contradicts condition R3.

• lj >t l. Let l′ and r′ be the normal forms of l and r, respectively, w.r.t. Rj−1t . Then, we have lj >t l ≥t l′ and lj >t r ≥t r′;
since >t is a simplification order, lj is a subterm of neither l′ nor r′. Thus, l′ and r′ are the normal forms of l and r,
respectively, w.r.t. Rjt , and so l′ ≈ r′ 6∈ (Rjt )

∗; hence, l ≈ r 6∈ (Rjt )
∗ holds.

Lemma 4. Let Γ→ ∆ be a clause with Γ→ ∆ ∈̂ Nt. Then R∗t |= ∆ holds if i with 1 ≤ i ≤ n+ 1 exists such that

1. for each 1 ≤ j < i, we have R∗t |= ∆j ∨ Lj , and
2. if i ≤ n (i.e., i is an index of a clause from Nt), then ∆i ∨ Li >t ∆.

Proof. Assume that Γ→ ∆ ∈̂ Nt holds. If Γ→ ∆ satisfies condition 1 of Definition 4, then we clearly have R∗t |= ∆. Assume
that Γ→ ∆ satisfies condition 2 of Definition 4 due to some clause Γj → ∆j ∨ Lj ∈ Nt such that Γj ⊆ Γ and ∆j ∪ {Lj} ⊆ ∆
hold; the latter clearly implies ∆ ≥t ∆j ∨ Lj . Let i be an integer satisfying this lemma’s assumption. If i = n+ 1, then we
clearly have j < i; otherwise, ∆i ∨ Li >t ∆ implies ∆i ∨ Li >t ∆j ∨ Lj , and so we also have j < i. But then, by the lemma
assumption we have R∗t |= ∆j ∨ Lj , which implies R∗t |= ∆, as required.

Lemma 5. For each clause Γ→ ∆ such that Γ→ ∆ ∈̂ Sv and Γσt ⊆ Γt hold, we have Γσt → ∆σt ∈̂ Nt.

Proof. Assume that Γ→ ∆ ∈̂ Sv holds. If Γ→ ∆ satisfies condition 1 of Definition 4, then terms s and s′ exist such that
s ≈ s ∈ ∆ or {s ≈ s′, s 6≈ s′} ⊆ ∆; but then, sσt ≈ s′σt ∈ ∆σt or {sσt ≈ s′σt, sσt 6≈ s′σt} ⊆ ∆σt, so Γσt → ∆σt ∈̂ Nt
holds. Furthermore, if Γ→ ∆ satisfies condition 2 of Definition 4, then clause Γ′ → ∆′ ∈ Sv exists such that Γ′ ⊆ Γ and
∆′ ⊆ ∆; but then, due to Γ′σt ⊆ Γσt ⊆ Γt, we have that Γ′σt → ∆′σt ∈ Nt holds, and so Γσt → ∆σt ∈̂ Nt holds as well.

Lemma 6. For each Γ→ ∆ ∈ Nt, we have R∗t |= ∆.



Proof. For the sake of a contraction, choose Ci = Γi → ∆i ∨ Li as the clause in the sequence of clauses from Appendix C.1.2
with the smallest i such that R∗t 6|= ∆i ∨ Li; please recall that Li >t ∆i and that Li = li ./ ri with ./ ∈ {≈, 6≈}. Due to our
choice of i, condition 1 of Lemma 4 holds for Ci and i. By the definition of Nt, a clause Γ→ ∆ ∨ L ∈ Sv exists such that

Γσt = Γi ⊆ Γt, ∆σt = ∆i, Lσt = Li, and ∆ 6�v L. (74)

We next prove the claim of this lemma by considering the possible forms of Li.

Assume Li = li ≈ ri with li = ri. But then, we have R∗t |= Li, which contradicts our assumption that R∗t 6|= ∆i ∨ Li.

Assume Li = li ≈ ri with li >t ri. Then, literal L is of the form l ≈ r such that lσt ≈ rσt = li ≈ ri. By the definition of>t,
we have l �v r. We first show that (Ri−1t )∗ 6|= ∆i ∨ Li holds; towards this goal, note that, for each equality s1 ≈ s2 ∈ ∆i ∨ Li,
properties R∗t 6|= s1 ≈ s2 and Ri−1t ⊆ Rt imply (Ri−1t )∗ 6|= s1 ≈ s2; and for each inequality s1 6≈ s2 ∈ ∆i, Lemma 2 and
R∗t 6|= s1 6≈ s2 imply (Ri−1t )∗ 6|= s1 6≈ s2. Thus, clause Ci satisfies conditions R1 and R2; however, since R∗t 6|= li ≈ ri, clause
Ci is not generational and thus either condition R3 or condition R4 are not satisfied. We next consider both of these possibilities.

• Condition R3 does not hold—that is, li is reducible by Ri−1t . By the definition of reducibility, a position p and a
clause Cj = Γj → ∆j ∨ lj ≈ rj generating the rule lj ⇒ rj exist such that j < i and li|p = lj . Due to j < i, we have
li ≈ ri ≥t lj ≈ rj ; together with lj ≈ rj >t ∆j , we have li ≈ ri >t ∆j . Lemma 3 ensures R∗t 6|= ∆j , and the definition of
Nt ensures that a clause Γ′ → ∆′ ∨ l′ ≈ r′ ∈ Sv exists such that

Γ′σt = Γj ⊆ Γt, ∆′σt = ∆j , l′σt = lj , r′σt = rj , ∆′ 6�v l′ ≈ r′, and l′ �v r′. (75)

By the assumption of Theorem 2, the Eq rule is not applicable to (74) and (75), and so Γ ∧ Γ′ → ∆ ∨∆′ ∨ l[r′]p ≈ r ∈̂ Sv .
Let ∆′′ = ∆i ∨∆j ∨ li[rj ]p ≈ ri. Then clearly Γσt ∪ Γ′σt ⊆ Γt, so Lemma 5 ensures that Γi ∧ Γj → ∆′′ ∈̂ Nt holds. Set
R∗t is a congruence, so li[rj ]p ≈ ri 6∈ R∗t holds, and therefore R∗t 6|= ∆′′ holds. Finally, >t is a simplification order, which
ensures li ≈ ri >t li[rj ]p ≈ ri; together with li ≈ ri >t ∆i and li ≈ ri >t ∆j , we have li ≈ ri >t ∆′′. But then, Lemma 4
implies R∗t |= ∆′′, which is a contradiction.

• Condition R4 does not hold. Then, some term s exists such that li ≈ s ∈ ∆i and s ≈ ri ∈ (Ri−1t )∗. Due to Ri−1t ⊆ Rt, we
have s ≈ ri ∈ R∗t , and so R∗t 6|= s 6≈ ri. Furthermore, ∆ ∨ L is of the form ∆′ ∨ l ≈ r ∨ l′ ≈ r′ such that

lσt = li, rσt = s, l′σt = li, and r′σt = ri. (76)

But then, we clearly have l′ = l. By the assumption of Theorem 2, the Factor rule is not applicable to Γ→ ∆ ∨ L, and
so we have Γ→ ∆′ ∨ r 6≈ r′ ∨ l′ ≈ r′ ∈̂ Sv . Let ∆′′ = ∆′σt ∨ s 6≈ ri ∨ li ≈ ri. But then, Γσt ⊆ Γt and Lemma 5 en-
sure that Γi → ∆′′ ∈̂ Nt holds. By all the previous observations, we have R∗t 6|= ∆′′. Moreover, li >t ri and li >t s imply
li ≈ ri >t s ≈ ri; thus, ∆i ∨ li ≈ ri >t ∆′′ holds. But then, Lemma 4 implies R∗t |= ∆′′, which is a contradiction.

Assume Li = li 6≈ ri with li = ri. Then, literal L is of the form l 6≈ r such that lσt 6≈ rσt = li 6≈ ri. But then, li = ri implies
l = r. By the assumption of Theorem 2, the Ineq rule is not applicable to clause Γ→ ∆ ∨ L, and so we have Γ→ ∆ ∈̂ Sv .
Since Γσt ⊆ Γt, by Lemma 5 we have Γi → ∆i ∈̂ Nt. Clearly, ∆i ∨ li 6≈ ri >t ∆i, and so Lemma 4 implies R∗t |= ∆i, which
is a contradiction.

Assume Li = li 6≈ ri with li >t ri. Lemma 2 ensures (Ri−1t )∗ 6|= li 6≈ ri; hence, li is reducible by Ri−1t so, by the def-
inition of reducibility, a position p and a generative clause Cj = Γj → ∆j ∨ lj ≈ rj exist such that j < i and li|p = lj .
Due to j < i, we have li 6≈ ri >t lj ≈ rj >t ∆j . Lemma 3 ensures R∗t 6|= ∆j , and the definition of Nt ensures that a clause
Γ′ → ∆′ ∨ l′ ≈ r′ ∈ Sv exists satisfying (75), as in the first case. By the assumption of Theorem 2, the Eq rule is not applica-
ble to clauses (74) and (75), and so Γ ∧ Γ′ → ∆ ∨∆′ ∨ l[r′]p 6≈ r ∈̂ Sv holds. Let ∆′′ = ∆i ∨∆j ∨ li[rj ]p 6≈ ri. We clearly
have Γσt ∪ Γ′σt ⊆ Γt, so by Lemma 5 we have Γi ∧ Γj → ∆′′ ∈̂ Nt. Since R∗t is a congruence, we have R∗t 6|= li[lj ]p 6≈ ri,
and therefore R∗t 6|= ∆′′ holds. Finally, >t is a simplification order, so li 6≈ ri >t li[lj ]p; together with li ≈ ri >t ∆i and
li ≈ ri >t ∆j , we have li ≈ ri >t ∆′′. But then, Lemma 4 implies R∗t |= ∆′′, which is a contradiction.

Lemma 7. For each clause Γ→ ∆ with Γ→ ∆ ∈̂ Nt, we have R∗t |= ∆.

Proof. Apply Lemma 4 for i = n+ 1 and Lemma 6.

Lemma 8. For each generative clause Γi → ∆i ∨ li ≈ ri, disjunction ∆i does not contain a literal of the form s 6≈ s.

Proof. For the sake of a contradiction, let us assume that clause Ci = Γi → ∆i ∨ li ≈ ri ∈ Nt is generative and that
s 6≈ s ∈ ∆i holds for some term s. By the definition of Nt, a clause Γ′ → ∆′ ∨ s′ 6≈ s′ ∨ l′ ≈ r′ ∈ Sv exists such that

Γ′σt = Γi ⊆ Γt, ∆′σt ∪ {s′σt 6≈ s′σt} = ∆i, s′σt = s, l′σt = li, and r′σt = ri. (77)



By assumption of Theorem 2, the Ineq rule is not applicable to this clause, and so we have Γ′ → ∆′ ∨ l′ ≈ r′ ∈̂ Sv .
Thus, we have Γi → ∆′σt ∨ li ≈ ri ∈̂ Nt, and so Γ→ ∆ ∈ Nt holds for some Γ ⊆ Γi and some ∆ ( ∆i ∪ {li ≈ ri}.
Now Lemma 3 implies R∗t 6|= ∆i; moreover, by condition R1, we have (Ri−1t )∗ 6|= ∆i ∨ li ≈ ri. However, by Lemma 6
we have R∗t |= Γ→ ∆. Now let j be the index of clause Γ→ ∆ in the sequence of clauses from Appendix C.1.2; due to
(Rjt )

∗ ⊆ (Ri−1t )∗ and Lemma 2, we have (Rjt )
∗ |= Γ→ ∆. Since j < i, by the same argument we have (Ri−1t )∗ |= Γ→ ∆.

But then, ∆ ⊆ ∆i ∨ li ≈ ri implies (Ri−1t )∗ |= ∆i ∨ li ≈ ri, which is a contradiction.

Lemma 9. R∗t 6|= Γt → ∆t.

Proof. For R∗t |= Γt, note that condition L2 ensures Γt → A ∈̂ Nt, and so Lemma 7 ensures R∗t |= A for each atom A ∈ Γt.
For R∗t 6|= ∆t, assume for the sake of a contradiction that an atom A ∈ ∆t exists such that R∗t |= A. Then, a generative clause

Ci = Γi → ∆i ∨ li ≈ ri ∈ Nt and a position p exist such that A|p = li; let ∆ = ∆i ∨ li ≈ ri. Since >t is a simplification
order and li >t ri, we have A ≥t li ≈ ri; but then, since li ≈ ri >t ∆i, we have A ≥t ∆. We next consider an arbitrary literal
l ./ r ∈ ∆ with ./ ∈ {≈, 6≈} and l ≥t r; by the observations made thus far, A ≥t l ./ r holds. By condition O2, one of the
following holds.

1. l ∈ {t, t′}. Moreover, since l ./ r is obtained by grounding a context literal, both l and r can be of the form f(t) or t′.
Together with l ≥t r, we have l = r = t′. Now if l ./ r is t′ ≈ t′, then clause Ci is not generative due to condition R1.
Hence, the only remaining possibility is for l ./ r to be of the form t′ 6≈ t′; but then, clause Ci is not generative by Lemma 8.
Consequently, in either case we get a contradiction.

2. l ≈ r ∈ ∆t where r = ℘.

Thus, the second point above holds for arbitrary l ./ r ∈ ∆, and therefore we have ∆ ⊆ ∆t. But then, Γi ⊆ Γt implies that
Γt → ∆t ∈̂ Nt holds, which contradicts condition L1.

C.2 Interpreting the Ontology O
We now combine the rewrite systems Rt constructed in Appendix C.1 into a single rewrite system R, and we then show that
R∗ satisfies R∗ |= O and R∗ 6|= ΓQ → ∆Q.

C.2.1 Unfolding the Context Structure

We construct R by a partial induction over the terms in T . We define several partial functions: function X maps a term t to
a context Xt ∈ V; functions Γ and ∆ assign to a term t a conjunction Γt and a disjunction ∆t, respectively, of atoms; and
function R maps each term into a model fragment Rt for t, Xt, Γt, and ∆t.
M1. For the base case, we consider the constant c.

Xc = q (78)
Γc = ΓQσc (79)
∆c = ∆Qσc (80)
Rc = the model fragment for c, q,Γc, and ∆c (81)

M2. For the inductive step, assume that Xt′ has already been defined, and consider an arbitrary function symbol f ∈ F such
that f(t′) is irreducible by Rt′ . Let u = Xt′ and t = f(t′). We have two possibilities.
M2.a. Term t occurs in Rt′ . Then, term t = f(t′) was generated in Rt′ by some ground clause C = Γ→ ∆ ∨ L ∈ Nt′

such that L >t ∆ and f(t′) occurs in L. By the definition of Nt, then a clause C ′ = Γ′ → ∆′ ∨ L′ ∈ Su exists
such that C = C ′σt′ and L′ contains f(x); moreover, L >t′ ∆ implies ∆′ 6�u L′. The Succ and Core rules are
not applicable to D, so we can choose a context v ∈ V such that 〈u, v, f〉 ∈ E and A→ A ∈̂ Sv for each A ∈ K2,
where K2 is as in the Succ rule. We define the following:

Xt = v (82)
Γt = R∗t′ ∩ Sut (83)
∆t = Prt \R∗t′ (84)
Rt = the model fragment for t, v,Γt, and ∆t (85)

M2.b. Term t does not occur in Rt′ . Then, let Rt = {t⇒ c}, and we do not define any other functions for t.
Finally, let R be the rewrite system defined by R =

⋃
tRt.

Lemma 10. The model fragments Rc and Rt constructed in lines (81) and (85) satisfy conditions L1 through L3 in Ap-
pendix C.1.



Proof. The proof is by induction on the structure of terms t ∈ dom(X). For t = c, conditions L1 through L3 hold directly
from conditions C1 through C3 of Theorem 2. We next assume that the lemma holds for some term t′ ∈ dom(X), and we
consider an arbitrary term t of the form t = f(t′); let u = Xt′ and v = Xt. Condition L2 (i.e., ∆t ⊆ Prt) holds because we
have ∆t = Prt \R∗t′ due to (84). Before proceeding, note that terms t and t′ are irreducible by Rt′ due to condition M2; but
then, since Γt ⊆ R∗t′ holds by (83), each each atom Ai ∈ Rt′ is generated by clause satisfying (86) (where subscript i does not
necessarily indicate the position of the clause in sequence of clauses from Appendix C.1.2). By the definition of Nt′ , then there
exists a clause satisfying (87).

Γi → ∆i ∨Ai ∈ Nt′ with Ai >t ∆i (86)

Γ′i → ∆′i ∨A′i ∈ Su Γi = Γ′iσt′ , ∆i = ∆′iσt′ , Ai = A′iσt′ , and ∆′i 6�u A′i (87)

For condition L3, consider an arbitrary atom Ai ∈ Γt, let (86) be the clause that generates Ai in Rt′ , and let (87) be the
corresponding nonground clause. Since Ai ∈ Sut, atom A′i is of the form A′′i σ, where σ is the substitution from the Succ rule;
but then, A′′i ∈ K2, where K2 is as specified in the Succ rule. In condition M2.a we chose v so that the Succ rule is satisfied,
and therefore A′′i → A′′i ∈̂ Sv; but then, since A′′i σt = Ai, we have Ai → Ai ∈̂ Nt, as required for condition L3.

To prove that condition L1 holds as well, assume for the sake of a contradiction that Γt → ∆t ∈̂ Nt holds. We have ∆t ⊆ Prt
due to (84). Therefore, due to condition 2 of Definition 4, set Nt contains a clause

m∧
i=1

Ai →
m+n∨
i=m+1

Ai with {Ai | 1 ≤ i ≤ m } ⊆ Γt and {Ai | m+ 1 ≤ i ≤ m+ n } ⊆ ∆t ⊆ Prt. (88)

By the definition of Nt, set Sv contains a clause

m∧
i=1

A′i →
m+n∨
i=m+1

A′i where Ai = A′iσt for 1 ≤ i ≤ m+ n and A′i ∈ Pr(O) for m+ 1 ≤ i ≤ m+ n. (89)

Now eachAi with 1 ≤ i ≤ m is generated by a ground clause (86), and the latter is obtained from the corresponding nonground
clause (87). The Pred rule is not applicable to (87) and (89) so (90) holds; together with Lemma 5, this ensures (91).

m∧
i=1

Γ′i →
m∨
i=1

∆′i ∨
m+n∨
i=m+1

A′iσ ∈̂ Su for σ = {x 7→ f(x), y 7→ x} (90)

m∧
i=1

Γi →
m∨
i=1

∆i ∨
m+n∨
i=m+1

Ai ∈̂ Nt′ (91)

By Lemma 3, we have R∗t′ 6|= ∆i; and (84) ensures that R∗t′ 6|= ∆t, and so R∗t′ 6|= Ai for each m+ 1 ≤ i ≤ m+ n; however, this
contradicts (91) and Lemma 7.

C.2.2 Termination, Confluence, and Compatibility

Lemma 11. The rewrite system R is Church-Rosser.

Proof. We show that R is terminating and left-reduced, and thus Church-Rosser. In the proof of the former, we use a total
simplification order B on all ground F- and P-terms defined as follows. We extend the precedence m from Definition 3 to all
F- and P-symbols in an arbitrary way, but ensuring that constant ℘ is smallest in the order; then, let B be a lexicographic path
order (Baader and Nipkow 1998) over such m. It is well known that such B is a simplification order, and that it satisfies the
following properties for each F-term t with predecessor t′ (if one exists), all function symbols f, g ∈ F , and each P-term A:

• f(t)B tB t′,
• f m g implies f(t)B g(t), and
• AB ℘.

Thus, conditions 1 and 2 of Definition 3 and the manner in which context orders are grounded in Appendix C.1.1 clearly ensure
that, for each F-term t ∈ dom(X) and for all terms s1 and s2 from the F-neighbourhood of t with s1 >t s2, we have s1 B s2.

We next show that R is terminating by arguing that each rule in R is embedded in B. To this end, consider an arbitrary rule
l⇒ r ∈ R. Clearly, a term t ∈ dom(R) exists such that l⇒ r ∈ Rt. This rule is obtained from a head l ≈ r of a clause in Nt,
and condition R2 of the definition of Rt ensures that l >t r. Moreover, l ≈ r is obtained by grounding a context literal with σt,
so we have the following possible forms of l ≈ r.



• Terms l and r are both from the F-neighbourhood of t. Then, l >t r implies l B r.
• We have l ≈ r = A ≈ ℘ for A a P-term. Then, AB ℘ since ℘ is smallest in m.

We next show that R is left-reduced. For the sake of a contradiction, assume that a rule l⇒ r ∈ R exists such that l is
reducible by R′ = R \ {l⇒ r}. Let p be the ‘deepest’ position at which some rule in R′ reduces l (i.e., no rule in R′ reduces l
at position below p), and let l′ ⇒ r′ ∈ R′ be the rule that reduces l at position p; thus, l′ = l|p. By the definition of R, we have
l′ ⇒ r′ ∈ Rt where t can be as follows.

• Term t is handled in condition M2.a. Then l′ ⇒ r′ is generated by an equality l′ ≈ r′ in the head of a generative clause, and
so l′ is of the form f(t). Thus, f(t) is reducible by Rt, which contradicts condition M2 from the construction of R.

• Term t is handled in condition M2.b. Then l′ = t; moreover,R′ does not contain t by the construction ofR, which contradicts
the assumption that l′ ⇒ r′ ∈ R′.

Lemma 12. For each term t, each f ∈ F , and each atom A ∈ Sut ∪ Prf(t) such that A ∈ R∗ and all F-terms in A are
irreducible by R, we have A ∈ R∗t .

Proof. Let t be a term, let f ∈ F be a function symbol, and let A ∈ Sut ∪ Prf(t) be an atom such that all F-terms in A are
irreducible by R; the latter ensures A⇒℘ ∈ R. We next consider the possible forms of A.

Assume A ∈ Sut. By the definition of Sut in (72) and the fact that Su(O) contains only atoms of the form B(x), S(x, y),
and S(y, x), atom A can be of the form B(t), S(t, t′), or S(t′, t), for t′ the predecessor of t (if one exists). By the form of the
generative clauses, we clearly have A ∈ R∗t or A ∈ R∗t′ . Now assume A ∈ R∗t′ . Due to A ∈ Sut and the definition of Γt in (83),
we have A ∈ Γt. Lemma 9 ensures that R∗t 6|= Γt → ∆t. But then, we have A ∈ R∗t , as required.

AssumeA ∈ Prf(t). By the definition of Prf(t) in (73) and the fact that Pr(O) contains only atoms of the formB(y), S(y, x),
and S(x, y), atom A can be of the form B(t), S(t, f(t)), or S(f(t), t). By the form of the generative clauses, we clearly have
A ∈ R∗t orA ∈ R∗f(t). Assume for the sake of a contradiction thatA 6∈ R∗t , butA ∈ R∗f(t). Due toA ∈ Prf(t) and the definition
of ∆f(t) in (84), we have A ∈ ∆f(t); due to Lemma 9, we have R∗f(t) 6|= Γf(t) → ∆f(t); therefore, we have A 6∈ R∗f(t), which
is a contradiction.

Lemma 13. Let s1 and s2 be DL-terms, and let τ be a substitution irreducible byR such that s1τ and s2τ are ground and each
τ(zi) (if defined) is in the F-neighbourhood of τ(x). Then, for ./ ∈ {≈, 6≈}, if R∗τ(x) |= s1τ ./ s2τ , then R∗ |= s1τ ./ s2τ .

Proof. Let s1 and s2 and τ be as stated above, let t = τ(x), and let t′ be the predecessor of t (if one exists). Since t is irreducible
by R, rewrite system Rt has been defined in Appendix C.2.1. We next consider the possible forms of ./.

• Assume ./ = ≈. But then, Rt ⊆ R and R∗t |= s1τ ≈ s2τ imply R∗ |= s1τ ≈ s2τ .
• Assume ./ = 6≈. Let s′1 and s′2 be the normal forms of s1τ and s2τ , respectively, w.r.t. Rt. Due to the shape of DL-literals,
s1 and s2 can be of the form f(x) or zi; therefore, s1τ and s2τ are of the form f(t) or t′. Term t is irreducible by R, and
thus t′ is irreducible by R as well. Furthermore, due to the shape of context terms, the only rewrite system where f(t) could
occur on the left-hand side of a rewrite rule is Rt. Consequently, f(t) is irreducible by R as well. But then, s′1 and s′2 are the
normal forms of s1τ and s2τ , respectively, w.r.t. R; thus, R∗ |= s′1 6≈ s′2, and thus R∗ |= s1τ 6≈ s2τ holds, as required.

C.2.3 The Completeness Claim

Lemma 14. For each DL-clause Γ→ ∆ ∈ O, we have R∗ |= Γ→ ∆.

Proof. Consider an arbitrary DL-clause Γ→ ∆ ∈ O of the following form:∧n
i=1Ai → ∆ (92)

Let τ ′ be an arbitrary substitution such that Γτ ′ → ∆τ ′ is ground, and let τ be the substitution obtained from τ ′ by replac-
ing each ground term with its normal form w.r.t. R. Since R∗ is a congruence, we have R∗ |= Γτ ′ → ∆τ ′ if and only if
R∗ |= Γτ → ∆τ . We next assume that R∗ |= Γτ , and we show that R∗ |= ∆τ holds as well.

Consider an arbitrary atom Ai ∈ Γ. By the definition of DL-clauses, Ai is of the form B(x), S(x, zj), or S(zj , x). Substitu-
tion τ is irreducible by R, and so all F-terms in Aiτ are irreducible by R; but then, Aiτ ∈ R∗ clearly implies Aiτ ⇒℘ ∈ R.
Each such rule is obtained from a generative clause soAiτ is of the formB(t), S(t, f(t)), S(f(t), t), S(t, t′), or S(t′, t), where
t = τ(x) and t′ is the predecessor of t (if it exists). We next prove that Aiτ ∈ Sut ∪ Prf(t) holds by considering the possible
forms of Ai.

• Ai = B(x), so Aiτ = B(t). Then, we have B(x) ∈ Su(O), which implies that B(t) ∈ Sut holds.
• Ai = S(x, zj), soAiτ is of the form S(t, t′) or S(t, f(t)). Then, we have S(x, y) ∈ Su(O), which implies that S(t, t′) ∈ Sut

holds; moreover, we have S(y, x) ∈ Pr(O), which implies that S(t, f(t)) ∈ Prf(t) holds.



• Ai = S(zj , x), soAiτ is of the form S(t′, t) or S(f(t), t). Then, we have S(y, x) ∈ Su(O), which implies that S(t′, t) ∈ Sut
holds; moreover, we have S(x, y) ∈ Pr(O), which implies that S(f(t), t) ∈ Prf(t) holds.

Lemma 12 then implies Aiτ ∈ Rt, and so Nt contains a generative clause of the form (93). Now let v = Xt; by the definition
of Nt, set Sv contains a clause of the form (94).

Γi → ∆i ∨Ai with Ai >t ∆i and Γi ⊆ Γt (93)

Γ′i → ∆′i ∨A′i with ∆′i 6� vA′i and Γ′iσt = Γi, ∆′iσt = ∆i, and A′iσt = Ai (94)

The Hyper rule is not applicable to (92) and (94), and therefore (95) holds, where σ is the substitution obtained from τ by
replacing each occurrence of t (possibly nested in another term) with x. Finally, Lemma 5 ensures that (96) holds as well.

n∧
i=1

Γ′i → ∆σ ∨
n∨
i=1

∆′i ∈̂ Sv (95)

n∧
i=1

Γi → ∆τ ∨
n∨
i=1

∆i ∈̂ Nt (96)

Now (96) and Lemma 7 imply R∗t |= ∆τ ∨
∨n
i=1 ∆i, but Lemma 3 implies R∗t 6|= ∆i; therefore, we have R∗t |= ∆τ . Finally,

Lemma 13 ensures R∗ |= ∆τ , as required.

Lemma 15. R∗ 6|= ΓQ → ∆Q.

Proof. The claim clearly follows from R∗ 6|= Γc → ∆c. Note that Lemma 9 ensures R∗c 6|= Γc → ∆c; thus, R∗c |= Γc and
R∗c 6|= ∆c. The former observation and Lemma 13 ensure that R∗ |= Γc holds. Moreover, for each atom B(x) ∈ ∆Q, Defi-
nition 2 ensures B(y) ∈ Pr(O); thus, for each f ∈ F , we have B(c) ∈ Prf(c), and so the contrapositive of Lemma 12 ensures
R∗ 6|= B(c). Thus, R∗ 6|= ∆c holds, as required.

D Proof of Proposition 2
Proposition 2. For each expansion strategy that introduces at most exponentially many contexts, algorithm A1–A4 runs in
worst-case exponential time.

Proof. The number ℘ of context clauses that can be generated using the symbols in O is at most exponential in the size of O,
and the number m of clauses participating in each inference is linear in the size of O. Hence, with k contexts, the number of
inferences is bounded by (k · ℘)m; if k is at most exponential in the size of O, the number of inferences is exponential as well.
Thus, if at most exponentially many contexts are introduced, our algorithm runs in exponential time.

E Proof of Proposition 3
Proposition 3. For ELH ontologies and queries of the form B1(x)→ B2(x), algorithm A1–A4 runs in polynomial time with
either the cautious or the eager strategy; and with the cautious strategy and the Hyper rule applied eagerly, the inferences in
step A3 correspond directly to the inferences of the ELH calculus by Baader, Brandt, and Lutz (2005).

Proof. Consider an ELH ontology that is transformed into a setO of DL-clauses as specified in Section 2, and consider a query
of the form B1(x)→ B2(x). Due to the form of the query, the core of q is initialised to B1(x).

We first consider applying algorithm A1–A4 to O with the cautious strategy and the eager application of the Hyper rule. By
induction on the application of the rules from Table 2, we next show that each context clause derived by the rules is of the form
(97)–(101) and that the core of each context is of the form B(x).

> → B(x) (97)
> → S(x, f(x)) (98)
> → B(f(x)) (99)

S(y, x)→ B(y) (100)
S1(y, x)→ S2(y, x) (101)

In particular, in step A3 we can perform the following inferences, with the specified correspondence to the completion rules
CR1–CR4 and CR10 by Baader, Brandt, and Lutz (2005).

• The core of each context is of the form B(x), so the Core rule introduces a clause of the form form (97). This corresponds to
way in which Baader, Brandt, and Lutz (2005) initialise their mappings.

• The Hyper rule can be applied to a DL-clause of type DL1. All other clauses participating in the inference are of the form
(97), so the result is of the form (97). Such an inference corresponds to the completion rules CR1 or CR2.



• The Hyper rule can be applied to a DL-clause of type DL2. The other clause participating in the inference is of the form (97),
so the result is of the form (98) or (99). Moreover, function symbol f occurs inO in exactly one pair of clauses DL2, and the
Hyper rule is applied eagerly; thus, whenever f occurs in a context in a clause of the form (98), it also occurs in a clause of
the form (99). Now the Succ rule can be applied to the function symbol f , in which case the cautious strategy thus returns a
context whose core is of the form B(x). All of these inferences correspond to the completion rule CR3.

• The Hyper rule can be applied to a DL-clause of type DL3. The two other clauses participating in the inference are of the
form (100) and (97), so the result is of the form (100); the Pred rule can then be applied to the latter clause, producing a
clause of the form (97). Such a pair of inferences corresponds to the completion rule CR4.

• The Hyper rule can be applied to a DL-clause of type DL5. The other clause participating in the inference is of the form
(100), so the result is of the form (100) as well; the Pred rule can then be applied to the latter clause, producing a clause of
the form (98). Such a pair of inferences corresponds to the completion rule CR10.

One can show in an analogous way that each inference of the calculus by Baader, Brandt, and Lutz (2005) corresponds to one
or more inferences of our calculus. Furthermore, it is clear that our algorithm runs in polynomial time.

We next consider applying algorithm A1–A4 to O with the eager strategy. One can show that the core of each context is of
the form A(x), R(y, x), or A(x) ∧R(y, x), and that context can contain clauses of the form (97)–(103).

> → S2(y, x) (102)
> → B(y) (103)

The proof is analogous to the case of the cautions strategy (without correspondence to the completion rules) so we omit the
details for the sake of brevity. The only minor difference is that, if an application of the the Pred to contexts u and v introduces
a clause of the form (98) in u, then the Succ rule does not become applicable to u since the precondition of the Succ rule is
still satisfied by v. Thus, the Succ rule never introduces contexts whose cores contain conjunctions of binary atoms. Thus, if O
contains k1 unary and k2 binary predicates, the number of contexts is bounded by O(k1 · k2), and each context can contain at
most k1 + k2 + k1 · k2 clauses. All rules can be applied in polynomial time, so the algorithm runs in polynomial time.


