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Abstract. In many applications, there is an increasing need for the new
types of RDF data analysis that are not covered by standard reasoning
tasks such as SPARQL query answering. One such important analysis
task is entity comparison, i.e., determining what are similarities and dif-
ferences between two given entities in an RDF graph. For instance, in
an RDF graph about drugs, we may want to compare Metamizole and
Ibuprofen and automatically find out that they are similar in that they
are both analgesics but, in contrast to Metamizole, Ibuprofen also has
a considerable anti-inflammatory effect. Entity comparison is a widely
used functionality available in many information systems, such as uni-
versities or product comparison websites. However, comparison is typi-
cally domain-specific and depends on a fixed set of aspects to compare.
In this paper, we propose a formal framework for domain-independent
entity comparison over RDF graphs. We model similarities and differ-
ences between entities as SPARQL queries satisfying certain additional
properties, and propose algorithms for computing them.

1 Introduction

The Resource Description Framework (RDF) is the standard format for repre-
senting and integrating information on the Web. The canonical reasoning task
over RDF data exploited in applications is query answering, where SPARQL is
the standard query language developed for that purpose [10]. There is, however,
an increasing need in many applications for non-standard analysis tasks that
do not directly correspond to SPARQL query answering. One such important
task is entity comparison—that is, to determine what are the similarities and
differences between the information about two given entities in an RDF graph.

Let us consider two example use cases. In the first one, a startup company
is developing a toolkit for analysing widely-used biomedical RDF repositories,
such as Bio2RDF [5]. The tool being developed should provide a drug comparison
functionality; in particular, when given two drugs described in an RDF graph
from the repository, such as Ibuprofen and Metamizole, the tool should be able
to automatically report that “both drugs are analgesics and can reduce fever;
however, Metamizole can also act as a spasm reliever, whereas Ibuprofen has an
anti-inflammatory function”. The second use case concerns the development of
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an analysis tool on top of IMDB data; such tool should allow users to compare
arbitrary aspects of movie-making, such as directors, producers, actors and so on.
For example, when comparing Quentin Tarantino to Martin Scorsese, the tool
should report that they are similar in that they are both male directors who
won both an Oscar and a Golden Globe and who have also acted in their own
movies; in turn, they are different in that Tarantino won the Palme d’Or at the
Cannes Film Festival, while Scorsese won an Emmy award, to which Tarantino
was only nominated.

Entity comparison is conventionally seen in the Information Retrieval com-
munity as a type of exploratory search [15,22]. It is an important task which
is implemented in a wide range of tools and web portals, in domains as diverse
as hotels,! cars,? universities,? or online shopping . Existing entity comparison
tools typically perform a side-by-side comparison of items based on a fixed (often
hard-coded) template of features to compare (e.g., price, location, rating, and so
on in the case of hotels). Relying on a fixed set of features is a reasonable solution
for tabular, domain specific data whose structure is relatively rigid and stable.
It is even appropriate in the context of graph data, provided that a limited set of
relevant features can be specified beforehand; for instance, Facebook Friendship
pages allow for the comparison of two Facebook users by displaying their shared
information based on a limited set of features specific to social networks (e.g.,
“likes”, mutual friends, relationship status).

A more flexible approach to entity comparison is, however, needed in the
context of Linked Data, where loosely structured RDF graphs (often describing
overlapping domains) are merged and updated. Up to now, such approaches
have mainly been based on the structure of the graph, e.g., finding a path that
connects the two entities (see Section 7 for a discussion of related work). In this
paper we propose a novel approach based on the semantics of the graph.

In Section 3 we propose a logical framework for our approach, where simi-
larities and differences between entities are formalised as conjunctive SPARQL
queries. Specifically, a similarity query (resp. a difference query) for given enti-
ties in an RDF graph is a query having both entities as answers (resp. having
one entity as answer but not the other). In the case of similarity queries, we are
interested in the most specific ones, e.g., knowing that Tarantino and Scorsese
are both American-born film directors is more informative than reporting only
that they are both film directors. In turn, in the case of difference queries we
are interested in the most general ones, e.g., knowing that Brad Pitt is an actor,
whereas George Lucas is a producer is more informative than knowing that the
former is an American actor while the latter is an American producer, since
being American is irrelevant to differentiating them.

In Section 4, we focus on similarities, and propose a polynomial-time al-
gorithm for computing a most specific similarity query. As a by-product of the
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properties of our algorithm, we are also able to show that most specific similarity
queries for two given entities in an RDF graph are unique modulo equivalence.
The problem we consider in this section is strongly related to the Query Reverse
Engineering problem in RDF [2], as well as to that of computing Least Common
Subsumers in Description Logic ontologies [3].

In Section 5, we focus on difference queries. We first argue that this is a hard
problem; specifically, we argue that simply checking existence of a difference
query for two given entities in a graph is CONP-complete. We then propose
an exponential-time algorithm for computing a most general difference query,
should one exist.

Finally, we describe a prototype implementation of the algorithm for com-
puting a most specific similarity query and present a proof of concept case study
using the data from Wikipedia infoboxes.

2 Preliminaries

We follow [16] in the definition of RDF graphs and triple patterns. Let U, L
and B be pairwise disjoint, countably infinite sets of URISs, literals and blank
nodes, respectively. An RDF triple (or simply a triple) is a tuple (s,p,0) €
(UUB) x U x (UULUB). In such a triple, s is the subject, p the predicate and
o the object. An RDF graph G is a finite set of triples. Any URI or literal from
G is called an entity.

Let V be a countably infinite set of variables disjoint from U and L. A term
is an element from UUL U V. The basic building block of our queries is a triple
pattern, which is an element from (UUV) x (UUV) x (UULUYV). A basic
graph pattern is a non-empty finite set P of triple patterns. For any basic graph
pattern P, we denote with term(P) and var(P) the sets of terms and variables
occurring in P, respectively.

We define a query Q as a pair (X, P), where P is a basic graph pattern
and X C var(P) is the set of answer variables of Q. Such queries capture the
fragment of SPARQL queries of the form SELECT ?X WHERE P, with P a
basic graph pattern. We define term(Q) = term(P) and var(Q) = var(P). We
say that @ is monadic if its set of answer variables is a singleton. A basic graph
pattern P is connected if for every t,t' € term(P) there is a sequence of triple
patterns ¢py, ..., tp, in P such that ¢t € term(tp), t' € term(¢p,) and term(tp;) N
term(tp;11) # 0, for 1 < i < n. Query Q = (X, P) is connected if so is P. For
brevity, in examples we will write a query @ = (X, P) simply as P and adopt
the convention that X(;) represent answer variables, whereas Y(;) represent the
remaining variables.

We next recapitulate the semantics of queries. A valuation over variables X
is a mapping v from X to UUL U B. For v a valuation over X and Y C X, let
v|y be the restriction of v to Y. Valuations are applied to triple patterns and
basic graph patterns in the obvious way. Let @ = (X, P) be a query, let G be
an RDF graph, and v a valuation over X. Then, G satisfies Q under v, denoted
G,v = Q if v = p|x for some valuation p over var(Q) satisfying u(P) C G. The



semantics [Q]g of a query Q = (X, P) over G is
[Qle = {v(X) | G,v = Q and v is a valuation over X }.

Let G be an RDF graph. The canonical graph pattern of G is the set Can(G)
of triple patterns (X, X, X,) for each triple (s,p,0) in G, where X,, X, and
X, are variables uniquely assigned to s, p and o in G. A canonical query of G is
any query of the form (X, Can(Q)).

Let Q1 = (X1, P) and Q2 = (X2, P») be queries. We say that Q is sub-
sumed by @2, denoted as Q1 C Qo, if [Q1]¢ C [Q2]¢ for every RDF graph
G. The subsumption relation between two queries with equal number of answer
variables can be characterised by existence of a homomorphism—a mapping
h : term(Q2) — term(Q;) that is the identity on URIs, literals and answer
variables and satisfying (h(ts), h(tp), h(t,)) € P1 whenever (ts,t,,t,) € P> and
h(Xs) = X;. It is well-known that Q; C Q- if and only if there exists a homo-
morphism from @2 to ;. Subsumption allows us to compare queries relative
to their specificity. We say that @1 is more specific than Qs if Q1 C Qo; it is
strictly more specific, denoted as Q1 C Qo, if @1 C Q2 and Q2 Z Q. Finally,
Q1 and Q)2 are equivalent, denoted Q1 = Q2, if Q1 C Q2 and Q2 C Q1.

3 A Framework for Entity Comparison

In this section, we present our formalisation of entity comparison. As a run-
ning example, consider a small subset G0, of the YAGO graph [18] about the
movie industry depicted in Figure 1. In our example, we would like to compare
Quentin Tarantino and Martin Scorsese. By inspecting G,,,, we can observe, for
instance, that Tarantino and Scorsese are similar in that both of them are male,
they both won an Academy Award and a Golden Globe Award, and they both
acted in some of their own movies. In turn, they are different in that Tarantino
directed Reservoir Dogs, whereas Scorsese directed Taxi Driver; furthermore,
unlike Scorsese, Tarantino also won the Palme d’Or at the Cannes Film Festival,
while Scorsese won an Emmy award, to which Tarantino was only nominated.
How can we formalise and automatically identify such similarities and dif-
ferences? There has been significant recent work in the literature on discovering
relationships between entities in an RDF graph (7,11, 14]. Existing approaches
describe such relationships by means of explicit paths in the graph, which are
then grouped and ranked. Using such an approach, we could view a similar-
ity between entities as paths originating in those entities and converging into
the same node; for instance, we could justify as a similarity the fact that both
Tarantino and Scorsese are male by two paths leading to the node for male and
starting from the nodes for Scorsese and Tarantino, respectively. In turn, we
could justify a difference through the absence of such paths; for instance, the
node for Emmy Award is reachable from the node for Scorsese but not from that
for Tarantino. An important limitation of existing approaches, however, is that
they cannot capture comparison at a higher level of abstraction; for instance,
we cannot justify by means of explicit converging paths in a graph the fact that
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Fig. 1. An example RDF graph Gpov.

both Scorsese and Tarantino participated in a film as both actors and directors,
where the specific names of those films are irrelevant.

In our framework we propose to capture similarities and differences using
queries rather than explicit paths, where the presence of variables allows us to
represent information at a higher level of abstraction. We start by formalising
similarities. Given two entities in a graph, we view a similarity as a query having
both entities as answers.

Definition 1 (Similarity query). A similarity query for entities a and b in
an RDF graph G is a monadic connected query Q satisfying {a,b} C [Q]g.

For instance, the following queries Q1—Q3 are similarity queries for Tarantino
and Scorsese in our example graph G-

Q1(X) = {(X, wonPrize, Academy_Award) };
Q2(X) = {(X, hasGender,male), (X, wonPrize, Academy_Award)};
Q3(X) = {(X, directed,Y), (X, actedIn,Y), (H _Keitel, actedIn,Y ) }.

These similarity queries can be interpreted as follows: ()1 says that both Scorsese
and Tarantino received an Academy award, whereas (05 additionally states that
they are both male; in turn, Q3 states that they are both directors who acted
in their own movies, in which Harvey Keitel was also part of the cast.

We next formalise the notion of a difference. Intuitively, given two entities in
an RDF graph, a difference is a query having one of the entities as answer, but
not the other. Furthermore, we are specially interested in differences that are
relevant to an identified similarity, in the sense that they distinguish the entities
based on an aspect that they have in common.

Definition 2 (Difference query). Let a and b be entities in an RDF graph G.
A difference query for a relative to b is a monadic connected query @ satisfying
aeQle and b ¢ [Qle.

Additionally, let Q' be a similarity query for a and b in G. Then, we say that
Q is a difference query modulo Q" if Q is a difference query for a relative to b
and it holds that Q C Q'.



For instance, the following query @Q4(X) is a difference query for Scorsese
relative to Tarantino and modulo the similarity query Q1(X) given before.

Q4(X) = {(X, wonPrize, Academy_Award), (X, wonPrize, Emmy_Award)}.

In turn, the following query is also a difference query for Scorsese relative to
Tarantino, but it does not relate to any (non-trivial) similarity between them.

Q5(X) = {(X, marriedTo,Y)}.

As we can see from the aforementioned examples, there may be multiple (even
infinitely many) similarity and difference queries for a given pair of entities. Some
of them are, however, more informative than others. In the case of similarity
queries, it is natural to expect more specific queries to be more informative; for
instance, it is natural to prefer our example query Q)2 over (J; since it better
differentiates Tarantino and Scorsese from other directors, by ruling out those
who won an Emmy but are female. In contrast, in the case of difference queries it
is natural to favour more general queries over more specific ones; for instance, Q5
is more informative that the following query Qg since it conveys the information
that Scorsese is married, but Tarantino is not (or at least not known to be).

Qs(X) = {(X, marriedTo, I_Rossellini)}.

We now define these notions formally.

Definition 3. Query @ is a most specific similarity query (MSSQ) for a and b
in G if Q is a similarity query for a and b in G, and there is no similarity query
Q' for a and b in G such that Q' C Q.

Query @ is a most general difference query (MGDQ) for a relative to b in
G if Q is a difference query for a relative to b in G, and there is no difference
query Q' for a relative for b in G such that Q C Q'. This definition extends to
the notion of difference query modulo a similarity query in the obvious way.

Intuitively, given two similarity queries @ and @’ for the same pair of entities,
their conjunction is also a similarity query that is more specific than both of
them. We will show in the following section that MSSQs for given entities and
graph are unique modulo equivalence over the given input graph. As an example,
consider the following query, which combines ()2 and @Q3; it can be checked that
it is a MSSQ for Scorsese and Tarantino in G,0p:

Q7(X) = {(X, hasGender, male), (X, wonPrize, Academy_Award),
(X, wonPrize, Golden_Globe_Award), (X, actedIn,Y),
(X, directed,Y), (H _Keitel, actedIn,Y)}.
Indeed, query Qs = Q7 U {(X, actedIn, Z)} is also a MSSQ but it is equivalent

to Q7. In turn, both query @5 and the following query Q9 are both MGDQs for
Scorsese relative to Tarantino:

Qo(X) ={(X,Y, Emmy_Award)}.

Furthermore, they are incomparable with respect to subsumption and hence, in
contrast to MSSQs, we cannot formulate a uniqueness result for MGDQs.



4 Computing a Most Specific Similarity Query

In this section, we tackle the problem of computing a most specific similarity
query. In particular, we present a polynomial time algorithm and then show, as
a byproduct of the correctness proof, that MSSQs are unique up to equivalence.
Our algorithm relies on the notion of the (tensor) product graph, which is
commonly exploited in Graph Theory and in Databases (under the name of
direct product [19]). Given graphs G and Gs, the product G; ® G5 is a graph
whose vertex set is the cartesian product of the vertices of G; and G2, and where
two vertices in the product graph are connected by an edge if and only if their
component elements are also related by an edge in the original graph. We next
adapt the standard notion of product to RDF graphs. Intuitively, given entities
a, b and graph G, the connected subgraph of the product G ® G of G with itself
represents the “largest common pattern” in the neighbourhoods of a and b.

Definition 4 (Product graph). Let t; = (s1,p1,01) and ta = (S2,p2,02) be
triples. The product of t1 and ts, denoted as t1 ® to, is the triple

(<Sla 52>7 <p17p2>7 <017 02>)'
The product graph G1 ® Go of RDF graphs Gy and Gs is the set
{t1 & to | t1 € G1 and ty € Gg}.

For instance, the self-product G0 ® Gop 0f our example graph G, contains
triples such as the following: °

((Q-Tarantino, M _Scorsese),
(wonPrize, wonPrize),
(Palme_d' Or, Emmy_Award))

which is the product of triples (Q-Tarantino, wonPrize, Palme_d’ Or)
and (M _Scorsese, wonPrize, Emmy_Award).

We are now ready to describe our algorithm (see Algorithm 1). Given a, b
and G as input, the first step is to compute the product graph G ® G and check
whether (a, b) occurs in a triple; if it doesn’t then the algorithm fails and we can
conclude that there is no query having both a and b as answers. If (a, b) occurs
in the product graph, then the algorithm computes the connected component
G’ in which it occurs. Given G’, we are interested in its canonical query having
as answer variable the variable X, ; corresponding to (a,b) in Can(G’). The
result of this step is already a similarity query. In the last step, the algorithm
grounds all variables X .y corresponding to nodes (c,c) to c itself; this step is
essential to ensure that the output similarity query is a most specific one.

Correctness of the algorithm follows from the following lemma.

5 Note that the product graph is strictly speaking not an RDF graph, but this is a
technicality that is not important for our purposes.



Algorithm 1: CoOMPUTE-MSSQ
Input: an RDF graph G and two entities ¢ and b from G.
Output: a MSSQ for a and b.
Compute G ® G}
if {(a,b) does not occur in a triple in G ® G then
L return fail;
Let G’ be the connected component in G ® G that contains (a, b);
Construct the canonical query @ of G’ with the answer variable X 4);
Replace each variable X, .y in Q with c;
return Q.

B =TV N VUI R

Lemma 1. Algorithm COMPUTE-MSSQ satisfies the following properties on
mput a, b and G:

1. It fails if and only if there is no similarity query for a and b in G.
2. The output query @ is a similarity query for a and b in G such that any
similarity query Q' for a,b and G is homomorphically embeddable into Q.

Proof. 1. It is easy to see that a similarity query for a and b exists if and only if
a and b appear as subjects, properties, or objects at the same time in G. This is
equivalent to the fact that (a,b) appears in a triple in G ® G. COMPUTE-MSSQ
returns “fail” iff the latter is not the case.

2. We first show that {a,b} C [Q]g. Define two valuations over var(Q),
vy and vo, as follows: for every variable X(. .y in @, vi(Xy) = ¢, and
v2(X(eery) = /. We now show that G satisfies @ under both vy and vy. Let
(X (51,520 X(pr,pa)s X(o1,0,)) be in Q, then it follows by definition of @ that
({s1, 82), (P1,D2), (01,02)) € G'. Then by construction of G’ we know that both
(s1,p1,01) and (s2,p2,02) € G. We then obtain that by definition of 11 and vs:
(Vi(X(s1,80)) Yi( X p1 pa) ) Vi(X(01,00)))) € G, for @ = 1,2. Hence, vy and vy are
satisfying for @ in G. We have 1 (X<a’b>) = a and (X (43)) = b. Therefore,
{av b} - [Q]G

Let Q'(X) be an arbitrary similarity query for a and b. There are two sat-
isfying valuations v; and vy over var(Q’) for Q' in G that map X to a and b
respectively. We define v(Y) = (11 (Y),2(Y)) for Y a variable and v(e) = (e, e)
for e an entity. Since Q' is connected and v(X) = (a,b), the image of Q" under
v is a connected subgraph in G ® G and thus is contained in G’. Since G’ and
Q) are isomorphic, v can be considered as a homomorphism from Q' to Q. a0

Clearly, our algorithm works in polynomial time; in particular the size of the
product graph G ® G is cubic in the size of G. Hence, using the previous Lemma
we conclude the following.

Theorem 1. COMPUTE-MSSQ is a polynomial time algorithm that returns a
MSSQ for its input if one exists, and “fail” otherwise.



Finally, note that the second statement in Lemma 1 ensures that the return
query is, in fact, more specific than any other similarity query. Thus, it also
follows from the lemma that MSSQs are unique up to equivalence.

Corollary 1. IfQ and Q' are MSSQs for a and b in RDF graph G, then Q = Q'.

We conclude by observing that the algorithm CoMPUTE-MSSQ will com-
pute, on our running example, a query that is significantly larger than (yet
equivalent to) Q7 in the previous section. Indeed, Q7 is a core query in the sense
that it cannot be further minimised while preserving equivalence.

5 Computing Most General Difference Queries

We now turn our attention to MGDQs. As already pointed out, MGDQs are not
unique modulo equivalence and hence we focus on providing an algorithm that
computes one of them.

In contrast to the case of computing MSSQs, we will not be able to provide a
polynomial-time algorithm. In fact, we show that the associated decision prob-
lem of checking whether a MGDQ exists is CONP-complete. This result stems
from a characterisation of existence of MGDQs in terms of (non-)existence of
homomorphisms.

In what follows we fix arbitrary entities ¢ and b in an arbitrary RDF graph
G. We denote with @, to be the query (X,,Can(G)) and @, to be the query
(Xq, Px,) with Px_ the connected component of Can(G) containing X,.

Lemma 2. A difference query for a relative to b in G exists if and only if there
is mo homomorphism from Q. to Qp.

Proof. («=). The following properties hold for @Q,. It is (1) connected and (2)
a € [Q.]a- Moreover, since there is no homomorphism from Q, to Qp, it holds
that (3) b € [Qa]c- Indeed, otherwise a satisfying valuation v for Q, over var(Q,)
with v(X,) = b can be seen as a homomorphism from @, to @, as Can(G) and
G are isomorphic. Thus, @, is a difference query for a relative to b in G.

(=). Let Q(X) be a difference query for a relative to b in G. It implies there
is a satisfying valuation v over var(Q) for @ in G which can be regarded as
a homomorphism from Q to Q, (since @ is connected) with v(X) = X,. For
the sake of contradiction, suppose there is a homomorphism h from @, to Qp.
This homomorphism can be regarded as a satisfying valuation for @), in G with
h(X,) = b. Hence, the mapping h o v is a satisfying valuation for Q(X) in G
with hov(X) = b which implies b € [Q]q, a contradiction with the fact that @
is a difference query for a relative to b in G. O

Since homomorphism checking is a well-known NP-complete problem, the
following result follows.

Theorem 2. The problem of checking whether a difference query for a relative
to b in G exists is CONP-complete.



Algorithm 2: CompPUTE-MGDQ

Input: an RDF graph G and two entities ¢ and b from G.
Output: a MGDQ for a and b.

1 Compute Qq = (Xa, Px,);

2 if there exists a homomorphism from Q. to Q, then

3 L return fail;

4 Let Q = Quq;

5 foreach variable Y # X, in Q do

6 Let Occ be the set of all occurrences of Y in Q;

7 Guess a number 1 < N < |Occ| and a partition Occ = U, Oce; with each

Occ; # 0;

8 Let Y;,i=1,..., N, be a fresh variable for each Occ;;

9 In Q, replace each occurrence of Y that is in Oce; by Yi;
10 Let Q' be the connected component of X, in Q;
11 if there is no homomorphism from Q' to Qp then
12 L Update Q := Q’;

13 return Q.

Proof. 1t is known that checking existence of a homomorphism is in NP. To-
gether with Lemma 2 it implies that existence of a difference query can be
checked in CONP. We show the lower bound by reducing from the homomor-
phism problem for graphs to the complement of our problem. Let G; = (V1, E1)
and G = (Va, E3) be graphs which we can assume to be disjoint. We then
construct an RDF graph G over the set of URIs Vi U Vo U {a,b, e, €'}, where
{a,b,e,e’}NV; =0,i =1,2, as the following set:

G = {(u,e,v) | {u,v) € By UEs} U{(a,e',u) |ueVi}U{(be, v)|veVy}

It is straightforward to show that there exists a homomorphism from G; to Gs if
and only there is a homomorphism from @, to Qp (note that this homomorphism
must map X, to X;). Lemma 2 implies that this is equivalent to non-existence
of a difference query for a relative to b in G. a

In light of this result, there is no hope for a polynomial time algorithm
for computing a MGDQ unless PTIME = NP. Therefore, we present a naive,
non-deterministic, algorithm CoMPUTE-MGDQ. In the first step, the algorithm
computes @, (feasible in polynomial time). Then, it checks (using the oracle as
per Lemma 2) whether @, is already a difference query. If it is not, then none can
exist. If it is, then it may not be a most general one. Hence, the algorithm tries
to make it more general by relaxing the query while checking (again using the
oracle as per Lemma 2) whether the result is still a difference query. Correctness
is established in the following theorem.

Theorem 3. Algorithm COMPTUTE-MGDQ returns a MGDQ if one exists,
and “fail” otherwise.



Proof. The algorithm fails if and only if there is a homomorphism from @, to
Qp- By Lemma 2 this is equivalent to the fact that no (most general) difference
query for a relative to b exists.

Let @ be the output of CoMPTUTE-MGDQ different from “fail”. The for-
loop on Line 5 tries to greedily relax the query. Namely, for each variable Y
we introduce a set of fresh variables Y; that replace Y in @ (thus relaxing it)
as long as the result is still a difference query for a relative to b. Note that
for each intermediate query @’ it holds a € [@Q']¢ since the result of Line 9 is
homomorphically embeddable into the original query. Therefore, we have a €
[Q]c. The if-condition ensures that b € [Q]¢ as per Lemma 2. Therefore, Q is a
difference query for a relative to b.

Suppose there is a difference query Q" for a relative to b that is strictly more
general than @. This means there is a homomorphism A from Q” to @ but not
vice versa. If h is injective, then there is a triple pattern in @ that is not in
the image of Q" under h but connected to it. But then the commands in the
for-loop are applicable to a variable Y that connects the image of Q" and the
triple pattern (with the following partition: the occurrence of Y replaced with
Y7 and the occurrence of Y in the triple pattern with Y3), a contradiction. Now
suppose h is not injective. Then let {Z,...,Z,} be variables in Q" that are
mapped by h to the same variable Y in (). We claim that the for-loop in Line 5
is applicable to Y with {Z;,..., Z,} defining a partition, a contradiction. a

6 Case Study

We have implemented a prototype system in Java that implements our Algo-
rithm 1 for computing MSSQs. As a proof of concept, we have run the algorithm
on a fragment of DBpedia [13] that captures the information corresponding to
Wikipedia infoboxes—tables with a fixed structure used in Wikipedia to present
the key information about an entity in a concise and structured way.® Infoboxes
are located on the right-hand-side of Wikipedia pages that correspond to certain
categories, such as people, organisations or geographical locations.

Entity comparison in Wikipedia could be implemented by comparing their
infoboxes directly; such a tool would provide analogous functionality to that
in existing comparison tools in Web portals, in the sense that the features to
compare would be considered fixed. Figure 2 displays side by side the infoboxes
corresponding to Brad Pitt and Tom Cruise, which are both fairly detailed. We
can observe similarities such as their occupations and country of birth, or the
fact that they have both been married and have children.

We tried our algorithm for Brad Pitt and Tom Cruise and the aforemen-
tioned fragment of DBpedia. We observed that the computed MSSQ provides
much richer information than what can be obtained by direct inspection of the
infoboxes. Since the resulting MSSQ is rather large, we concentrate on its sub-
queries of special interest. First, we notice that we generated all the aforemen-

S https://en.wikipedia.org/wiki/Help: Infobox



Born Thomas Cruise Mapother

Born William Bradley Pitt ¥
December 18, 1953 July 3, 1962 (age 54)
{age 53) Syracuse, Mew York, U.S.

Shuzitzz, b bz T Occupation Actor, producer

Occupation Actor = producer Years active 1981-present

Years active 1987-present Spouse(s)  Mimi Rogers

Works Filmography (m. 1987 div. 1990)

Home town Springfield, Missouri Micole Kidman

SPUUSE(S) Jennifer Aniston (m. 2000: .................................................

separated 2016) Children 3
Children 53 Relatives William Mapother (cousin)
Relatives  Douglas Pitt (brother) Website tomcruise, comeg

Fig. 2. Wikipedia infoboxes for actors Brad Pitt (left) and Tom Cruise (right).

tioned similarities that could be obtained by manual inspection of the infoboxes.
In particular, we found that both Brad Pitt and Tom Cruise are:

— both actors and producers, as witnessed by the subquery
{(X, occupation, Actor), (X, occupation, Producer)};
— were born in the U.S., as witnessed by
{(X, birth_place, Y1), (Y1, country, United_States)};
— were married, have kids and relatives, as witnessed by
{(X, children,Ys), (X, spouse, Y3), (X, relatives, Y3)}.

However, the computed MSSQ also contains plenty of additional useful in-
formation. For instance, both Pitt and Cruise:

— were married to U.S. actresses, as witnessed by
{(X, spouse, Y3), (Y3, nationality, United_States), (Y3, occupation, Actress)};

— were born in cities that are both the administrative centers and largest cities
of their respective counties:

{(X, birth_place, Y1), (Y1, county, Ys),
(Ys, largest _city, Y1), (Ys, seat, Y1), (Y1, settlement _type, City) };



— were married to actresses who were also married to musicians:

{(X, spouse, Y3), (Y3, occupation, Actress),
(Ys, spouse, Ys), (Ys, occupation, Musician)};

To sum up, even using only DBpedia data capturing Wikipedia infoboxes,
we are able to significantly enhance the explicit contents of fairly comprehensive
infoboxes and exploit the graph nature of the data to discover “deeper-level”
similarities between the entities of interest. We envision that our approach could
even be more useful if the whole of DBpedia had been considered, especially in
the case where the infoboxes corresponding to the entities of interest are rather
minimalistic and hence do not provide sufficiently many features to compare.

7 Related Work

There is a growing interest in techniques for discovering and explaining relation-
ships between entities in an RDF graph [7,11,14]. These approaches are based
on computing paths in the input graph connecting the input entities. Such paths
are first computed via standard graph traversal algorithms, and then ranked ac-
cording to certain structural and/or statistical measures [7]. We note that the
problem of finding connections between entities is orthogonal to that of comput-
ing similarities and differences between them. Furthermore, as already argued,
the natural adaptations of such techniques to our setting do not allow for entity
comparison at a sufficiently high level of abstraction.

Computation of both similarity and difference queries can be seen as an
instance of the more general problem of Query Reverse Engineering (QRE) in
databases. An input to QRE is a database instance, a set of positive examples
(i.e., elements that must be in the query result) and also in some cases a set of
negative examples (i.e., elements that must not be included in the query result).
The QRE problem for a query language L is to decide whether an £-query exists
whose answers satisfy the given constraints imposed by positive and negative
examples over the input database instance. This problem has been studied for
regular languages over strings [1], queries over relational databases [20,21,23,25],
XML queries [9,17], graph database queries [6] and SPARQL queries over RDF
graphs [2]. QRE is known to be CONExpPTIME-complete for conjunctive queries
over relational databases [4,19]. When applied to our setting, this result implies
CONEXPTIME-completeness of the following problem: given an RDF graph, and
sets of entities A and B in G, does there exist a difference query for A relative
to B in G, where the definition of a difference query is extended to sets of
entities in the obvious way. QRE for RDF graphs was first studied in [2], where
the complexity analysis of different variations of the problem is provided for
SPARQL queries allowing for the AND, FILTER and OPT operators.

Computing MSSQs is also related to (a variant of) the problem of computing
the Least Common Subsumer between concepts in Description Logics (DLs) [3].
Specifically, given entities a and b, we could cast our problem as that of finding



the least (i.e., most specific modulo subsumption) DL concept that contains
both a and b as instances. An important difference with our setting is that DL
concepts in logics such as £L£ and ALC can only capture conjunctive queries that
are both constant-free and tree-shaped. In this sense, our query language is more
expressive, as it allows for arbitrarily-shaped connected CQs. The additional
expressivity turns out to be critical: while a least DL concept may not exist
(e.g., if the input graph has cycles then the least concept could be infinite), our
algorithm in Section 4 ensures that a MSSQ is always finite and can be computed
in polynomial time.

Finally, it is worth mentioning that there has been a lot of work on similarity
measures for computing a numeric score that estimates how similar two entities
in a graph are [8,12,24]; this has applications, for instance, in discovering entities
that are similar to a given one (i.e., those with the highest similarity score).
Please note that we are considering a very different problem since our focus is
on describing similarities and differences in a declarative way.

8 Conclusion and Future Work

We have investigated the problem of entity comparison over RDF graphs and
proposed a logical framework that models comparison through similarity and
difference queries. In particular, we have studied most specific similarity queries
(MSSQs) and most general difference queries (MGDQs) as the most informative
such queries. We have shown that, for a given graph and a pair of entities, there
always exists a unique MSSQ modulo equivalence, which can be computed in
polynomial time. In contrast, computing MGDQs is a harder problem; indeed,
the underpinning decision problem is CONP-hard. Finally, we have discussed an
initial implementation of the algorithm that computes a MSSQ.

An immediate step of future research would be to extend the prototype
implementation of the framework into a comprehensive entity comparison tool
that would account for both similarity and difference queries. This would im-
ply, firstly, creating practical algorithms for computing MGDQs, possibly of
bounded size. As for MSSQs, a practical implementation of the tool would ef-
fectively address the problem of large-sized MSSQs and how they can be pre-
sented to a user in an easy-to-read manner. One possible solution would be to
split the output MSSQs into comprehensible subqueries (similar to the ones pre-
sented in Section 6); another solution would involve partially verbalizing MSSQs
into natural language explanations. For example, a query {(X, livesIn, London),
(X, friendsWith,Y), (Y, worksAt, Oracle)} could be transformed into a natural
language explanation “Both input entities live in London and are friends with
someone who works at Oracle”. In addition, an interesting problem would be to
consider more expressive query languages, in particular conjunctive queries with
inequalities and numeric comparisons. As the example infoboxes from Section 6
suggests, such extensions to the query language would allow for similarity queries
such as “Both Brad Pitt and Tom Cruise have at least 3 children”. Lastly, our
approach to entity comparison should be thoroughly evaluated.
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