
Learning Semantic Annotations for Tabular Data

Jiaoyan Chen1 , Ernesto Jiménez-Ruiz2,4 , Ian Horrocks1,2 , Charles Sutton2,3

1Department of Computer Science, University of Oxford, UK
2The Alan Turing Institute, London, UK

3School of Informatics, The University of Edinburgh, UK
4Department of Informatics, University of Oslo, Norway

Abstract
The usefulness of tabular data such as web tables
critically depends on understanding their seman-
tics. This study focuses on column type predic-
tion for tables without any meta data. Unlike tra-
ditional lexical matching-based methods, we pro-
pose a deep prediction model that can fully ex-
ploit a table’s contextual semantics, including ta-
ble locality features learned by a Hybrid Neural
Network (HNN), and inter-column semantics fea-
tures learned by a knowledge base (KB) lookup and
query answering algorithm. It exhibits good per-
formance not only on individual table sets, but also
when transferring from one table set to another.

1 Introduction
Tabular data such as web tables and legacy databases are
a rich and rapidly expanding resource. They often contain
high value data, but may be hard to use due to meta data
being missing, incomplete or obfuscated. Gaining an un-
derstanding of their meaning is thus of critical importance.
One prominent solution, which is often referred to as seman-
tic table annotation, is to exploit the semantics of a widely
recognized knowledge base (KB) by linking table compo-
nents, such as columns and cells, to KB components, such
as classes (categories), entities (elements) and properties (re-
lations). It can be widely applied in KB population [Ritze
et al., 2016], search engines [Cafarella et al., 2008; 2018],
automatic data analysis [Thirumuruganathan et al., 2018;
Chu et al., 2015] and so on.

Semantic table annotation has been extensively studied, es-
pecially for web tables [Cafarella et al., 2018]. Traditional
methods are mostly based on lexical matching by name, with
annotation modeled as tasks such as matching cells to enti-
ties, columns to classes, inter-column relations to properties
and so on [Limaye et al., 2010]. Other methods, including
probabilistic graphical models [Bhagavatula et al., 2015] and
iterative algorithms [Ritze et al., 2015], have been developed
to explore the correlation between different matching tasks
for disambiguation. However, most of them rely on table
metadata such as column names to jointly model multiple
matching tasks, while lexical matching itself fails to capture
the contextual semantics of a name.

Recently some studies have explored the use of deep learn-
ing in semantic table annotation. For example [Luo et al.,
2018] learns cell contextual features to predict its correspond-
ing KB entity (cf. Section 4). These works illustrate the ben-
efit of deep learning in modeling contextual semantics of ta-
bles, but they still have limitations: (i) some tasks, such as
column type annotation, have not been fully investigated; (ii)
some contextual semantics, such as inter-column relations,
have not been fully explored; and (iii) the transferability (gen-
eralization) of the learned model has not been evaluated.

In this study, we focus on semantic type (i.e., class) pre-
diction for columns that are composed of phrases (i.e., entity
mentions). For example, a column composed of “Google”,
“Amazon” and “Apple Inc.” can be annotated by the class
Company. To this end, we first develop a Hybrid Neural Net-
work (HNN) to model the contextual semantics of a column.
It embeds the phrase within a cell with a bidirectional Recur-
rent Neural Network and an attention layer (Att-BiRNN), and
learns (i) column features (i.e., intra-column cell correlation)
and (ii) row features (i.e., intra-row cell correlation) with a
Convolutional Neural Network (CNN).

The arbitrary relative position of columns makes it difficult
for the neural network to learn general row features. Thus we
extend the row features with property features, which indicate
potential relations between columns and provide discrimina-
tive predictive information. For example, given a column
composed of “Animal Farm”, “The Goldfather” and “Broke-
back Mountain”, together with a column of person names, the
potential relation director indicates the first column is more
likely to be of type Film, while the relation author suggests
Book as probable type. To extract such property features, a
novel KB lookup and reasoning algorithm was developed.

In summary, this study contributes a new column type pre-
diction method combing HNN for feature learning and KB
lookup and reasoning for feature extraction. We evaluate
our technique using the DBpedia KB and three table sets:
T2Dv2 from the general Web, Limaye and Efthymiou from
the Wikipedia encyclopedia. As well as testing single ta-
ble sets, the evaluation specially considers the generalization
(transferability) of the prediction model from one table set to
another. The evaluation suggests that our method is effective
and that its overall accuracy is higher than the state-of-the-art
in most cases.

2 Methodology
2.1 Problem Statement
We assume a table is composed of cells organized by columns
and rows, without any metadata like column names. The in-
put is a table with a target column whose type is to be pre-
dicted. The column includes ordered cells, each of which is a
sequence of words (text phrase), known as an entity mention.
A column composed of entity mentions is also known as an
entity column. Other columns in the input table are called
surrounding columns. We assume a fixed set of candidate
classes that are disjoint with each other are given, denoted as
{C1, ..., CK}. The problem is assigning a real value score
to each candidate class so that the correct class (type) of the
target column has the highest score.

The input of our method is modeled as a fixed structure
table called a micro table, denoted as S. It has one tar-
get column with a fixed number of cells, denoted as L =
(L1, ...,Lm), and a fixed number of surrounding columns,
denoted as L = (L1, ..., Ll). The first cell of the target col-
umn L1 is known as the micro table’s main cell.

In training, we assume n labeled micro tables (samples) are
extracted from labeled entity columns by (i) sliding a window
from the first row to the last with the step of one cell and (ii)
selecting surrounding columns from the left to the right. A
function (model) F : S → y is learned, where y ∈ RK

represents the output vector. In predicting the type of a tar-
get column with size M , micro tables are first extracted and
predicted by the trained model F . Their output vectors are
then averaged as the final score vector to the target column:
ȳ = 1

M−m+1

∑M−m+1
i=1 F(Si). The remainder of this sec-

tion presents our model F , while some of its training details
are presented in Section 3.

2.2 HNN Architecture
Our HNN mainly includes an attentive BiRNN for cell em-
bedding, and a customized convolutional (Conv) layer for ta-
ble locality feature learning, as shown in Figure 1.

Micro	
Table

Cell	
Embedding

Word Vector +
BiRNN +

Attention Layer
Column	
Features

Row	
Features

Cell	
Features

Conv filters
over the

target column

Conv filters
over the main

row

FC layer over
the main cell

Features

Concatenation
+ Dropout FC Layer +

Softmax Layer

Scores

Figure 1: A brief view of the HNN architecture.

Cell Embedding
We use an RNN with Gated Recurrent Unit (GRU) [Bhaga-
vatula et al., 2015] to embed the word sequence of each cell
(xt, t ∈ [1, T]). It uses a reset gate rt to control the contribu-
tion of past state (word), and an update gate zt to balance the
contributions of past information and new information. The
hidden state at position t is computed as

ht = (1− zt)� ht−1 + zt � h̃t, (1)

where � denotes the Hadamard product, ht−1 represents the
past state, h̃t is a state computed with new sequence informa-
tion. h̃t, zt and rt are updated as


h̃t = tanh(Whxt + rt � (Uhht−1) + bh),

zt = σ(Wzxt + Uzht−1 + bz),

rt = σ(Wrxt + Urht−1 + br).

(2)

Assume the cell phrase length is fixed to T by cropping and
padding, and each cell phrase is represented as (v1, ..., vT)
where vt denotes the vector of the word at position t. In
BiRNN, both forward hidden states (

−→
ht =

−−→
GRU(vt), t ∈

[1, T]) and backward hidden states (
←−
ht =

←−−
GRU(vt), t ∈

[T, 1]) are calculated. The embedding of the word at position
t, denoted as et, is the concatenation of

−→
ht and

←−
ht .

The embedding of a cell phrase is composed of the BiRNN
embeddings of its words. Inspired by [Yang et al., 2016], we
assume different words are differently informative towards a
prediction task, and an attention layer is thus stacked. Given
a phrase with BiRNN word embedding (et, t ∈ [1, T]), the
attention layer output is a =

∑
t αtet, where αt is the nor-

malized weight of the word at position t and is calculated as{
αt =

exp(uT
t uw)∑

t exp(uT
t uw)

ut = tanh(Wwet + bw)
(3)

The dimension of cell embedding a is denoted as d0; uw rep-
resents the informative degree of all the words in training.

Given a micro table, the cells of the target column and
the cells of its surrounding entity columns are embedded by
the above Att-BiRNN; the cells of the surrounding real value
columns are transformed into a vector of dimension d0 by
zero padding; the cells of the surrounding date columns are
first parsed with integers of year, month and day, and then
transformed into a vector of dimension d0 by concatenating
the integers and zero padding.

One column is embedded into a matrix of size m × d0 by
stacking vectors of its cells. For convenience, we also use the
annotation of a column to denote its embedded matrix (i.e., L
for the target column, Li for a surrounding column). One mi-
cro table is embedded into a tensor of sizem×(l+1)×d0 by
stacking matrices of its columns, denoted as [L, L1, ..., Ll].

Column Features and Row Features
One Conv layer is stacked after Att-BiRNN, including
(i) Conv filters over the target column for column feature
learning, denoted as c1, and (ii) Conv filters over the row of
the main cell for row feature learning, denoted as c2.

Each filter over the column W c1
i has the size of k1 × d,

where k1 ∈ Θ1, Θ1 ⊆ {2, ...,m}. Given the matrix of the
target column L, the filter computes the column features as

f c1,k1i = g(W c1
i ⊗ L+ bc1), (4)

where ⊗ denotes the Conv operation, g denotes an activation
function like ReLu and bc1 denotes the biases.

Each filter over the row W c2
j has the size of 1 × k2 × d,

where k2 ∈ Θ2, Θ2 ⊆ {2, ..., l + 1}. Given the tensor of a
micro table, the filter computes the row features as

f c2,k2j = g(W c2
j ⊗ [L1, L1,1, ..., Ll,1] + bc2), (5)

where Li,1 denotes the first cell of surrounding column Li,
bc2 denotes the biases. It models the correlation between the
target column and its surrounding columns.

Inspired by some successful CNN architectures with one
Conv layer (e.g., [Kim, 2014] for text classification), a max
pooling layer is stacked after the Conv layer to extract salient
signals and regularize the network. Thus the column filter
k1 × d finally computes the output as

f c1,k1 = [max(f c1,k11),max(f c1,k12), ...,max(f c1,k1κ1
)] (6)

where max(·) denotes a vector’s maximum value, κ1 denotes
the number of features to be learned for each filter. For the
row filter 1 × k2 × d, with the number of features κ2, the
output, denoted as f c2,k2 is calculated in the same way as (6).

The max pooling layer concatenates f c1,k1 , k1 ∈ Θ1 and
f c2,k2 , k2 ∈ Θ2 as the output, denoted as f c1,c2 . Θ1, Θ2, κ1
and κ2 are hyper parameters about the HNN architecture.

A fully connected (FC) layer is then stacked for modeling
the nonlinear relationship. It calculates the output as

fhnn = f c1,c2 ·W fc + bfc, (7)
where · denotes matrix multiplication, W fc and bfc denote
weights and biases of the FC layer. Finally, a softmax layer
is stacked to calculate the output score for each class:

yhnni = exp(fhnn
i)/

K∑
j=1

exp(fhnn
j), (8)

where i = 1, 2, ...,K.

2.3 Property Features
Property features are used to represent the potential relations
between the target column and its surrounding columns. We
first introduce some KB background and then present how
property features are extracted and incorporated.

RDF-based Knowledge Base
The KB in this study follows Semantic Web standards includ-
ing RDF (Resource Description Framework), RDF Schema,
OWL (Web Ontology Language) and SPARQL [Domingue et
al., 2011]. One KB is composed of a TBox (terminology) and
an ABox (assertions). The TBox, often using RDF Schema,
contains constructors for the definition of class, class relations
(e.g., rdfs:subClassOf for the descendent relation), property,
property domain and range, etc. It can also use more expres-
sive languages such as OWL with more powerful constructs
such as relation composition. The ABox contains entities,
each of which is represented by an URI (Uniform Resource
Identifier), and RDF triples 〈s, p, o〉, where s represents a sub-
ject (an entity), p represents a predicate (a property) and o
represents an object (either an entity or a data value like date
and number). An entity can belong to one or more classes,
which is defined by the property rdf:type.

Such a KB is often called an RDF-based KB. It can be
accessed by SPARQL queries. Two examples used in our
method are (Q1) getting entities of a given class accord-
ing to rdf:type, and (Q2) getting triples whose subject en-
tity is given. SPARQL supports semantic reasoning for ac-
cessing implicit knowledge [Glimm and Ogbuji, 2013]; for
example, inferring 〈e rdf:type c2〉, given 〈e rdf:type c1〉 and
〈c1 rdfs:subClassOf c2〉. A KB can also be accessed via
fuzzy matching, with a lexical index on entity labels (phrases
defined by rdfs:label) and sometimes entity anchor text (short
descriptions). This is often referred to as KB lookup. Suc-
cessful systems include Spotlight for DBpedia [Mendes et al.,
2011] and OpenRefine for Wikidata [Ham, 2013].

Candidate Properties
Given a class c defined by a KB, we denote entities that be-
long to it as E(c). It means the triple 〈e rdf:type c〉 is true for
any entity e in E(c). Given a property p defined by a KB,
an entity is defined as a subject entity of p, denoted as ep, if
there exists at least one object o such that the triple 〈ep, p, o〉
is entailed by the KB. We denote all the subject entities of
the property p as E(p). A property is defined as a frequent
property of class c, denoted as pc, if |E(c) ∩ E(pc)|/|E(c)| ≥ σ,
where σ ∈ [0, 1] is a threshold and |·| denotes the cardinality
of a set. “Frequent” means at least a specified proportion of
the entities of a class are associated to that specific property.

A candidate property represents a potential relationship be-
tween two columns. To get candidate properties, we first ex-
tract the frequent properties of each candidate (training) class
Ci ∈ C, denoted as pi, and then merge these frequent prop-
erties: P = ∪Ki=1pi. The size of P is denoted as d1. The
above calculation requires K SPARQL queries of type Q1
and

∣∣∪Ki=1E(Ci)
∣∣ SPARQL queries of type Q2.

Property Vector (P2Vec)
Property features of one micro table are represented by a
P2Vec denoted as v. Each slot of v represents the degree of
existence of one candidate property, and thus the dimension
of v is d1. The calculation of P2Vec is shown in Algorithm 1.
Given a micro table, it first retrieves KB entities that match
the main cell (Line 5). As lookup by lexical matching is am-
biguous, entity lookup is set to return more than one entity (at
most N) to avoid missing the right entity. For each matched
entity, it first retrieves its property annotations, namely the
triples whose subject is this entity, using a SPARQL query of
type Q2 (Line 6 to 7), and then matches each triple’s object
with the first cell of each surrounding column (Line 8 to 10).

In matching, the function cell object match first classifies
the object o into types of entity, date, text and number, and
then returns true or false with the following processing. An
entity is transformed to a phrase with its English label de-
fined by rdfs:label, while a date is transformed to an integer
that represents the year. In comparing two texts, it returns
true if their string-edit distance (e.g., Jaro Distance [Cohen et
al., 2003]) exceeds the threshold α and false otherwise, while
in comparing two numbers, it returns true if they are equal
and false otherwise. Note that we do not return a matching
degree score but true or false, so as to leave salient predictive
information about inter-column relations with less noise.

Algorithm 1 needs once entity lookup, at most N SPARQL
queries of type Q2, and N × d1 × l matchings with function
cell object match.

2.4 Ensemble
P2Vec is integrated with the HNN by two ensemble ap-
proaches. Ensemble I first trains a basic multi-class classifier
e.g., Multiple Layer Perception (MLP) and predicts the score:

yp2vec
classifier e.g., MLP←−−−−−−−−−− [L1, v] , (9)

where the average word vector of the main cell L1 is concate-
nated with the P2Vec v as the input. It then calculates the
average of the above score and the score by the HNN (8):

y = (y
hnn

+ y
p2vec

)/2. (10)

Algorithm 1: P2VecExtract 〈(L,L),P ,N, α〉
1 Input: (i) A micro table (L,L), (ii) candidate properties P

with the size of d1, (iii) a maximum number of matched
entities N, (iv) a text matching threshold α,

2 Result: v: a property vector of the micro table
3 begin
4 v := zeros(d1); % Init. of the property vector
5 E := entity lookup(L1, α); % Entity lookup by main cell
6 foreach entity e ∈ E do
7 T := query(e);% Get triples whose subject is e
8 foreach triple (s, p, o) ∈ T with p ∈ P do
9 foreach surrounding column Li ∈ L do

10 if cell object match(Li,1, o, α) then
11 j := index(p,P);
12 v[j] := 1; % Set the slot of the property

13 v := v/‖v‖; % Normalization

14 return v

Ensemble II trains a multiple-class classifier with the con-
catenation of the P2Vec v and the FC layer output of the
HNN (7), and predicts the score:

y
classifier e.g., MLP←−−−−−−−−−−

[
fhnn, v

]
. (11)

In decision making, the class with the highest score is adopted
as the column type.

3 Evaluation
In the evaluation1 conducted in this paper we rely on DBpe-
dia and three web table sets: T2Dv22 from the general Web,
Limaye [Limaye et al., 2010] and Efthymiou [Efthymiou et
al., 2017] from the Wikipedia encyclopedia. We annotate
(i) 411 entity columns of T2Dv2 with 37 concrete and dis-
joint classes defined by the DBpedia ontology, (ii) 114 entity
columns of Limaye with 8 out of the above 37 classes, and
(iii) 620 entity columns of Efthymiou with 31 out of the above
37 classes. T2Dv2 is randomly split into T2D-Tr (70%) and
T2D-Te (30%). All the results except for Table 3 are based on
the following setting: T2D-Tr is used for training, while T2D-
Te, Limaye and Efthymiou are used as three testing sets. We
report accuracy, i.e., the ratio of correctly labeled columns.

The reported results are based on the following hyper pa-
rameter setting. Regarding the micro table, the number of
rows m is set to 5, the number of surrounding columns l is
set to 4, and zero-padding is used for tables that do not have
enough columns or rows. In training, negative samples are
constructed by labeling the entity column with each wrong
class; a word2vec model [Mikolov et al., 2013] trained by the
latest dump of Wikipedia articles is adopted. HNN is trained
by Adam [Kingma and Ba, 2014] with the loss function of
softmax cross entropy. The hidden size and the attention
layer size of RNN are set to 150 and 50, the column Conv
filter set Θ1 and the row Conv filter set Θ2 are set to {2, 3, 4}
and {2, 3}, the feature number per filter (κ1 and κ2) is set

1Codes: https://github.com/alan-turing-institute/SemAIDA
2http://webdatacommons.org/webtables/goldstandardV2.html

to 32. In computing P2Vec, the DBpedia lookup service3 and
SPARQL endpoint4 are used, while the hyper parameters σ,
N and α are set to 0.005, 5 and 0.85 respectively.

In evaluation, we adopt as baselines two typical multi-class
classifiers – Logistic Regression (LR) and Multiple Layer
Perception (MLP), variants of our HNN (including ColNet
[Chen et al., 2019]), and two lexical matching based column
type annotation methods – DBpedia lookup service plus ma-
jority voting by matched entities [Zwicklbauer et al., 2013]
(Lookup-vote) and T2K Match [Ritze et al., 2015]. LR and
MLP are also used as the classifier for ensemble. In the fol-
lowing, we first consider the effectiveness of HNN and P2Vec
and then evaluate the overall result, with the transferability
between table sets analyzed.

3.1 Hybrid Neural Network
In Table 1, we can see that the HNN variants with both Att-
BiRNN and CNN achieve the highest accuracy on all three
testing sets. In the following, we separately analyze the im-
pact of Att-BiRNN and CNN.
Att-BiRNN. In comparison with word vector averaging, em-
bedding the cell phrase by Att-BiRNN improves the model’s
accuracy. In Table 1, Att-BiRNN outperforms word2vec-avg
+ FC-Softmax by 3.2%, 6.4% and 11.3% on T2D-Te, Li-
maye and Efthymiou respectively. When a CNN is stacked,
embedding by Att-BiRNN is still beneficial. For instance,
Att-BiRNN + CNNcr outperforms word2vec-avg + CNNcr by
2.5%, 9.1% and 9.4% on the three testing sets.

Methods T2D-Te Limaye Efthymiou
word2vec-avg + FC-Softmax 0.925 0.561 0.582

word2vec-avg + CNNc 0.947 0.597 0.619
word2vec-avg + CNNr 0.872 0.675 0.460
word2vec-avg + CNNcr 0.902 0.667 0.531

Att-BiRNN 0.955 0.597 0.648
Att-BiRNN + CNNc 0.962 0.632 0.655
Att-BiRNN + CNNr 0.880 0.684 0.529
Att-BiRNN + CNNcr 0.925 0.728 0.581

Table 1: Accuracy of HNN variants. word2vec-avg represents av-
eraging the word2vec of words of each cell phrase. FC-Softmax
denotes a classifier by a FC layer and a Softmax layer. The super-
scripts c and r of CNN denote Conv filters over the column and row.

Column Features. Conv filters over the target column learn
column features. According to Table 1, they are effective in
improving the accuracy. For example, word2vec-avg + CNNc

outperforms word2vec-avg + FC-Softmax by 2.4%, 6.4% and
6.4% on T2D-Te, Limaye and Efthymiou respectively. When
the embedding by Att-BiRNN is used, they are still beneficial.
The corresponding improvement of Att-BiRNN + CNNc over
Att-BiRNN + FC-Softmax is 0.7%, 5.9% and 1.1%. The lim-
ited improvement on T2D-Te is due to the high base accuracy
(T2D-Te comes from the same table set as the training data).
Row Features. Conv filters over the row of the main cell
learn row features. Unlike column features, the impact of row
features varies from data to data, as seen in Table 1. For ex-
ample, with Att-BiRNN, adding CNNr improves the accuracy
by 14.6% on Limaye but reduces the accuracy by 7.9% and

3https://github.com/dbpedia/lookup
4http://dbpedia.org/sparql

18.4% on T2D-Te and Efthymiou respectively. One poten-
tial reason is that the noise from surrounding columns over-
whelms the learned discriminative patterns due to factors like
varying relative position between a target column and a sur-
rounding column (e.g., a column of book names vs a column
of writer names) from table to table. This explanation is sup-
ported by the results in Figure 2 using the basic classifiers
LR and MLP. As with adding row feature via CNN, concate-
nating the average word2vec of cells of surrounding columns
increases the accuracy on Limaye but reduces the accuracy
on T2D-Te and Efthymiou.

Although row features do not always improve the accuracy,
they are still beneficial in comparison with directly concate-
nating the average word2vec of cells of surrounding columns,
leading to higher improvement on Limaye and lower de-
creasement on T2D-Te and Efthymiou, as seen in Figure 2.

-6.50%

-1.50%

-23.00%

-10.00%

11.30%

-26.30%

-5.70%

20.20%

-21.50%

-7.90%

14.60%

-18.40%

-29.00%

-19.00%

-9.00%

1.00%

11.00%

21.00%

word2vec-avg	+	LR	 word2vec-avg	+	MLP

CNN Att-BiRNN	+	CNN

T2D-Te

Limaye

Efthymiou

Figure 2: Accuracy improvement using surrounding columns.
Cells of surrounding column are appended to the main cell through
vector concatenation (word2vec-avg + LR and word2vec-avg +
MLP) and row feature learning (CNNr and Att-BiRNN + CNNr).

3.2 Property Vector
The results in Figure 3 illustrate the effectiveness of P2Vec in
column type prediction. On the one hand, appending P2Vec
to the main cell (i.e., Main Cell + P2Vec) significantly im-
proves accuracy; e.g., the improvement of MLP is 2.3%,
32.2% and 5.2% on T2D-Te, Limaye and Efthymiou respec-
tively. This is much higher than directly concatenating aver-
age word vectors of cells of surrounding columns in the row
(i.e., Main Row). The latter actually negatively impacts per-
formance on T2D-Te and Efthymiou, which is consistent with
the impact of row features learned by Conv filters in HNN. On
the other hand, we find that feeding LR and MLP with P2Vec
concatenation even outperforms the HNN that learns row fea-
ture. For example, Main Cell + P2Vec with LR in Figure 3
outperforms Att-BiRNN + CNNr in Table 1 by 6.4%, 3.9%
and 15.5% respectively on T2D-Te, Limaye and Efthymiou.

Main	Cell Main	Row Main	Cell	
+	P2Vec

Main	Row	
+	P2Vec

T2D-Te	(MLP) Limaye	(MLP) Efthymiou	(MLP)

0.4

0.5

0.6

0.7

0.8

0.9

1

Main	Cell Main	Row Main	Cell	
+	P2Vec

Main	Row	
+	P2Vec

T2D-Te	(LR) Limaye	(LR) Efthymiou	(LR)

Figure 3: Accuracy with and without P2Vec concatenation. Aver-
age word2vec is used for cell embedding.

In Figure 4 we analyze the distribution of non-zero ele-
ments of P2Vec and its impact on performance improvement

by P2Vec. P2Vec shows significant performance improve-
ment on “Book”, “Newspaper” and “Monarch”, and at the
same time has significant Hits# and zero Noise# (except for
“Monarch” of Efthymiou). This indicates the positive im-
pact of the correctly matched properties. Meanwhile we find
there are no or limited improvements on the other 5 classes
although most of them also have significant Hits#. This is
due to (i) the high base accuracy without P2Vec (e.g., close
to 1 for “Bird” and “University” of Limaye and Efthymiou),
and (ii) the negative impact of Noise# (e.g., “Writer” of
Efthymiou).

Figure 4 also shows that Limaye has higher Hits# and
lower Noise# than Efthymiou. This in some degree explains
why P2Vec achieves more significant improvement on Li-
maye than on Efthymiou (0.081 vs 0.05 for the average accu-
racy gap of the 8 classes in Figure 4; 25.3% vs 4.3% for the
improvement by P2Vec in Figure 3). Meanwhile, the low ab-
solute value of Hits# and Noise# means P2Vec is quite sparse
– less than 0.3 out of 422 slots are none zero. Sparsity reduces
the training time and helps avoid over fitting.

0.351

0.2

0.1

0 0 0 0 0

0.081

0.2 0.2

0.05
0 0

0.05
0

-0.1

0.05

-0.45

-0.25

-0.05

0.15

0.35

0.55

-0.1

0.1

0.3

0.5

0.7

0.9

Limaye	Accuracy	Gap Efthymiou	Accuracy	Gap Limaye		Hits#
Limaye	Noise# Efthymiou		Hits# Efthymiou	Noise#

Hits#/N
oise#

Accuracy
Gap

Figure 4: Average number of correctly and incorrectly matched
properties per row, i.e., correct and incorrect none zero elements per
P2Vec (Hits# and Noise#), and the accuracy improvement (gap) of
LR by appending P2Vec to the main cell, on 8 classes.

3.3 Ensemble
As seen in Table 2, both ensemble approaches are beneficial.
Ensemble I achieves higher accuracy than P2Vec and HNN
on T2D-Te which comes from the same table set as the train-
ing data. Ensemble II always achieves accuracy very close to
the highest of P2Vec and HNN on all three testing sets, e.g.,
0.650 vs 0.655 on Efthymiou. Ensemble I outperforms En-
semble II on T2D-Te, while Ensemble II outperforms Ensem-
ble I on Limaye and Efthymiou. Thus, we can apply Ensem-
ble I in contexts where training and testing data come from
the same source, and apply Ensemble II in contexts that need
high robustness. Considering Ensemble I re-trains a classifier
with FC layer output of the trained HNN and P2Vec, and is
more likely to be over-fitted to the training data, it is unsur-
prising to see its performance drop on Limaye and Efthymiou
as the training data comes from T2Dv2. This also indicates
the difficulty of transferring learned table features and models
between data sets.

3.4 Overall Result and Discussion
As shown in Table 3, our method (HNN + P2Vec) dramati-
cally outperforms Lookup-Vote and T2K Match that use lex-
ical matching, and ColNet that uses deep learning, when

Methods T2D-Te Limaye Efthymiou
P2Vec 0.939 0.759 0.609
HNN 0.962 0.728 0.655

Ensemble I (P2Vec + HNN) 0.966 0.697 0.629
Ensemble II (P2Vec + HNN) 0.959 0.746 0.650

Table 2: Accuracy of P2Vec, HNN, and the ensemble approaches.
Both LR and MLP are used and the average is reported.

the training and testing data comes from the same table set
(Local-70%). Its accuracy is 15.7%, 11.5% and 5.0% higher
than Lookup-Vote, 2.0%, 6.1% and 6.4% higher than Col-
Net, on T2D, Limaye and Efthymiou respectively. Although
the assumption on training data would constrain applicability,
the case that some columns have been annotated (e.g., by vol-
unteers) while many more from the same source remain to be
annotated is quite common. On the other hand, when trained
on one table set (T2D-Tr) and transferred to another (Limaye
and Efthymiou), the performance of HNN + P2Vec decreases
but is still higher than ColNet. One cost sensitive solution
for such a transfer setting is combining T2D-Tr with a small
number of labeled columns from the testing set (Local-10%);
its performance on Limaye is then 4.5% and 12.3% higher
than Lookup-Vote and T2K Match respectively.

Methods (Training Data) T2D-Te Limaye Efthymiou
HNN + P2Vec (T2D-Tr)

0.966
0.746 0.650

HNN + P2vec (Local-70%) 0.968 0.865
HNN + P2vec (T2D-Tr + Local-10%) - 0.907 0.697

Lookup-Vote 0.835 0.868 0.827
T2K Match 0.772 0.807 0.612

ColNet (T2D-Tr)
0.947

0.597 0.619
ColNet (Local-70%) 0.912 0.813

Table 3: Accuracy of the baselines and our method under different
training data settings. Local-λ% represents randomly extracting λ%
of a table set as training data, with the remainder as testing data.

Discussion. In the evaluation we first analyzed the impact of
components of HNN. Cell embedding by Att-BiRNN and col-
umn features by Conv filters over the target column achieve
significant accuracy gains as expected, while row features by
Conv filters over the row of the main cell have a positive
impact on only one out of three testing sets, which may be
caused by varying table structures such as different column
permutations. Second, we evaluated P2Vec which is extracted
by a KB lookup and query answering algorithm and includes
information about potential relations between the target col-
umn and surrounding columns. It achieves significant im-
provement, thus compensating for the above weak row fea-
tures. Third, we analyzed two ensemble approaches that com-
bine P2Vec and HNN. They lead to better and more robust
performance. Finally we compared our method with some
state-of-the-art baselines including those using deep learning
(i.e., variants of HNN) and those using lexical matching (i.e.,
Lookup-Vote and T2K Match). Our method significantly out-
performs lexical matching when the training data or a part of
the training data comes from the same source as the testing
data, but transferring the model trained on one table set to an-
other totally different one for testing is still a big challenge.

4 Related Work
Most semantic table annotation works are based on lexi-
cal matching between table and KB [Venetis et al., 2011;

Pham et al., 2016; Cafarella et al., 2018]. State-of-the-art per-
formance is achieved by jointly considering different match-
ing tasks. These methods include variants of probabilistic
graphical models [Limaye et al., 2010; Mulwad et al., 2013;
Bhagavatula et al., 2015], scoring models [Chu et al., 2015],
T2K Match [Ritze et al., 2015], Table Miner [Zhang, 2017],
etc. Performance also depends on the quality of the lexical
index. For example, the lookup service powered by the index
of DBpedia Spotlight [Mendes et al., 2011] can achieve good
performance in cell to entity matching and column type anno-
tation (i.e., Lookup-Vote) [Chen et al., 2019]. However, most
of the above methods rely on table meta data for high perfor-
mance, while lexical matching in principle fail to capture the
contextual meaning of cell phrases.

Recently, with the development of deep learning, semantic
embedding techniques like word2vec [Mikolov et al., 2013]
have been applied and methods that learn table features have
been proposed. Both [Efthymiou et al., 2017] and [Kuni-
hiro et al., 2019] utilize KB embedding. The former explores
the contextual semantics of an entity in the KB for disam-
biguation in cell to entity matching, while the latter acceler-
ates searching and deals with the missing linkage in column
to class matching with Markov Random Field. [Luo et al.,
2018], [Nishida et al., 2017] and [Chen et al., 2019] all ex-
plore table feature learning with neural networks. The for-
mer two learn cell features and locality features as our HNN,
but deal with totally different problems. [Luo et al., 2018]
matches a cell to an entity in a different language, while
[Nishida et al., 2017] classifies the structure of a table. In
ColNet [Chen et al., 2019] we predict column types with a
different problem setting with unfixed candidate classes and
multiple binary classifiers. ColNet’s architecture is a spe-
cial case of our HNN, namely word2vec + CNNc in Table 1.
Briefly, learning the semantics of tabular data is promising,
but still a big challenge [Thirumuruganathan et al., 2018].

5 Conclusion and Outlook
In this study we predict the semantic type of entity columns,
using a hybrid neural network (HNN) for cell embedding
and table feature learning, and a property vector (P2Vec),
extracted by KB lookup and query answering, for semantic
features that represent potential inter-column relations. We
evaluated our method with DBpedia and three web table sets;
it is effective in most cases, and the overall performance ex-
ceeds the state-of-the-art in the supervised learning setting.
We also considered generalisation across data sets, but this
proved to be more challenging. In the future we will apply
our approach in an AI assistant for data analytics, and further
investigate (permutation invariant) table feature learning.

6 Acknowledgments
We want to thank Chris Williams from University of Edin-
burgh for his constructive comments. The work is supported
by the AIDA project (UK Government’s Defence & Security
Programme in support of the Alan Turing Institute), the SIR-
IUS Centre for Scalable Data Access (Research Council of
Norway, project 237889), the Royal Society, EPSRC projects
DBOnto, MaSI3 and ED3.

References
[Bhagavatula et al., 2015] Chandra Sekhar Bhagavatula,

Thanapon Noraset, and Doug Downey. Tabel: entity
linking in web tables. In ISWC, pages 425–441, 2015.

[Cafarella et al., 2008] Michael J Cafarella, Alon Halevy,
Daisy Zhe Wang, Eugene Wu, and Yang Zhang. Webta-
bles: exploring the power of tables on the web. Proceed-
ings of the VLDB Endowment, 1(1):538–549, 2008.

[Cafarella et al., 2018] Michael Cafarella, Alon Halevy,
Hongrae Lee, Jayant Madhavan, Cong Yu, Daisy Zhe
Wang, and Eugene Wu. Ten years of webtables. Proc.
VLDB Endow., 11(12):2140–2149, August 2018.

[Chen et al., 2019] Jiaoyan Chen, Ernesto Jimenez-Ruiz, Ian
Horrocks, and Charles Sutton. Colnet: Embedding the se-
mantics of web tables for column type prediction. In AAAI,
2019.

[Chu et al., 2015] Xu Chu, John Morcos, Ihab F Ilyas,
Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin Ye.
Katara: A data cleaning system powered by knowledge
bases and crowdsourcing. In Proceedings of ACM SIG-
MOD, pages 1247–1261. ACM, 2015.

[Cohen et al., 2003] William Cohen, Pradeep Ravikumar,
and Stephen Fienberg. A comparison of string metrics for
matching names and records. In Kdd workshop on data
cleaning and object consolidation, volume 3, pages 73–
78, 2003.

[Domingue et al., 2011] John Domingue, Dieter Fensel, and
James A Hendler. Handbook of semantic web technolo-
gies. Springer Science & Business Media, 2011.

[Efthymiou et al., 2017] Vasilis Efthymiou, Oktie Has-
sanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. Matching web tables with knowledge base
entities: from entity lookups to entity embeddings. In
ISWC, pages 260–277. Springer, 2017.

[Glimm and Ogbuji, 2013] Birte Glimm and Chimezie Og-
buji. Sparql 1.1 entailment regimes. W3C Recommenda-
tion, 2013.

[Ham, 2013] Kelli Ham. Openrefine (version 2.5).
http://openrefine. org. free, open-source tool for cleaning
and transforming data. Journal of the Medical Library As-
sociation: JMLA, 101(3):233, 2013.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–1751,
2014.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kunihiro et al., 2019] Takeoka Kunihiro, Oyamada Masa-
fumi, Nakadai Shinji, and Takeshi Okadome. Meimei: An
efficient probabilistic approach for semantically annotat-
ing tables kunihiro. In AAAI, 2019.

[Limaye et al., 2010] Girija Limaye, Sunita Sarawagi, and
Soumen Chakrabarti. Annotating and searching web ta-
bles using entities, types and relationships. Proceedings of
the VLDB Endowment, 3(1-2):1338–1347, 2010.

[Luo et al., 2018] Xusheng Luo, Kangqi Luo, Xianyang
Chen, and Kenny Q Zhu. Cross-lingual entity linking for
web tables. In AAAI, pages 362–369, 2018.

[Mendes et al., 2011] Pablo N Mendes, Max Jakob, Andrés
Garcı́a-Silva, and Christian Bizer. Dbpedia spotlight:
shedding light on the web of documents. In Proceedings
of the 7th international conference on semantic systems,
pages 1–8. ACM, 2011.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositional-
ity. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[Mulwad et al., 2013] Varish Mulwad, Tim Finin, and Anu-
pam Joshi. Semantic message passing for generating
linked data from tables. In ISWC, pages 363–378, 2013.

[Nishida et al., 2017] Kyosuke Nishida, Kugatsu Sadamitsu,
Ryuichiro Higashinaka, and Yoshihiro Matsuo. Under-
standing the semantic structures of tables with a hybrid
deep neural network architecture. In AAAI, pages 168–
174, 2017.

[Pham et al., 2016] Minh Pham, Suresh Alse, Craig A
Knoblock, and Pedro Szekely. Semantic labeling: a
domain-independent approach. In ISWC, pages 446–462,
2016.

[Ritze et al., 2015] Dominique Ritze, Oliver Lehmberg, and
Christian Bizer. Matching html tables to dbpedia. In Pro-
ceedings of the 5th International Conference on Web Intel-
ligence, Mining and Semantics, pages 1–6. ACM, 2015.

[Ritze et al., 2016] Dominique Ritze, Oliver Lehmberg,
Yaser Oulabi, and Christian Bizer. Profiling the poten-
tial of web tables for augmenting cross-domain knowledge
bases. In WWW, pages 251–261, 2016.

[Thirumuruganathan et al., 2018] Saravanan Thirumuru-
ganathan, Nan Tang, and Mourad Ouzzani. Data curation
with deep learning [vision]: Towards self driving data
curation. arXiv preprint arXiv:1803.01384, 2018.

[Venetis et al., 2011] Petros Venetis, Alon Halevy, Jayant
Madhavan, Marius Paşca, Warren Shen, Fei Wu, Gengxin
Miao, and Chung Wu. Recovering semantics of tables on
the web. Proceedings of the VLDB Endowment, 4(9):528–
538, 2011.

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer, Xi-
aodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In NAACL-
HTL, pages 1480–1489, 2016.

[Zhang, 2017] Ziqi Zhang. Effective and efficient seman-
tic table interpretation using tableminer+. Semantic Web,
8(6):921–957, 2017.

[Zwicklbauer et al., 2013] Stefan Zwicklbauer, Christoph
Einsiedler, Michael Granitzer, and Christin Seifert. To-
wards disambiguating web tables. In ISWC, pages 205–
208, 2013.

