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Summary

Haskell! allows a script to be written in a literate style. It is designed
such that a script written in this style can be written in a TEX style with
the executable code surrounded by \begin{code} and \end{code}.

While neither plain TEX nor B'TEX have a code environment it is trivial
to define a simple environment to show the code. For example, in I¥TEX,
one can make it an alias for the verbatim package with

\usepackage{verbatim}
\newenvironment{code}{\verbatim}{\endverbatim}

However, researchers publishing documents containing Haskell code
do not tend to print the code verbatim, but prefer to make use of the
typesetting features available such as printing keywords in bold, -> as —
and the type variable a as a. At the time this project was started there
were three tools for typesetting Haskell in TEX or IXTEX available [6,8,14]
and towards the completion of this project a fourth was released [31].
However, as we will see, all four have their shortcomings.

Buried deep in the GHC source code we find the following words of
wisdom:

It is hoped that this style of programming will encourage the

writing of accurate and clearly documented programs in which

the writer may include motivating arguments, examples and

explanations.

— fptools/ghc/utils/unlit /unlit.c
in the Haskell CVS repository [13]

However, few, if any, such scripts exist. Perhaps part of the reason is the
difficulty and lack of automation in turning such a script into a nicely
typeset document. It is the aim of this project to produce a Haskell
program which, when run on a literate Haskell script, will produce a
IYTEX document that is the same as the original but with the code sections
typeset nicely.

I Throughout this report the term “Haskell” will be used to refer to Haskell 98 [27].
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1 Introduction

1.1 Literate programming

Knuth [16] is generally regarded as the founding father of literate program-
ming [25]; his paper with this name [20] in 1984 introduced the concept to the
world and his book of the same name [22] in 1992 expands on the ideas. In his
original paper he tells us:

I believe that the time is ripe for significantly better documenta-
tion of programs, and that we can best achieve this by considering
programs to be works of literature. Hence, my title: “Literate Pro-
gramming.”

Let us change our traditional attitude to the construction of pro-
grams: Instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on explaining to
human beings what we want a computer to do.

Among the literate programming systems that exist today is Knuth’s WEB sys-
tem [19], introduced by his paper, in which a literate script is composed of multi-
ple sections, each of which can have TEX documentation, macro definitions and
Pascal code. The utility WEAVE can then be used to produce a TEX document
comprised of the TEX documentation in the script along with the macros and
Pascal code pretty-printed, while its companion tool TANGLE, when given the
same WEB script, takes the code part of each section and arranges the pieces
in the correct order to create a correct Pascal program.

Numerous other literate programming systems exist for a large number of
programming language and documentation language combinations. The Haskell
report defines a style of writing Haskell scripts which provides many, but not all?,
of the features we would expect of a literate programming system. A significant
difference to the WEB system is that Haskell compilers and interpreters work
directly on the literate script.

Once a format in which literate scripts can be written has been defined two
things are needed to complete the literate programming system. Firstly it must
be possible to take a literate script and either interpret it or compile it to exe-
cutable code. This by itself would only constitute a conventional programming
system; for a literate programming system it must also be possible to take a
literate script and produce the document described by the script. Haskell is
fortunate enough to have three separate, high quality implementations of the
former but is sadly lacking in the latter. We aim here to redress the balance.

2Notably it does not allow functions to be written in out of order fragments. This is less
important in a language like Haskell where there are no variable declarations and values can
be bound to variables out of order.



1.2 This project

We will create a tool which takes a literate script and extracts the code fragments
like:

\begin{code}

gsort :: [a] —> [a]

gsort [] = [

gsort (x:xs) = gsort xs_lt_x ++ [x] ++ gsort xs_greq_x
where xs_1t_.x = [y | y <- xs, y < x]

xs_greq_x = [y | y <- xs, y >= x]

\end{code}

These fragments are then parsed and LaTeX markup for the pretty-printed code
is substituted, giving a result like this:

gsort :: [a] = [o]
gsort [] =]
gsort (z:zs) = qsort zs_lt_z +H [x] + gsort zs_greq_z
where zs lt.x = [y | y + 23, y < 1]
zs.greqx = [y | y < s,y > 1]

All of the code in this report, including the g¢sort example immediately above,
has been typeset using the program developed.

This report continues with a discussion of relevant existing theory and tech-
nologies, including a look at existing Haskell pretty-printers, in Section 2. This is
followed by the writeup of the bulk of the work, the parser, in Section 3—this is
largely the development of a parser combinator library, described in Section 3.3.
The remainder of the work, the output phase, follows in Section 4. We conclude
with a discussion of the value of the work and possible future developments in
Section 5.

This project makes a number of contributions back to the community. These
include a flexible parser combinator library, a parser for Haskell built upon this
library and a pretty-printer for Haskell built upon this parser.

2 Existing theory and technologies

2.1 Haskell

Haskell [2] is a polymorphically typed, lazy, purely functional language. The
language specification allows a style of script that encourages the typesetting of
both code and description in a TEX document. This is both the language which
we will pretty-print and the language in which we write the pretty-printer. We
choose to write the pretty-printer in Haskell partly due to the strength of the
language in parsing and tree manipulation and partly because we believe the
basic tools for any self-respecting language should be written in that language.

An introduction to the Haskell language is beyond the scope of this report.
Readers unfamiliar with the language are encouraged to read one of the books
available on the subject [5,30].



2.2 Parsing

The art and science of parsing has been of interest to computer scientists for
decades and much of the current theory and practices in use today date from
the 70s and 80s. Indeed the canonical reference [4] was published in 1986.

The normal overall strategy is to first lexically analyse® the input to produce
a list of tokens from the list of characters, normally dropping the whitespace and
comments, and then syntactically analyse* the list of tokens to get an abstract
syntax tree.

The two most common strategies employed for syntax analysis are called
top-down and bottom-up. Bottom-up SAs start from the terminal symbols
and build up to progressively larger language constructs; typical examples are
so-called shift-reduce parsers which generally consist primarily of a large table
describing a state machine. Assuch they tend to be generated mechanically from
an abstract description of the grammar. Top-down SAs, i.e., starting with the
root non-terminal and substituting non-terminals for one of their productions
in a depth-first fashion, are much easier to write and check by hand but efficient
implementations can only be created for a more restrictive set of grammars.

2.3 Parsing with parser combinators

Parser Combinators, or PCs, provide a way of building lexical analysers and
top-down syntax analysers by combining smaller parsers as the name suggests.
Typically you will be provided with (at least):

Fail A parser that consumes none of a list of items of type a and fails.

Succeed A function that takes a value x of type § and returns a parser that
consumes none of a list of items of type a and successfully returns x.

Match A function that takes a value x of type « and returns a parser that takes
a list of items of type a and either successfully returns & and removes
the first item of input from the list if the first item in the list is equal to
x or fails otherwise.

Sequential Composition A function that, given two parsers, applies the first
parser and, if it succeeds, applies the second to the input as it is after
the first parser has been applied. If either of the parsers fails then the
sequential composition of the two fails. If both are successful then what
happens depends somewhat on the implementation. In the Haskell world
where we are blessed with functions as first class values it is common for
the result to be the value returned by the first parser applied to the value
returned by the second parser.

Choice A function that, given two parsers, decides in some way whether to
return the result of the first or the second. Both parsers are tried on a
copy of the original input stream and the new input stream is as it was
after the chosen parser was applied to it. Common rules for determining
which to chose are:

3lexically analysing is commonly shortened to lexing and also known as scanning.
4syntactical analysing is also commonly refered to as parsing, but we will avoid this usage,
instead referring to the process of lexical analysis followed by syntax analysis as parsing.



e If the first parser successfully consumes any input or the second
parser fails then return the result of the first parser. Otherwise
return the result of the second parser, which could be a failure if
both parsers fail.

e If both parsers succeed then return the result of the one that con-
sumes the most input, or the first if they consume the same amount
of input as each other. If only one succeeds then the result of that
parser is returned, otherwise failure is returned.

Two general purpose implementations of parser combinator libraries for
Haskell exist [24,29] as well as a document explaining how monadic parser
combinators can be implemented in a Haskell-like language [15].

2.4 Typesetting in (plain) TEX

Typesetting, “the act or art of setting type” [28], dates back to before pro-
grammable computers even existed when printing companies typeset documents
by hand to be printed on printing machines. As computers appeared, so too
did computer based typesetting systems, although these were hardware and OS
specific.

When Knuth saw Addison-Wesley’s typesetting of the 2nd edition of vol-
ume 2 of “The Art of Computer Programming” he was appalled and so, in May
1977, started work on TEX, which later he described as “a new typesetting sys-
tem intended for the creation of beautiful books—and especially for books that
contain a lot of mathematics” in the preface of the TEXbook [21]. Two ver-
sions of TEX exist—TEX78 and TEX82. The former is now considered obsolete
and TEX is taken to mean TEX82 unless otherwise specified. A prototype was
started in the summer of 1977 followed by a complete implementation from late
1977 to early 1978. Version 0 was released in September 1982, and version 1
in November 1983. The current version, 3.14159, was released in March 1995
and has had only minor corrections to the documentation since—a remarkable
stability record compared to other complex pieces of software.

For more information on TEX the definitive reference is the TEXbook [21],
although the USENET group comp.text.tex and [9] are also useful. For more
on the history of TEX see [17,18] and try searching for “history of TeX” in
comp.text.tex on Google Groups [1]. This report will assume the reader is
familiar with the basics of using TEX to typeset documents.

TEX itself has only the primitive commands defined. When people talk
about writing in TEX they generally really mean plain TgX—although some
of the more confused actually mean ATEX which we will look at in the next
section! A simple plain TEX document source and output is shown in Figure 1.

2.5 BTEX

The IATEX companion [12] tells us “IATEX is a generic typesetting system that
uses TEX as its formatting engine.”. It was written in the early 1980s by Leslie
Lamport who released 2.09, his final release, in April 1986. Then maintenance
was taken over by the IWTEX3 Project [3] who are responsible for I’TEX 2¢, the
current release.



\font\titlefont=cmr7 scaled\magstep4
\def\title#1{
\vskip 15pt plus 3pt minus 3pt
{\titlefont #1}
\vskip 10pt plus 3pt minus 3pt
}

\title{Foo}

Hello world---here is quite a long paragraph with some {\bf bold
text} in. {\TeX} will do the line wrapping for us.

\title{Bar}

Some maths for you:

$x"{2y} + \int_0"\infty f\left(\sin(x)\over x\right)\,dx$
or, in display mode,

$$x"{2y} + \int_0"\infty f\left(\sin(x)\over x\right)\,dx$$

\bye

(a) Input

Foo

Hello world—here is quite a long paragraph with some bold text in. TEX will
do the line wrapping wrap for us.

Bar

Some maths for you: z?¥ + [;° f (Sin(w)) dz or, in display mode,

xz

i [ ()

(b) Output

Figure 1: Example plain TEX document




Among the additional features offered by IATEX are a package system and
many packages; we will find tabularx, ifmtarg and verbatim particularly use-
ful. For further information on IWTEX, see [3,12,23,26]. An example of a simple
ITEX document is given in Figure 2. As you can see, it is a higher level lan-
guage with a more structured appearance. This report will assume the reader
is familiar with the basics of using BTEX to typeset documents.

2.6 Pretty-printing Haskell in TEX and ETEX

This is not the first attempt to produce a package that pretty-prints Haskell
scripts in TEX or IATEX. The “Libraries and Tools for Haskell” section of the
Haskell webpage [2] has a subsection “Typesetting Haskell in TEX” in which
four packages are listed [6,8,14,31], one of which was only released towards the
end of this project.

2.6.1 Haskell Style for LaTeX2e

The first [8] is not intended to take a Haskell program and typeset it. Instead
it provides a set of commands with which a Haskell program can be typeset by
hand. Although these give the author full control over the final layout it means
that the code is no longer executable.

2.6.2 haskell.sty

The next contender, haskell.sty [6], is a simple IATEX style file which uses
the listings package to do the pretty-printing. It makes no attempt to print
keywords in bold and, while it will correctly pretty-print => as = it is easily
confused and will, for example, pretty-print <=> as <>.

2.6.3 XTEX

The way the author of XTEX [31] wrote his Example.lhs shows the package at
its best, with the code being written in a similar style to the code below. In
particular note that keywords starting blocks are on a line of their own and the
first line of the block is on the next line. Also note that each level of indentation
is a single space.

> foo =

> do

> putStrLln "Hello world!"
> putStrLn "Goodbye!"

> foo = barl + bar2

> vwhere

> barl = 2 * barl’

> where

> barl’ = 3

> bar2 = 2

10



\documentclass[adpaper]{article}
\begin{document}

\section*{Foo}

Hello world---here is quite a long paragraph with some

\textbf{bold text} in. {\LaTeX} will do the line wrapping for us.

\section*{Bar}

Some maths for you:
$x"{2y} + \int_0"\infty f\left(\sin(x)\over x\right)\,dx$
or, in display mode,

\begin{displaymath}
x" {2y} + \int_0"\infty f\left(\sin(x)\over x\right)\,dx
\end{displaymath}

\end{document}

(a) Input

Foo

Hello world—here is quite a long paragraph with some bold text in.

will do the line wrapping wrap for us.

Bar

Some maths for you: 2% + [ f (Si"(w)) dz or, in display mode,

T

e [ ()

BTEX

(b) Output

Figure 2: Example IATEX document
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The typeset version is below. This looks like valid Haskell as intended.
foo =
do
putStrLn “Hel I o wor | d!”
putStrLn “Goodbye! ”
foo = bar; + bar,
where
bar, =2 % bar}
where
bar| =
bar, =2

However, suppose we now write some code in a style preferred by this author.

> foo = barl + bar2

> where barl = 2 * barl’

> where barl’ = 3
> bar2 = 2

When this is typeset by the package, not only is the second where key-
word indented far more than we would like, the code no longer looks valid—the
definition of bar2 is indented more than the definition of bar?.

foo = bar; + bar,
where bar; = 2 x bar}
where bar] =
bar, =2
This is a necessary limitation of any pretty-printer which works only on indi-
vidual tokens and does not use a monospaced font.

Also conspicuous by their absence in Example. 1hs are case statements. Both
styles of laying out case statements that this author is familiar with are shown
below.

> foo x = case x of

> 0->0
> _->1
> foo x = case x of 0 -> 0
> ->1

As the typeset version below shows, the first of these has the caselets further
to the right than is aesthetically pleasing and the second does not have the
second caselet aligned with the first, as with the where example above. The
problem is of course the same limitation as mentioned above.

foo x = case x of
0—-0
=1
foo x =casex of 0 — 0

12



foo =X +y
where x 10
y 20

Figure 3: Example 1hs2TeX input

2.6.4 1hs2tex

Perhaps the best thought out is 1hs2TeX [14]. It offers two output modes, one
using a monospaced font and the other a proportional font. The monospaced
font mode gets around the problems with lexing only pretty-printers, but the
result is less pleasing to the eye. In the other mode an alignment column can
be specified and everything from that column onwards is aligned; for example,
in the example input in Figure 3 you would set the alignment column to 13 so
the right hand sides were all aligned. This is an interesting idea, although it
would be better if it could be specified more locally.

2.6.5 Related programs

There are a few other programs which do related tasks; we mention them here for
completeness. The filter detex removes ATEX and TEX control sequences; when
a literate script is filtered through it reasonable plain text documentation is out-
put. The GNU enscript implementation comes with a Haskell pretty-printing
mode which can be used to highlight Haskell scripts with either boldface or
colour; unfortunately it gets confused and goes wrong very easily. Syntax high-
lighting modes for a number of editors exist and some also support automatic
indentation. There are also three Haskell source browsers: HDoc, HaskellDoc
and “The Haskell Module Browser”; these have varying support for user sup-
plied documentation.

2.6.6 Doing better

As we saw earlier in this section, the two serious packages both run into prob-
lems with simply lexing and printing in a proportional font, although 1hs2TeX
compensates to some extent with a single alignment column and also gives you
the option of typesetting the code in a monospaced font. But suppose instead
of stopping after lexing the Haskell we also parse it; this gives us a parse tree
which we can pretty-print with table-like environments to ensure that everything
is correctly indented.

3 Parsing Haskell

In this section we will start off by considering the high level structure of the
parser as a whole. We then take a look at the evolution of each module sepa-
rately, working on the assumption the input is a single code block, and conclude
with the changes that were necessary to parse a module split into several sections
as literate programs generally are.

This section does not portray a true to life description of the development
process. In practise there was a reasonable amount of overlap in the development

13



of the various phases, but the description offered here gives the best compromise
between clarity of description and reality.

3.1 Parser structure

This project can be broken into two halves—parsing Haskell and pretty-printing
the abstract syntax tree in INTEX. Let us start with the first of these, parsing
Haskell. Our parser will follow the structure of the Haskell 98 report as closely as
possible so as to make it easy to compare the code to the report when debugging
or applying fixes made to the report to the code.

As noted in Section 2.2, the job of parsing is in general easiest done when
broken into two parts—first the input is lexed, then it is syntactically analysed.
The Haskell 98 report has been written with this in mind, and as such a “lexical
syntax” and a “context free syntax” can be found in appendix B of the report.
As the intention is to follow the structure used in the report as closely as possible,
and given the many computer scientist years of experience in this field, we will
take this approach.

However, there are three things we have not yet managed to account for.
First is the need to extract the executable code from the surrounding text.
Although this project is intended to be used for scripts using the second literate
style described in the report [27], it is desirable to also cope with the first style
and plain Haskell®. As this defines the characters the lexer operates on we will
do it before the lexing stage.

Second, as in many languages, Haskell allows us to set the associativity and
binding precedence (together refered to as the fixity) of infix operators. Fixity
information refers to operators rather than individual characters so common
sense tells us to handle it after the lexing stage. As the expression “a ® b ® ¢”
produces different parse trees depending on the fixities of & and ® we had better
handle it before the syntax analysis stage.

The third is less common. Haskell allows some of the structure of a script
to be conveyed either by explicitly entering braces and semicolons or with the
positions of braces and semicolons implied by the layout of the script; i.e., the
whitespace in a Haskell script can be significant. Both styles can be mixed in the
same script and the so-called “layout rule” describes where the implicit braces
and semicolons go. This description is in terms of tokens such as where so it
makes sense to do it after the lexer, but the syntax analyser will need to know
about the structure of the script, so we must apply the layout rule between the
two.

Thus we want to handle both fixity and layout between the lexer and parser,
which leaves the question of which we do first. Consider how the scoping of
fixity information works in Haskell; a fixity definition applies to the operator of
the same name defined in the same declaration group®. This operator definition,
and thus also the fixity information associated with it, is then used in the current
block and all subblocks until a more local declaration of an operator with the
same name replaces it. As the fixity information needs to know where the blocks
are it is only logical to apply the layout rule first.

5Also sometimes refered to as illiterate Haskell.

6Two declarations are in the same declaration group if there is a block (a list of definitions
surrounded by { and }) directly containing both declarations (i.e. they are not in a nested
group).
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Now we have a high level overview for what is conceptually” a five pass
parser:

parser = syntazx_analyse o firity o layout o lex o extract_code

We will implement each stage as a module, applying the principles of abstraction
and separation of concerns liberally. Where appropriate stages will be further
broken down into sub modules, and some modules may be shared between dif-
ferent stages.

3.2 Unlitting

Ultimately the aim is for the parser to be able to cope with multiple sections of
code, either in sections delimited by \begin{code} and \end{code} or blocks
of lines beginning with a >, and substitute nicely typeset equivalents with the
surrounding text untouched.

However, for a first approximation we will simply unlit the script, i.e., extract
all the code as a single chunk and throw away the surrounding text. The report
also requires that a line containing only white space be between any surrounding
text and a program line beginning with a ‘>’ character. For now we will ignore
this restriction, returning to it when we write the final implementation of this
phase.

This simplified process can be fairly straightforwardly coded as shown in
Figure 4.

3.3 Parser Combinators
3.3.1 Existing PC libraries

In order to write the lexer we shall use Parser Combinators (PCs). There are
two existing PC libraries for Haskell available, UU PC lib and parsec. However,
both of these use predictive parsing in order to avoid backtracking and guarantee
O(n) time complexity for a given parser on an input of length n. While this is
an admirable quality, it means that the set of grammars they allow has to be
more restrictive than we would like.

For example, consider the slightly simplified extract from the Haskell lexical
syntax in Figure 5(a). Upon finding a ‘0’ in the input a predictive parser built
directly from this grammar would immediately commit to the first production
which allowed a ‘0’, here dectmal. This means that it will never recognise an
octal or hexadecimal constant! We can translate this grammar into an equiva-
lent one suitable for use with a predictive parser; such a grammar is shown in
Figure 5(b) and algorithms exist to perform such a translation for any grammar.

However, the resulting grammar would bear relatively little resemblance to
the grammar in the report which would make it difficult to check its correctness
by hand and to update it with new features or fixes. Another example is shown
in Figures 6(a) and 6(b). We must also remember that these are simplified
extracts of just a small part of the lexical syntax—the effect would be far worse
if we were considering it in its entirety. Furthermore we have not gained anything
in terms of time complexity, as we shall now demonstrate.

7As Haskell is a lazy language the evaluation order will not actually mean the five stages
get run sequentially, but for most purposes we can treat it as if they were.
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unlit :: String — String
unlit = concat o unlit_lines o lineify

unlit_lines :: [String] — [String]
unlit_lines [] =]
unlit_lines ((‘>":zs):zss) = (¢ *:zs):unlit_lines xss
unlit_lines (xs:xss)
| take 12 zs == “\\begin{code}” = if ok
then block ++ unlit_lines rest
else fail
where (block, rest) = get_block zss
ok = all isSpace $ drop 12 xs
fail = error “\\begin{code} not followed by whitespace”
unlit_lines (_:zss) = unlit_lines zss

get_block :: [String] — ([String], [String])
get_block [] = error “\\end{code} missing”
get_block (xs:xss)
| take 10 zs == “\\end{code}” = if ok
then ([], zss)
else fail
where ok = all isSpace $ drop 10 zs
fail = error “\\end{code} not followed by whitespace”
get_block (zs:zss) = (xs:block, rest)
where (block, rest) = get_block xss

lineify :: String — [String]
lineify “” =[]
lineify xs = this:lineify rest
where (this, rest) = get_line xs

get_line :: String — (String, String)

get_line [1%] — (“7” “”)

get_line (‘\n’:s) = (“\n”, s)

get_line (‘\r’:s) = case s of
(\n7:s’ _) (“\r\n”’ S’)
_ _) (“\r”, S)

get_line (c:s) = (c:ys, 28)

where (ys, 2s) = get_line s

Figure 4: wunlit first draft code
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integer —  decimal
| 0o octal | 00 octal
|  0x hezadecimal | 0X hexadecimal
decimal —  digit {digit}
octal —  octit {octit}
hezadecimal —  hexit {hexit}
digit > 0ft]...]9
octit = 0|1]...|7
hexit — digit |A|...|Flal|...|f
(a) Grammar in Haskell 98 report
integer —  nzdigit decimal’ | 0 integer’
integer’ —  decimal’
| o octal | O octal
|  x hezadecimal | X hezadecimal
decimal’ —  {digit}
octal —  octit {octit}
hezadecimal —  hexit {hexit}
digit = 0|1]...]9
nzdigit = 1]2]...]9
octit = 0|1]...|7
hexit — digit |A|...|Flal|...|f

(b) Predictive grammar

Figure 5: (Simplified) lexical syntax for integers

reservedid — if | in| infix | infix1 | infixr | instance

(a) Grammar in Haskell 98 report

reservedid — 1 reservedid_i

reservedid_i — {| n reservedid_in

reservedid_in —  fix reservedid_infiz | stance | €
reservedid_infit — 1|r]e

(b) Predictive grammar

Figure 6: Subset of lexical syntax for reserved IDs
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This table shows the time taken for a machine with a 733MHz Intel Celeron CPU
and 512MB of RAM to lex 8, 16 and 32 copies of a Haskell script concatenated
together respectively.

Size CPU time taken
355k | 0m44.240s
710k | 1m29.760s
1420k | 3m07.750s

Figure 7: Experimental data: Lexical analysis times

Assume that checking that the next input character matches a given symbol
can be done in constant time and that expanding a non-terminal into the union
of its productions can also be done in constant time. This means that we can
also compare the next input character against an arbitrary, but fixed, number
of symbols in constant time. This is sufficient to show that octit, digit and hexit
take constant time for input of any length.

Now consider decimal; each time we try to match an input character with
digit it takes us constant time as we have shown. If it succeeds then we repeat
with one fewer input characters, while if it fails then we stop. Therefore, given
an input of length n, we can do a constant amount of work at most n times, so
the amount of work we do is O (n). A similar argument shows that octal and
hezadecimal are O (n).

Given a parser for 0o octal and input of length n we would need constant
time to match the first character against ‘0’, constant time to match the second
character against ‘o’ and the remaining n—2 characters will take O (n — 2) time.
Therefore the whole parser is also O (n). Similar arguments hold for the other
alternatives of the integer non-terminal.

Finally we consider integer. Each of the alternatives will take O (n) time so
we can do all five in O (n) time, proving our assertion that we can lex integers
in linear time even though our parser combinators can backtrack.

In order to show that parsing a given grammar using backtracking is linear
it is sufficient to show that none of the right hand sides of the productions for a
non-terminal « can, after expanding an arbitrary number of further productions,
contain an «. In other words it is sufficient for the graph of the productions to
be acyclic. We can see that this is the case for the lexical syntax in the report,
so we will be able to lex it in linear time using a backtracking PC library. This
is backed up by experimental data from the finished lexer shown in Figure 7.
An alternative method for fast lazy lexing is explored in [7].

Parsec does have a try primitive which relaxes the restrictions imposed by
predictive parsing to an extent. However, it also means we lose the guaran-
teed linear time and the code is no longer as clean. All things considered the
best approach seems to be to write our own parser combinator library specially
designed for our task.

3.3.2 Preparing for our own PC library

When writing our parser combinator library we will borrow many of the names
from the UU PC library. In some cases this will mean the same function or
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operator has slightly different semantics in the two libraries, in particular the
Choice operator. We hope that this will not cause too much confusion.

Before we start to think about implementing our primitives there is one more
key point we must pick up from the report.

In both the lexical and the context-free syntax, there are some am-
biguities that are to be resolved by making grammatical phrases
as long as possible, proceeding from left to right (in shift-reduce
parsing, resolving shift/reduce conflicts by shifting). In the lexi-
cal syntax, this is the "maximal munch” rule. In the conText-free
syntax, this means that conditionals, let-expressions, and lambda
abstractions extend to the right as far as possible.

This means that we also need to know how many input symbols our parsers
consume so that, when we have the choice of two parsers which both succeed,
we can pick the one which consumes the most input.

3.3.3 Owur own PC library: First draft

The first step in the actual implementation of the first draft of our PC library is
to consider what the type of a parser should be. We use a type synonym partly
to simplify error messages given by our compiler, but mainly because it means
we have less to change as the system evolves. In particular, the derived parsers
will not need to be changed at all as we add functionality to the primitives.

The minimum information a parser needs to provide us with is whether it
succeeded and, if it did, what it returned and how much of the input it consumed.
We use the Maybe monad to indicate success or failure and, for convenience, also
return the rest of the input. Thus

type Parser o = String — Maybe («, Int, String)

is a (very simple) first approximation. However, we will want to use our library
for both lexing and syntax analysinging and, for the latter, the input will gen-
erally not be a list of characters but a list of tokens. Thus we generalise this
slightly to a type synonym taking two type variables, one for the input type and
one for the output type:

type Parser a 8 = [a] — Maybe (8, Int, [a])

This done we start to define our primitives, referring to Section 2.3, the
existing implementations [24,29] and the tutorial [15] for an idea of what we
want to be able to do.

We start with the Fail and Succeed primitives which are trivial to define,
as shown in Figure 8. We pause only briefly to note that pSucceed consumes 0
characters.

We note that Match is not primitive in the UU parsing combinators [29], but
is defined in terms of the <..> operator, which succeeds if the next symbol is
between its two operands inclusive, as defined by the Ord operator <. The only
places where this looks like it might be useful are where we match the upper and
lower case letters, digits, octits and hexits. Even then the prelude supplies us
with predicates isUpper, isLower, isDigit, isOctDigit and isHexDigit. Thus a
more logical choice of primitive for us is pPred which, given a predicate, returns
a parser that succeeds if and only if there is at least one more symbol and the
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pFail :: Parser a
pFail = X inp — Nothing

pSucceed :: B — Parser a
pSucceed v = X inp — Just (v, 0, inp)

Figure 8: pFail and pSucceed first draft

pPred :: (a¢ = Bool) — Parser a «
pPred f = X inp — case inp of
[] = Nothing
(t:ts) = if f ¢
then Just (¢, 1, ts)
else Nothing

Figure 9: pPred first draft

predicate holds for that symbol. If successful it consumes that symbol, removing
it from the input and returning it. The fairly straightforward code is shown in
Figure 9.

We will use the application style of Sequential Composition described in
Section 2.3. A flowchart describing the operator is given in Figure 10 and can
be simply translated into the code in Figure 11.

Our definition of choice operator is influenced strongly by the Haskell report
which, as quoted earlier, says “ambiguities that are to be resolved by making
grammatical phrases as long as possible” [27, appendix B, section 1]. In other
words, if both parsers succeed we take the one that consumed the most input.
If both fail then we must also fail and, as you would expect, if only one succeeds
then we successfully return the value it returned. Of course, it is possible for
both parsers to succeed and consume the same amount of input. However, the
report does not allow this to happen, so if it does then we fail. The code is
given in Figure 12.

By default the operators <> and <|> will be considered left associative
and have the highest fixity, i.e., they will bind as tightly as possible. As <x>

Apply

Input first ‘ Féu
parser\ [iianl P

Succeeds withy, |
consumin L — Fails (Fail>
gn, symbols Nz

Succeeds withy, . Succeed witlv, v,

consumingn, symbols consumingn, + n, symbols,

Figure 10: Flowchart describing sequential composition of parsers
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(<*>) :: Parser a (8 — ) — Parser o § — Parser o y
pl <x>p2 = Xinp —
case pl inp of
Nothing — Nothing
Just (v1, nl, inpl) — case p2 inpl of
Nothing — Nothing
Just (v2, n2, inp2) — Just (v v2, nl + n2, inp2)

Figure 11: Code for sequential composition of parsers

(<|>) :: Parser @ 8 — Parser a 8 — Parser a 3
pl <|>p2=Xinp >
case (pl inp, p2 inp) of
(Nothing, r2) — r2
(r1, Nothing) — r?
(r1@(Just (-, n1, .)), r2@(Just (-, n2, _))) — case nl ‘compare‘ n2 of
GT — r1
LT —» r2
EQ — error same
where same = “Both operands of <|> consumed same number of symbols”

Figure 12: Code for choice of parsers

is roughly analogous to function application it makes sense for it to be left
associative for the same reasons that juxtaposition is. The Choice operator is
commutative so it makes no difference whether <|> is left or right associative;
we arbitrarily decide to make it left associative. It makes sense for one of
the operators to bind tighter than the other to reduce the number of brackets
required. By making <> bind tighter we would allow ourselves to easily write
a choice of multiple parsers and would also be following the same precedence
rules as BNF, so we choose to do this. To allow space for derived operators
inbetween we define the binding precedence of <*> to be 7 and of <|> to be 3.

This completes the first draft of our PC primitives. Before we test it we will
find it convenient to augment our library with a pair of derived functions. The
first is the pSym function, defined in terms of pPred as discussed earlier. Second
we observe we will often want to apply a fixed data constructor or function to
the result of one or more parsers; we define <$> so that we do not need to
clutter up our code with many pSucceed applications. Ths code for both is
shown in Figure 13.

As the Haskell lexical syntax includes constructs like lists of digits we would
be foolish to attempt to construct a lexer before implementing some derived
library functions to deal with such constructs; however, it is still wise to test
what we have done thus far so that we can check that our library is behaving
as expected. The test session is shown in Figure 14. As we can see the parser
is correctly accepting an ‘a’ followed by either a ‘b’ or a ‘c’ and returning the
pair of what it consumes if it is successful.

Note that Figure 14 shows that two scripts have been loaded, PCbase.lhs
and PC.1hs. All the functions which need to know how a Parser « is constructed,
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pSym :: Eq & = a — Parser a a
pSym = pPred o (==)

(<$>) :: (B = ) — Parser a 8 — Parser a
f <8> p = pSucceed f <x> p

Figure 13: Code for pSym and <$>

Hugs session for:

[ usr/share/ hugs98/ i b/ Prel ude. hs

PCbase. | hs

PC. I hs

Type :? for help

PC> ((,) <$%$> pSym’'a’ <*> (pSym’'b’ <[> pSym’'c’)) "abcde"
Just (('a’,’b"),2, "cde")

PG ((,) <$> pSym’'a' <*> (pSym'b’ <|> pSym'c’')) "ac"
Just (("a’,’c),2,"")

PC> ((,) <$> pSym’a  <*> (pSym’b’ <|> pSym’c’)) "

Not hi ng
P& ((,) <$> pSym’'a’ <*> (pSym’'b' <|> pSym’'c’)) "q"
Not hi ng
P& ((,) <$> pSym’'a’ <*> (pSym’'b' <|> pSym’'c’)) "a"
Not hi ng

Figure 14: Testing first draft basic PC library

i.e., the primitives, are in PCbase.1lhs. The derived functions are all in PC. 1hs,
which imports and re-exports all of PCbase.lhs. This abstraction means that
the set of functions we need to check when altering how the parsers work is
exactly the set of functions in a single file and, while we currently trust the
derived functions not to peek at the internals of the Parser type, when we later
hide the implementation details with a datatype whose constructors are not
exported, the derived functions, and parsers built with the library, will be forced
to obey the published interface.

3.3.4 Our own PC library: Augmenting the first draft

If we are to use the PCs then we will need to know whether our parser was
successful, what the return value was and whether or not it consumed the entire
input. For the last we instead provide a function which returns the remaining
input to allow more flexibility. All three require knowledge of the internals
of the Parser type so must be placed in PCbase.lhs. The code for each is
straightforward; see Figure 15.

As mentioned earlier there are many more constructs, such as lists, that will
be useful to us as we build our lexer and syntax analyser. Before we go any
further let us augment our library by adding more derived parsers and, when
necessary, more primitives.

Two more derived parsers, <$ and <x, from the UU PC lib are equivalent
to <$> and <x> respectively except that they ignore the result of the parser
in their second argument. They can trivially be defined in terms of existing
functions. Both use const with the existing function to drop the value of the
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parse_succeeded :: Maybe (3, Int, [a]) — Bool
parse_succeeded (Just ) = True
parse_succeeded Nothing = False

ret_val :: Maybe (8, Int, [a]) — 3
ret_val (Just (ret, _, -)) = ret
ret_val Nothing = error “Tried to take ret_val of a failed parse”

rest_of_input :: Maybe (8, Int, [a]) — [¢]
rest_of_input (Just (_, _, rest)) = rest
rest_of_input Nothing = error
“Tried to get rest_of_input of a failed parse”

Figure 15: Functions for information about a parse

(<8) :: B — Parser a v — Parser a
p <$ ¢ = const p <$> ¢

(<) :: Parser a B — Parser a v — Parser a 8
p <*x q = const <$> p <x> ¢

Figure 16: Code for <$ and <x

second operand; the code is shown in Figure 16 and an example showing how
they can be used to drop parentheses matched is in Figure 17.

In addition to pSym we define pSyms, which matches multiple symbols; it
can also be easily defined as a derived function. It takes a list of symbols and
produces a parser which accepts the complete list of symbols in order. To achieve
this we fold a function which uses pSym to parse each individual symbol and
constructs a list from the results. A requirement that the type a be an instance
of the Eq class is inherited from pSym. The code is shown in Figure 18.

We will also want to parse lists of construct. To produce a list we repeatedly
apply a parser to the input until it fails, returning all the successful results
in a list. Note that we must ensure that the parser cannot succeed without
consuming any input or it would succeed forever!® To prevent this we first try
applying the parser to the empty input list and, using parse_succeeded to check,
give an error if it succeeds.

As well as a parser, our list function will take an Int as an argument. This
specifies a minimum number of successful parses we require, i.e., the minimum

8In actual fact the way we implement it means we would get an error from <|> as both of
the operand parsers will successfully consume the same number, i.e., 0, symbols.

p_paren_string :: Parser Char String
p-paren_string = id <$ pSym ‘(C <x*> pList 0 (pPred (‘) #)) <* pSym ‘)’

Figure 17: Example demonstrating the use of <$ and <x
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pSyms :: (Eq o) = [a] — Parser « [a]
pSyms = foldr (A s p — (:) <8> pSym s <x> p) (pSucceed [])

Figure 18: Code for pSyms

accepts_empty :: Parser a f — Bool
accepts_empty p = parse_succeeded (p [])

opt :: Parser a f — 8 — Parser a 8

p ‘opt' v = p <|> if accepts_empty p
then pFuail
else pSucceed v

pList :: Int — Parser a 8 — Parser a [f]

pList _ p
| accepts_empty p = error “Tried to make a list of empties”
pList 0 p = pList 1 p ‘opt* []

pList (1 +1) p = () <$> p <x> pList i p

Figure 19: Code for pList and helper functions accepts_empty and opt

length of the resulting list. While this is non-zero we apply the parser and
cons the result to a recursive call requiring one fewer elements. The list with
at least 0 elements is the list with at least 1 element or the empty list. This
algorithm can be straightforwardly converted to code, producing the derived
function shown, along with the (also derived) helper functions accepts_empty
and opt, in Figure 19. We use opt as an infix operator; we have given it a
binding precedence of 4, so the only operator it binds tighter than is <|>,
and made it non-associative as neither left nor right associativity make sense.
The guard against the parser successfully consuming 0 characters in opt is not
necessary for pList but we will see that it is useful elsewhere shortly.

These simple lists are just the tip of the iceberg, however. There are several
constructs in the Haskell context free grammar which are a list of some construct
with another “separator” construct interspersed; a final separator is sometimes
allowed at the end of the list. As well as a parser for the “separators” and a
parser for the “things” we will also pass a minimum number of “things” we
require, as in pList, and a boolean value which is True iff a trailing separator is
allowed.

If i + 1 “things” are required and i is at least 0 then we require a “thing”
followed by a normal list of at least ¢ separators followed by “things”. Finally
we can have an optional trailing separator if we are allowed. It is here that the
extra guard in opt mentioned earlier becomes necessary in case the separator
parser can successfully consume no input.

If 0 “things” are required then we either act as if 1 “thing” was required,
match a single separator if a trailing separator is allowed or simply return the
empty list. We only allow the last case if the parser for “things” cannot success-
fully consume 0 characters; otherwise it is possible that the first and last cases
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pSList :: Bool — Int — Parser o 8 — Parser a v — Parser a ([Either 8 v])
pSList _ _ p_s p_t
| accepts_empty p_s && accepts_empty p_t = error
“p_s and p_t can’t both accept empty in pSList”
pSList end 0 p_s p_t = pSList end 1 p_s p_t <|>
if end
then wrap o Left <$> p_s | <[>
else pFuail
if accepts_empty p_t
then pFail
else pSucceed []
pSList end (i +1) p_s p-t = (A h mid t = h ++ concat mid ++ t) <$>
(wrap o Right <$> p_t) <*>
(pList i (A s t — [Left s, Right t]) <$> p_s <x> p_t))
<x> if end
then wrap o Left <$> p_s ‘opt‘ []
else pSucceed []

get_rights :: [Either a 8] — [3]
get_rights [] =]

get_rights (Left _:es) = get_rights es
get_rights (Right r:es) = r:get_rights es

Figure 20: Code for pSList and get_rights

would both successfully consume 0 characters.

The final thing to note is that, before anything else is considered, we first
check that the separator parser and the “thing” parser cannot both successfully
consume 0 symbols. While we could let pList check this for us we can give a
more useful error message by doing so ourselves. The complete code is shown
in Figure 20. When the “separator” is a semicolon we want the value returned
by the parser as it will tell us if the semicolon was inserted by the layout rule
or explicitly by the programmar; however, if the “separator” is just a comma,
which is always explicitly inserted, then we do not care about the value. We
define a functions get_rights, shown in the same figure, which we use when we
do not care about the values of the separators.

We will need to be able to do things such as excluding keywords from the
parser for function names. To this end we define a new primitive operator
<!> such that p <!> ¢ succeeds with the value returned by p if ¢ either fails
or succeeds but consumes less input; otherwise it fails. The code is given in
Figure 21. As we will generally want to exclude a set of parses from an entire
parser we give <!> a precedence of 2, the lowest of all our operators, and decide
to make it left associative as successive restrictions seem more likely than a
restricted restriction.

Two more small functions remain before we have finally completed our first
draft, both to do with optional constructs. The first takes a predicate and
consumes the first input character if the predicate holds for it, returning True;
otherwise it just returns False. The second applies a parser and, if it succeeds,
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(<!>) :: Parser o 3 — Parser oo v — Parser a
p <!> q = Xinp — case (p inp, q inp) of
(p_res, Nothing) — p_res
(Nothing, ) — Nothing
(Just spQ(_, np, ), Just (., ng, ))
| ng > np — Nothing
| otherwise — Just sp

Figure 21: Code for <!>

pPredHolds :: (¢ — Bool) — Parser o Bool
pPredHolds f = True <$ pPred f ‘opt‘ False

pMaybe :: Parser a f — Parser a (Maybe f3)

pMaybe p = if accepts_empty p
then error “pMaybe passed parser that accepts empty”
else Just <$> p ‘opt‘ Nothing

Figure 22: Code for pPredHolds and pMaybe

returns the result wrapped up with the Just data constructor; otherwise it just
returns Nothing. It first checks that the parser passed cannot succeed without
consuming any input in order to try to protect us from ourselves; if this is not
the case then pMaybe can be replaced by Just <$>. The code for both is given
in Figure 22.

3.3.5 Error handling: knowing where we are

Currently, if we come across an error we just fail. There are two good reasons for
providing more information on where the error occurred; the first is that people
using a parser built upon our library will want to know where the errors in their
input are so that they can fix them. Secondly, and perhaps more important from
our point of view, we will find error reporting useful as a means of finding errors
in the parsers we build when we find they fail with valid input! We will provide
the user with the line and character where we find the first error which should
provide sufficient information for them to be able to pinpoint and correct the
problem. Used repeatedly all bugs, whether in the parser combinator library,
the parser built on it or the input being parsed, can be fixed.

A position in a script is either a line and character number or the special
position “end of file”. A sufficient definition of Position would be:

type Position = Maybe (Int, Int)

with Nothing being used to represent the end of the file but, in the interests
of data abstraction and clarity of data constructors, we will create our own
datatype and type synonyms:

type Line = Int
type Character = Int
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instance Ord Position
where (Position 11 ¢1) < (Position 12 ¢2) = (I1, ¢1) < (12, ¢2)
_ < End_Of_File = True
End_Of_File < _ = False

furthest_pos :: Position — Position — Position
furthest_pos = maz

Figure 23: Code for furthest_pos and definition of Ord Position

end_of_file :: Position
end_of_file = End_Of_File

Figure 24: Code for end_of file

data Position = Position !Line !Character
| End_Of_File
deriving Eq

The ‘!’s specify that the Position constructor is strict in its arguments; this does
not affect the functionality but, as profiling shows, improves the performance.

If we have two positions of possible errors, perhaps from both operands of a
Choice failing, then the chances are the error is at the position furthest into the
file—for example, if we give a parser that matches either “hello” or “world”
the input “helli” then it could return an error at either character 5 or character
1, but the error is clearly at character 5. The solution is to define an order on
Positions, which we do by making Position an instance of Haskell’s Ord class; the
reason we made Position derive Eq earlier as it is a prerequisite for the Ord class.
We then export a function furthest_pos that takes two Positions and returns the
further of the two. The code is shown in Figure 23.

Each input character will be paired with its position. The easiest way to
both correctly give each character its position and to unlit the input is to do
both at the same time; to avoid too much repetition we will not go into the
gory details, but Section 3.8 gives an overview of the final implementation. We
will also need to refer to the end of the file position at times, for example when
reporting an error after running out of input, and thus positions. With our data
structure end_of file is very simple, as shown in Figure 24.

3.3.6 Error handling and the PC primitives

A naive implementation would just have the primitives report failure at the
point at which they fail, i.e., the type Parser would be as given in Figure 25
along with the helper function num, which extracts the number of characters
consumed by a successful parse. The primitives would be altered in the obvious
way; Figure 26 gives some examples along with the new helper function, get_pos,
which gives the position of the start of the input.

Now consider the example in Figure 27, where posify takes a list of characters
and pairs each one with its position, starting from character 1 on line 1, and we
have derived Show on all the data types so we can see the results. The parser
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type Parser a 8 = [(a, Position)] — Parsed a 3
data Parsed o f = Success 3 Int [(«, Position)]
| Failure Position

num :: Parsed a § — Int
num (Success _n _) = n
num (Failure _) = error “num: Can’t give num of a failure”

Figure 25: Naive error handling Parser type and helper function num

used accepts the string “abcd” repeated any number of times and surrounded
by braces. To see why this example is relevant we could imagine ‘a’ to be loosely
representative of a function left hand side, ‘b’ of the equals sign, ‘c’ of the right
hand side and ‘d’ of a where clause; the parser is then loosely representative of
a syntax analyser for a block of function definitions.

The first parse succeeds as expected, consuming all the input. However, in
the second parse we have left the third ‘c’ out of the input. Our parser tells
us there was an error on the first (and, in this case, only) line at the tenth
character, but we want to be told the error is at the 12th character, i.e., the ‘d’
where we were expecting a ‘c’.

To see the problem consider what happens as the string gets parsed. First
the ‘{’ is matched and then a list of “abcd”s is required. The first two “abcd”s
are successfully matched but the remaining input, “abd}”’, does not match,
so the pList function instead returns the empty list. The final parser is then
applied to the remaining input and fails to match a ‘}’ so the position of the ‘a’
is returned as the error point. The key point to note though is that the pList
function successfully consumed two characters in one of its alternatives before
that alternative failed and the other alternative succeeded having consumed no
input. Thus what we must do is to remember the furthest point we reach and
fail at even if we succeed. We are now ready to implement the second draft of
our PC library.

3.3.7 Our own PC library: Second draft

We now augment our definition of Parsed from the previous section with a
Position in the Success constructor as discussed. This definition, which we will
use for the second draft, is shown in Figure 28 along with some helper functions
we will use to rewrite the primitives. Note that the existing derived parsers will
continue to work once we have updated the primitive parsers—this is a good
example of a case when first class modules would be useful—we could pass one
of the modules of primitive parsers as a parameter to the derived module.

The updated primitive parsers are given in Figure 29. The first three are
straightforward, but the Sequential Composition, Choice and Exclusion opera-
tors need slightly more modification to choose the correct position in all cases.
Also note that we have used ‘seq‘ and $! to force evaluation of the furthest
position reached; without this the tree of unevaluated thunks consumes a large
amount of heap, as discovered by the profiling features of GHC.

Finally note that all the current parsers lose the position information when
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get_pos :: [(a, Position)] — Position
get_pos [] = end_of_file
get-pos (- p):-) = p

pFail :: Parser a
pFail = X inp — Failure (get_pos inp)

pSucceed :: f — Parser a 8
pSucceed v = X\ inp — Success v 0 inp

pPred :: (¢ — Bool) — Parser a «
pPred f = X inp — case inp of
[] — Failure end_of-file
((¢t, p):tps) = if f ¢
then Success ¢ 1 tps
else Failure p

(<|>) :: Parser a B — Parser a 8 — Parser a
pl <|>p2 =Xinp >
case (pl inp, p2 inp) of
(Failure post?, Failure pos2) — Failure (furthest_pos posl pos2)
(Failure _, r2) — r2
(r1, Failure ) — r1
(r1, r2) — case num rl ‘compare’ num r2 of
GT — r1
LT — r2
EQ — error same
where same = “Both operands of <|> consumed same number of symbols”

(<*>) :: Parser a (8 — 7y) — Parser a § — Parser a «y
pl <x>p2 = Xinp —
case pl inp of
Failure pos1 — Failure pos1
Success vI nl inpl — case p2 inpl of
Failure pos2 — Failure pos2
Success v2 n2 inp2 — Success v n inp2
where v = vl v2
n=nl+ n2

Figure 26: Naive error handling parser combinator primitives
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Hugs session for:

[ usr/share/ hugs98/ i b/ Prel ude. hs

Position. I hs

PCbase. | hs

PC. I hs

PC> id <$ pSym’' {" <*> pList 0 (pSyns "abcd") <* pSym’'} $ posify "{abcdabcdabcd}"
Success ["abcd", "abcd", "abcd"] 14 []

PC> id <$ pSym’' {" <*> pList 0 (pSyns "abcd") <* pSym’'} $ posify "{abcdabcdabd}"
Failure (Position 1 10)

Figure 27: Naive error handling demonstration

data Parsed a § = Success (8, Int, [(a, Position)], Position)
| Failure Position
type Parser a 8 = [(«a, Position)] — Parsed a 3

num :: Parsed a § — Int
num (Success (., n, ., ))) = n
num (Failure _) = error “num: Can’t give num of a failure”

rinp :: Parsed o f — [(«, Position)]
rinp (Success (_, ., 7, ) =T
rinp (Failure _) = error
“rinp: Can’t give remaining input of a failure”

pos :: Parsed a § — Position
pos (Success (-, -, -, p)) = p
pos (Failure p) =p

Figure 28: Second draft Parser type and helper functions
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pFail :: Parser a 8
pFail = X inp — Failure (get_pos inp)

pSucceed :: f — Parser a 8
pSucceed v = X\ inp — Success (v, 0, inp, get_pos inp)

pPred :: (o — Bool) — Parser a «
pPred f = X inp — case inp of
[] — Failure end_of-file
((¢, p)zinp’) — if f 1
then Success (¢, 1, inp’, get_pos inp’)
else Failure p

(<|>) :: (Show @) = Parser a 8 — Parser o 8 — Parser a
p<|>qg=Xinp —
case (p inp, q inp) of
(Success s1, Success s2) — case num sl ‘compare’ num s2 of
GT — succeed s1 (pos s2)
LT — succeed s2 (pos s1)
EQ — Failure (get_pos inp)
(Success s1, Failure pos2) — succeed s1 pos2
(Failure pos!, Success s2) — succeed s2 posl
(Failure pos!, Failure pos2) — Failure $! fp
where fp = furthest_pos posl pos2
where succeed (v, n, inp, pos) pos’ = fp ‘seq‘ Success (v, n, inp, fp)
where fp = furthest_pos pos pos’

(<*>) :: Parser a (8 — 7y) — Parser a § — Parser a «y
pl <> p2 = Xinp —>
case pl inp of
Failure pos1 — Failure pos1
Success s1 — case p2 (rinp s1) of
Failure pos2 — Failure $! fp
where fp = furthest_pos (pos s1) pos2
Success s2 — Success (seg_comp s1 s2)
where seq_comp (v, nl, _, posl) (v2, n2, r, pos2) = fp ‘seq’
(v1 v2, n1 + n2,r, fo)
where fp = furthest_pos posl pos2

(<!>) :: Parser a 8 — Parser a v — Parser a 3
p <!> ¢ = Xinp — case (p inp, q inp) of
(p-res, Failure _) — p_res
(fQ(Failure ), -) = f
(Success sp, Success sq)
| num sq > num sp — Failure (get_pos inp)
| otherwise — Success sp

Figure 29: Second draft of the primitive parsers
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keep_pos :: Parser a 3 — Parser a (8, Position)
keep_pos p = X inp —
case p inp of
Failure pos — Failure pos
Success (v, n, inp’, pos) — Success ((v, get_pos inp), n, inp’, pos)

(<&>) :: (B = v) — Parser a 8 — Parser « (v, Position)
f <&> p = keep_pos (f <$> p)

(<&) :: B — Parser a v — Parser a (3, Position)
f <& p = const f <&>p

Figure 30: Code for keep_pos, <&> and <&

they are applied. This means that once we have lexed the input there is no
position information for the syntax analyser and other stages which is clearly
unacceptable. We therefore define the primitive function keep_pos, as shown
in Figure 30, which takes a parser and returns a parser identical® except the
return value is paired with the position of the start of the input. We also define
<&> and <&, also shown in Figure 30, which are equivalent to <$> and <$
respectively except they apply keep_pos to the resulting parser; note, however,
that f <&> p1 <*> p2 does not make sense as you can not apply something
of type (a, Position) to a value.

3.3.8 Optimisations

While what we have done so far is sufficient, there are a couple of obvious places
where we can optimise. First consider the case of a Choice where we know that
if one of the choices succeeds the other never will; for example, when we are
looking for keywords during lexical analysis if the parser for the keyword case
succeeds then there is no point in trying the parser for the keyword do—not
only can it not succeed but its furthest failure point is guaranteed to be closer.
We must be careful though—after finding the keyword in we must still look
for keywords like instance and infix. Looking for in only if we fail to find
instance is fine, but note that the furthest position reached of the first parser
is relevant; for example, the input may have been “instanx”.

There are many places where this is useful, both in lexical and syntactical
analysis; in particular it is often obvious where it could be used within a produc-
tion. We therefore create a new primitive <|, which is equivalent to <|> except
it does not try the right parser if the left succeeds, for performance reasons.
The symmetric equivalent |> is defined in terms of <|. Code for both is given
in Figure 31.

Another cause of inefficiency is to be found in the pList function. Although
we know that a list of at least 0 things will always succeed we still wrap the
results with Succeed constructors and then unwrap them with pattern matching
later. To get around this we break up the definition of Parser and Parsed and

9Technically this is not true as keep_pos can alter the strictness properties of the parser;
for example, pSucceed v is not strict in its next argument, but keep_pos (pSucceed v) is.
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(<) :: Parser a 8 — Parser a 8 — Parser a 8
pl <| p2 = Xinp —
case (pl inp, p2 inp) of
(Success 71, _) — Success r1
(Failure pos1, Success (v2, n2, inp2, pos2)) — fp ‘seq* Success (v2, n2, inp2, fp)
where fp = furthest_pos posl pos2
(Failure pos1, Failure pos2) — Failure $! fp
where fp = furthest_pos posl pos2

(|>) :: Parser o § — Parser a B — Parser a 8
pl |> p2 = p2 <| pl

Figure 31: Code for short circuit Choice operators <| and |>

introduce two new primitives pList0 and pListS. Both match a list of at least
0 things matched by the parser given as their first argument; the difference is
that pListS returns an SParser which in turn will produce an SParsed, while
pList0 takes this value and wraps it up with Success. Only Parser and pList0
are exported from the primitives module and we then insert a new definition for
pList to make use of it. This is all shown in Figure 32.

With the previous optimisation it was clear that we would gain benefit as
it means that a lot of the time we will be able to not apply parsers. In this
case, though, there is the possibility that a compiler might optimise out the
redundant applications meaning all we are doing is obfuscating the code. As
Figure 33 shows, though, this optimisation is worthwhile, giving better than a
40% speedup of the completed pretty-printer on a 43k Haskell script.

3.4 The lexer

Now that we have completed our PC library, constructing the lexer is largely
a mechanical task. To save us having to remember the types of the smaller
lexers we combine to make larger lexers we shall adopt the naming convention
in Figure 34.

Our implementation will be faithful to the report in all but one aspect—we
will not attempt to implement the productions for Unicode characters shown in
Figure 35, instead allowing only the ASCII subset explicitly listed. We are in
good company here—of the Haskell implementations only the poorly supported
hbc supports Unicode, although support is beginning to appear in the more
mainstream implementations.

The simpler terminal productions can be written using pPred and a predicate
from the Char library; see Figure 36 for an example. Figure 37 shows how pSym
(and, in other cases, pSyms) are used to match other terminals and how our <|>
operator, or one of its optimised alternatives, is analogous to the | symbol used
to represent choice in the report. This analogy also holds for non-terminals,
as shown in Figure 38. Within each production the report uses juxtaposition
to represent sequential composition which, together with a suitable function, is
analogous to our <*> operator as shown in Figure 39. This figure also shows
how we use pList with first argument 0 for the {X} syntax representing any

33



type SParsed a 8 = (B, Int, [(a, Position)], Position)
data Parsed a 3 = Success (SParsed a f)

| Failure Position
type SParser a § = [(«, Position)] — SParsed a 3
type Parser a 8 = [(«a, Position)] — Parsed a 3

pList :: Int — Parser a 8 — Parser a [f]
pList 0 p = pList0 p
pList (i +1) p = (1) <$> p <*> pList i p

pList0 :: Parser a f — Parser a [§]
pList0 p = X inp — Success (pListS p inp)

pListS :: Parser a 3 — SParser a [f]
pListS p = X inp —
case p inp of
Success (v1, nl1, inpl, posl) — fp ‘seq* (v1:v2, nl + n2, inp2, fp)
where (v2, n2, inp2, pos2) = pListS p inpl
fp = furthest_pos posl pos2
Failure pos — ([], 0, inp, pos)

Figure 32: Optimised pList and the new types needed

Using normal or optimised pList | CPU time taken
Normal 10m39.840s
Optimised 6m16.180s

Figure 33: Experimental data: Times for complete runs with and without opti-
mised pList

lexc_x :: Parser Char Char

lexs_x :: Parser Char String

lext_x :: Parser Char [(Token, Position)]
lexts_x :: Parser Char (Token, Position)

Figure 34: Naming convention for lexical analyser components

uniWhite  — any Unicode character defined as whitespace
uniSmall — any Unicode lowercase letter

uniLarge — any uppercase or titlecase Unicode letter
uniSymbol — any Unicode symbol or punctuation
untDigit — any Unicode decimal digit

Figure 35: Unicode lexical analysis productions
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ascDigit — 0|1]...|9

lexc_ascDigit :: Parser Char Char
lexc_ascDigit = pPred isDigit

Figure 36: Lexical analysis terminal productions implemented with predicates

charesc — a|b|f|n|r|t|v|\|"| |&

lexs_charesc :: Parser Char String
lexs_charesc = wrap <$> lexc_charesc

lexc_charesc :: Parser Char Char
lexc_charesc = pSym ‘a’ <| pSym ‘b’ <| pSym ‘€ <| pSym ‘0’ <| pSym ‘r’ <| pSym ‘t’
<| pSym v’ <| pSym \\’ <| pSym "’ <| pSym \” <| pSym ‘&’

Figure 37: Other lexical analysis terminal productions

number, including 0, of Xs and how our <!> operator can be used in place
of the exclusion syntax Xy~ used in the report. Where the report uses the
[X] syntax we have a choice between using <|> operator or ‘opt‘; we pick one
depending on which fits best in the particular circumstance. Finally we make
use of <&> wherever we are producing tokens to keep the position information
for the syntax analyser and other later phases; for an example see Figure 40.
The type of the complete lexer is thus [(Char, Position)] — [(Token, Position)].

We have some choice as to what tokens we produce. For example, there are
three ways we might handle literals: one option is to produce a Literal token
which contains the information for either an integer, float, character or string;
another option is to have four seperate tokens, one for each type of literal; the
third approach is to have tokens for even the contents of strings rather than a
single token for the whole string. As we will often want to treat the type of
literal differently, for example, when parsing infix declarations we will need to
look for integers, we decide against the first option. The last option makes it
difficult to handle strings later, so we go for the second option. We use a second
data type, StringContents, to describe the contents of a string; for the other
literals we make do with a String. Similarly we put the contents of ordinary
comments into a single token, with the number of leading dashes as an Int and
the rest of the content as a String, but decide the easiest way to represent nested
comments is to have tokens for the beginning and end markers and design the
lexer such that only WhiteChar, Newline and nested comment tokens appear
between them.

There are a few places where we choose to do things slightly differently to the

literal —  integer | float | char | string

lext_literal :: Parser Char (Token, Position)
lext_literal = integer <|> float <|> char <|> string

Figure 38: Lexical analysis choice of non-terminals
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varid —  (small {small | large | digit | ’})
conid —  large {small | large | digit |’}

id_body :: Parser Char Char
id_body = lexc_small <| lexc_large <| lexc_digit <| pSym *\

<reservedid>

R

lexs_varid :: Parser Char String
lexs_varid = (:) <$> lexc_small <x> pList 0 id_body <!> lext_reservedid

lexs_conid :: Parser Char String
lexs_conid = () <$> lexc_large <> pList 0 id_body

Figure 39: Lexical analysis sequential composition and exclusion

opencom — {-

lexs_opencom = NCommentOpen <& pSyms “{—"

Figure 40: Remembering the position in the lexical analyser

report. Perhaps the most common is where we merge X{X}, using just pList
1; for an example see Figure 41(a). Also, the semantics of <!> are different
to those of the Xy~ syntax used in the report. Our semantics allow us to
implement the ANYseq production more clearly, as shown in Figure 41(b).

3.5 The layout rule
3.5.1 Indent Marking

The report describes the layout rule as a 2 part process. The first part, whose
rules are summarised in Figure 42, can be straightforwardly turned into a piece
of code that simply walks through the list adding additional tokens as required.
We use an abstract datatype, defined in Figure 43 along with the functions
which use it, to remember what we expect next. The externally visible function,
indentmarkify, just calls indentmark with the initial state BOM; this then simply
implements the rules on a case by case basis.

3.5.2 The layout rule

Having augmented the list of tokens we apply the function given in pseudo-code
in the report, which we have reproduced in Figure 44 for your convenience. The
function is called with L tokens [] where tokens is the augmented token stream
generated above. While most of the function could be implemented in a couple
of dozen lines of code there is one clause, pointed at by a ¥ in Figure 44, that
is significantly harder.

In order to know if a parse error would occur we will use a state machine; for
now we will assume the existence of such an automaton which exports the type
Automaton_State and 3 functions, whose type signatures are given in Figure 45;
init_states is the initial state of the automaton at the beginning of a script, step
takes the current state of the automaton, the next token and returns the new

36



decimal —  digit {digit}

lexs_decimal :: Parser Char String
lexs_decimal = pList 1 lexc_digit

(a) Lists

ANYseq - {ANY}({ANY} (opencom|closecom){ANY})

lexts.ANYseq :: Parser Char [(Token, Position)]
lexts. ANYseq = pList 0 (lext_ANY <!> (lexs_opencom <| lexs_closecom))

(b) ANYseq
Figure 41: Lexical analysis: Doing better than the report

Given a list of lexemes, as specified by the lexical syntax, augment the list with
additional tokens as described by these rules:

o If a let, where, do, or of keyword is not followed by the lexeme “{”, the
token “{n}” is inserted after the keyword, where n is the indentation of
the next lexeme if there is one, or 0 if the end of file has been reached.

e If the first lexeme of a module is not “{” or module, then it is preceded
by “{n}” where n is the indentation of the lexeme.

e Where the start of a lexeme does not follow a complete lexeme on the
same line, this lexeme is preceded by “<n>”" where n is the indentation
of the lexeme, provided that it is not, as a consequence of the first two
rules, preceded by “{n}”.

The following rules are also in effect while this is being done:

e The “newline” lexeme starts a new line.

The first column is designated column 1, not 0.

Tab stops are 8 characters apart.

A tab character causes the insertion of enough spaces to align the current
position with the next tab stop.

Unicode characters are considered to be of the same, fixed, width as an
ASCII character.

Figure 42: The indent-marking rule
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data IndentState = BOL
| BOS
| BOM
| Normal

indentmarkify :: [(Token, Position)] — [(Token, Position)]
indentmarkify = indentmark BOM

indentmark :: IndentState — [(Token, Position)] — [(Token, Position)]

indentmark BOM [] = [(IndentToken 0, end_of_file)]
indentmark BOS [] = [(IndentToken 0, end_of_file)]
indentmark is [] =]

indentmark Normal (tp@(Newline, _):tps) = tp:indentmark BOL tps
indentmark is (tp@(t, _):tps)

| is_white_space t = tp:indentmark is tps
indentmark BOM tpsQ(tpQ(t, p):tps’)

| t == Special ‘{’ = tp:indentmark Normal tps’
| ¢ == ReservedID “module” = tp:indentmark Normal tps’
| otherwise = this:indentmark Normal tps

where this = (IndentToken (get_pos_char p), p)
indentmark BOS tpsQ(tpQ(t, p):tps’)
| t == Special ‘{’ = tp:indentmark Normal tps’
| otherwise = this:indentmark Normal tps
where this = (IndentToken (get_pos_char p), p)
indentmark BOL tpsQ((-, p):-)
| otherwise = this:indentmark Normal tps
where this = (IndentLine (get_pos_char p), p)
indentmark _ (tp@(ReservedID r, _):tps)
| r ‘elem’ [“let”, “where”, “do”, “of”] = tp:indentmark BOS tps
indentmark Normal (tp:tps) = tp:indentmark Normal tps

Figure 43: The indent-marking code

L (<n>:ts) (m:ms) = <":(L ts (m:ms)) ifm=n
= ‘P:(L (<n>:ts) ms) ifn<m

L (<n>:ts) m = Ltsms

L ({n}:ts) (m: ms) = (L ts (n:m:ms)) ifn>m

L ({n}:ts) [] = ‘(L ts [n]) ifn>0

L ({n}:ts) ms = L#PL (<n>:ts) ms)

L (‘}:ts) (0: ms) = ‘P:(L ts ms)

L (‘}:ts) m = parse-error

L (‘{’:ts) ms = (L ts (0:ms))

L (t:ts) (m:ms) = ‘P:(L (t:ts) ms) if m # 0 and parse-error(t)

L (t:ts) ms = t:(L ts ms)

LI]] =

L[] (m:ms) = ‘}P:L[] ms ifm#£0

Figure 44: The layout rule

38



init_states :: Automaton_State
step :: Automaton_State — Token — Automaton_State

no_such_state :: Automaton_State — Bool

Figure 45: Automaton exported type signatures

state of the automaton and no_such_state takes an automaton state and returns
true iff that is not a valid state, i.e., the tokens the automaton has been stepped
with thus far to get to the state given do not represent a valid prefix of a Haskell
script.

The mutually recursive functions step and step’ apply the rules of the layout
rule and actually step the automaton, checking a valid state is reached, respec-
tively. The helper function parse_error returns True iff the next token would
cause a parse error and #m serves simply to make the code more readable.

3.5.3 The automaton

All that remains is to implement the automaton. There is a large amount
of literature on the creation of automata, e.g., [4], but we will settle here for
a simple implementation which nevertheless takes linear time with the state
transition table which we will provide it. This state transition table is specified
by a text file using a BNF-like grammar. Additional syntax is used as we need to
be able to convey more information than the report, which is merely informative.

The actual table description is based on the context free grammar in the
Haskell report. As we are ignoring the fixity information at this stage there are
a couple of places where we can significantly simply things, e.g., the grammar
for expressions, shown in Figure 47(a), is quite complex, but this simplification
means we can reduce it to that shown in Figure 47(b).

While it would be possible to make only these changes we also choose to
eliminate left-recursion and left-factor within each production; this is sufficient
to remove all infinite loops and exponential growth from the grammar. Note
that this does not make the resulting state machine deterministic as the left-
factoring is only local; there are still states from which an opening parenthesis,
for example, could move to one of a number of states.

We will think of our automaton as being composed of numerous smaller
automata which can link to each other. Each of these automata corresponds
to the production of a non-terminal in the context free grammar. When a link
between automata is followed a return state within the calling automaton is
also given. When we reach the end state of the called automaton we return
to the return state in the calling automaton. Our state is therefore a stack of
LocalStates, or pairs of integers, identifying a production and position within
the production. The top pair on the stack is our current position and the rest
of the stack is the history of return addresses. These datastructures are shown
in Figure 48.

The first function our automaton must provide is an inital state. Initially
we have a single state at the start of the first production and we have no return
address. We will guarantee the first production is given number 0 and that the
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offsideify :: [(Token, Position)] — [(Token, Position)]
offsideify = step init_states []

step :: Automaton_State — [Int] — [(Token, Position)] — [(Token, Position)]
step as ms (tpQ(¢, _):tps)

| is_white_space t = tp:step as ms tps
step as (m:ms) tps@((IndentLine n, p):tps’)

| m == n = step’ as (m:ms) [im ¢} p] tps’
| n<m = step’ as ms [im ‘} p] tps
step as ms ((IndentLine _, _):¢ps) = step as ms tps

step as ms@(m:_) ((IndentToken n, p):tps)
| n > m = step’ as (n:ms) [im ‘{’ p] tps
step as [] ((IndentToken n, p):tps)
| n >0 = step’ as [n] [im ‘{’ p] tps
step as ms ((IndentToken n, p):tps) = step’ as ms [im ‘{’ p, im ‘}’ p]
((IndentLine n, p):tps)
step’ as ms [tp] tps
step’ as (0:ms) [tp] tps

step as (0:ms) (tp@(Special ‘}’, _):tps)
step as ms (tp@(Special *{’, _):tps)
step as (m:ms) tpsQ((¢, p):-)

| m # 0 && parse_error as t = step’ as ms [im ‘}’ p] tps
step as ms (tp:tps) = step’ as ms [tp] tps
step _ [] [] =l
step as (m:ms) []

| m # 0 = step’ as ms [im ‘} end_of_file] []
step - (0:) [] = error

(“Missing } at 7 ++ show_pos end_of-file)

step’ :: Automaton_State — [Int] — [(Token, Position)] — [(Token, Position)] — [(Token, Position)]
step’ as ms [] tps = step as ms tps
step’ as ms (tpQ(t, p):tps) tps’

| no_such_state as’ = error (“No such state at ” ++ show_pos p)

| otherwise = tp:step’ as’ ms tps tps’

where as’ = step_automaton as t

parse_error :: Automaton_State — Token — Bool
parse_error _ (Special ‘}’) = True

parse_error ss t = no_such_state (step ss t)

im :: Char — Position — (Token, Position)
im ¢ p = (ImplicitSpecial ¢, p)

Figure 46: The layout rule code
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exp - exptt! [qop("’i) expt]

| lexp’

| rexp
lesp* = (lexp’ | exp*?) qop"?) expi™
lezp® —  —lexp”
lesp*  —  expitiqop™V (reap’ | expitt)
exp!® —

(a) Grammar in Haskell 98 report

ezpt =[] exp'® [qop expf]
exp -

(b) Simplified grammar
Figure 47: Context free grammar for expressions

type Automaton_State = [State]
type State = [LocalState]
type LocalState = (Integer, Integer)

Figure 48: Automaton data structures

initial state of each automaton is state 0, so this is just [[(0,0)]] as shown in
Figure 49.

Next we must be able to step the automaton, i.e., given a Token ¢ and the
current automaton state we must return the new automaton state. To do this
we take each of the set of States our automaton could be in and try to step them
with ¢.

The state transition table defines a partial function from LocalStates to
StateChanges, a data structure which describes a change of state. Equivalently,
stt: LocalState — StateChange. The data structure used by the automaton to
represent state changes is shown in Figure 50 and will be explained shortly.

We can break down the possible state changes into two sets: those which are
dependent on the token stream and those which are not. To try to step a State
we first apply apply all state changes that are independant of the token stream.

Suppose the top of a State stack s is (h,1), i.e., we are in position ¢ within
production h, the remainder of the stack is s’ and let s¢ = stt- (h,4). There are
3 patterns of sc that correspond to token independent state changes:

End This indicates that we have reached the end of this production. The state
is thus equivalent to s’.

Jump js This represents a choice to jump to any state j € js. This state is
equivalent to the set of states {(h,j) :s' | j € js}.

Long_Jump j k This represents a jump to another production. We jump to the
start state of production j and return to state k in the current production,
so this state is equivalent to (j,0) : (h, k) : s.
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1nit_states :: Automaton_State
init_states = [[(0, 0)]]

no_such_state :: Automaton_State — Bool
no_such_state = null

step :: Automaton_State — Token — Automaton_State
step ss t = [Is | (e, Is) « closure ss, can_step e (un_im t)]

un_im :: Token — Token
un_im (ImplicitSpecial s) = Special s
un_tm t =1

can_step :: Either Token Func — Token — Bool
can_step (Left s) t =s==t
can_step (Right (Func (., f)))t=ft

closure :: [State] — [(Either Token Func, State)]
closure = remove_dupes o sort o do_all_nulls

remove_dupes :: (Eq a) = [a] = [a]
remove_dupes (a:b:xs)

| a ==0b = remove_dupes (b:zs)
| otherwise = a:remove_dupes (b:xs)
remove_dupes s =15

do_all_nulls :: [State] — [(Either Token Func, State)]
do_all_nulls [] =]
do_all_nulls ([]:¢s) = do_all_nulls g¢s
do_all_nulls ((gh:qt):qs) = case lookupFM state_changes qh of
Nothing — error “do_all nulls: Can’t happen (Nothing)”
Just z — case z of
Jump zs — do_all_nulls (tailed_xs + ¢s)
where tailed_zs = map ((:qt) o (,) h) zs
Long_Jump i j — do_all_nulls (((Z, 0):(h, 7):qt):gs)
SLiteral e i — (e, (h, i):qt):do_all_nulls gs
End — do_all_nulls (gt:gs)
where h = fst gh

state_changes :: FiniteMap LocalState StateChange
state_changes = listToFM state_changes’

state_changes’ :: [(LocalState, StateChange)]

Figure 49: Automaton code
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data StateChange = Jump [Integer]
| Long_Jump Integer Integer
| SLiteral (Either Token (Token — Bool)) Integer
| End
deriving (Eq, Ord)

Figure 50: State change data structures

Although we have described equivalences it is only useful to follow the state
changes in the forward direction. We apply these rules to each of our possible
States until it is not possible to apply them to any State; we also remove any
empty stacks as these represent completed traversals of the whole state machine
so cannot accept any token ¢t. The function closure, shown in Figure 49, imple-
ments this, using do_all_nulls to do the work and then removing any duplicates
in the list of states reached. It returns each of the States as a tuple of the
token-dependent test and the State to use if the test succeeds, i.e., if the token
would be accepted at the state.

The reason for not using the nub function from the List standard library for
removing duplicates is that profiling revealed that this was by far the slowest
part of the program; this was then replaced as shown with the sort function
from the standard library but was still responsible for the majority of execution
time, so a sorting function using merge sort was written instead. This took the
time for the complete pretty-printer to run from 19 minutes, then down to 6
minutes and finally down to 1 minute for a test input.

The next thing we must do is to decide whether the token ¢ is permitted at
each of our potential states. There are two tests which we may have to perform:

Left u This succeeds iff t = u.
Right (SLiteral f) This succeeds iff f ¢ holds.
This is implemented by can_step in Figure 49.

The stepping function, step, returns each possible state just after the point
where the token is accepted. This means that even when we have reached the
end of the state machine there will be a non-empty stack which will only become
empty, and thus removed, when do_all_nulls is applied. As neither init_states
nor step apply this to what they return the user of the automaton is returned
an empty list if and only if the sequence of tokens stepped so far is not a valid
prefix of the language. We can therefore use the standard function null for
no_such_state. The code for this is also given in Figure 49.

The actual table has not been included due to its size. Another program,
using the PC library we have developed, parses the textual description of the
automatonand produces either the diagrams in Appendix A or the code for the
automaton module.

3.6 The fixity annotation

Before we can lexically analyse the token stream we need to add the fixity
information so that we can parse the expressions correctly. The details are
messy and uninteresting, so we will present only a brief overview here.

For each block we do two passes. In the first pass we walk through, counting
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our nesting depth to know when we have finished the block, and extract the
top-level fixity information—more on that later. Then, in the second pass, we
change the fixities of any appropriate tokens, dealing with sub-blocks recursively.
There are various things we must take care of such as overriding our fixity list
with that of the where clause of a declaration where appropriate; although
these are all fairly simple, a reasonable amount of code is needed to cover them
all. Finally we return the altered block of tokens together with the set of top-
level fixity information we collected in the first pass; it is this that is of relevance
if this block is a where clause.

To extract the fixity information we not only need to look for and extract the
information from fixity declarations started with an infix, infixl or infixr token
but we also need to notice when new functions are defined and thus override the
fixity information from a higher scope. The variety of ways in which functions
can be defined adds to the volume of code needed to handle all cases correctly.

The Read instance of Integer makes it easy for us to extract the value of the
optional integer given in a fixity declaration. We use reads rather than read so
we can give a useful error message, including position, should a bug in the lexer
allow an invalid integer through.

A complete implementation would also look for imported modules and check
what these modules export and what restrictions are placed by the import state-
ment. Here we settle for simply starting with the fixity information set by the
standard prelude.

This is, in the worst case, quadratic in the length of the input as, for example,
adding an extra layer to deeply nested where blocks will require traversing all
the existing input extra times to handle the outer-most case. In practise the
depth of nesting rarely goes above three or four and so this algorithm can be
thought of as linear. For better worst-case performance a data structure which
allows a token stream to be represented as a tree of blocks could be used, but
we believe it to be overkill for real-world use.

3.7 The syntax analyser

The syntax analyser represents a similar challenge to the lexical analyser and
the same equivalences of our operators to the report syntax hold. The exclusion
syntax X.y~, for which the semantics differ to our <!> operator, appears only
once, but we need to handle this case specially. The relevant productions are
shown in Figure 51(a); although the report allows a labelled update to be applied
to other productions of aexp such as tuple this is not actually possible so for
simplicity we do not allow these cases. We use pMaybe to allow an optional
labelled update after these productions; see the code for guar in Figure 51(b)
for details.

This is not the only place where we deviate from the report. The production
for body in the report is shown in Figure 52; the problem is that impdecls will
consume trailing semicolons as it allows empty import declarations so enforcing
the presence of a separating semicolon if there are also topdecls is tricky. While
we could solve this it would add a significant amount of complexity to the code;
by contrast, doing it in another pass, which is necessary'® anyway to check other
side-conditions imposed by the report, is easy.

10We do not implement this final pass as it would serve only to restrict the set of valid
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ANYseq — quar

| ...
| qcon {fbind,,. .., fbind,}
| AETP (gcon) {fbi"dp ce ,ﬂ)indn}

(a) Context free grammar

p_aexp_quar :: Parser Token Aexp
A a m_u — case m_u of
p_aexp_quar = Nothing — a <$>
Just v — Aexp_update a u
(Aexp_qvar <$> p_quar) <x> pMaybe p_aexp_update

p-aezp_update :: Parser Token [[Fbind]]
p-aexp_update = pList 1 p_aexp_update_seg

p-aezp_update_seg :: Parser Token [Fbind]
p_aexp_update_seg = id <$ p_curly_open <x> pList 1 p_foind <* p_curly_close

(b) Code

Figure 51: Exclusion in the context free grammar

body — {impdecls; topdecls}
| {impdecls}
| {topdecls}

Figure 52: body context free grammar
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aezp  —  (ezpitlqop?)

Figure 53: aexp left section context free grammar

btype —  [btype] atype

(a) Production

p-btype :: Parser Token Btype
p-btype = Btype <$> pList 1 p_atype

(b) Code

Figure 54: btype production and code

Enforcing the restriction on left sections, whose production is shown in Fig-
ure 53, that the operator be of a lower precedence-level than the expression can
be done, but the easier ways of doing it are slow, as they require the expression
being parsed multiple times, and the fast ways again add complexity. Thus we
also leave this check until the next pass, allowing any expression followed by a
left-associative operator in parentheses as a left section.

Another issue we must deal with is left recursion. This was not an issue
in the lexical syntax, but the context free grammar has productions such as
that shown in Figure 54(a) where a btype can begin with a btype so a direct
translation into parser combinators would yield a parser which recursed forever
looking for btypes. However we can see that a btype is just a list of atypes,
giving us the code shown in Figure 54(b). In general, if we have a production

a—=abi|...|aBn |71 ]|---|Ym, then this is equivalent to the non-left recur-
sive @ = (Y1 |- | Ym) {B1]|---|Bn}. In this case m =1, n=1, B = atype
and 71 = €.

There are some cases where we implement a slightly different, but equivalent,
grammar to the report. For example, if we were to implement the production
for exp from the report, as shown in in Figure 55(a), then all the expressions
would be parsed twice—once for each alternative. We instead implement it as if
it was the production in Figure 55(b). This is especially significant as ezps can
contain ezps so the direct translation would have exponential time complexity
as opposed to the linear time complexity of this approach. There are more
complex examples where left-factoring is needed but the same principles can be
applied.

3.8 Coping with multiple code blocks

Up until now we have been extracting all the code from the script and treating
it as a single block of code. However, in reality a literate script consists of
alternating blocks of explanatory text and Haskell code. We therefore introduce
the type

inputs and so is not required for our purposes.
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exp —  expl :: [context =>] type
| expl

(a) Report

exp —  expl [:: [context =>] type]

(b) Optimised
Figure 55: Productions for ezp

type Input @ = [Either String (String, «, Position)]

to hold the input. A Left s represents a text block while a Right (s, z, p) rep-
resents a code segment. Depending on the stage of the process we are at, the
type of z may be [(Char, Position)], [(Token, Position)] or [Parsed]. The original
text of the code block is stored in s; if at some phase an error is encountered
then we will replace this block with Left s, giving a warning that we are doing
so, and continue the phase at the next code block with the state as it was at
the beginning of this block. The position of the end of this block is stored in
p; we use this rather than end_of file when we need to give a position and have
consumed all of the input in this block.

The first phase, unlitting and adding position information, involves a rea-
sonable amount of code for something that is conceptually quite simple, so
we do not give the code here. There are three stages to it: first we read
and categorise each line as either starting with a bird track, being part of a
\begin{code}...\end{code} block or being a comment line; we add a position
to each character of code. In the second stage we walk through the list checking
that all bird track lines are not next to comment lines with any non-whitespace
characters. In the final stage we merge the consecutive lines of the same type
into blocks.

For the next phase, the lexer, we have to place some restrictions on where we
allow code blocks to end. The report allows them to end anywhere a new line
is allowed, but it is hard to know how to typeset functions with documentation
sections in the middle. We therefore require that top-level functions are entirely
contained in a single code block. We also require that nested comments are
entirely contained in a single code block; this makes the implementation of the
lexer slightly easier at little or no inconvenience to the user. If it proves to be a
problem then it would be fairly straightforward to modify the lexer to carry the
nesting depth forward from section to section. The lexer then becomes trivial
to adapt—we simply apply the existing function to each of the code sections in
turn, changing any code section that fails to a comment section.

The indent marking and layout rule phases are also fairly straightforward;
while indent marking, when we reach the the end of any code block but the last
we stop when our stack of indents reaches a singleton list rather than the empty
list so as to not close the outermost braces around all the code. The actual
layout rule needs a couple of small tweaks; for example, implicit semicolons
at the beginning of code blocks are removed as they cause ugly space at the
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beginning of all but the first code block.

For the syntactical analysing phase we replace our top-level syn_an func-
tion with 4 functions: syn_an_modulehead, syn_an_impdecls, syn_an_topdecls and
syn_an_moduletail. Our initial state is a list of these 4 parsers tupled with a
boolean indicating whether they are allowed to multiple, or indeed zero, times;
i.e. it is true for only the middle two. While a code block is non-empty we try
to apply the first parser in the list; if the list is empty then we give an error.
If the parse succeeds and the boolean is false then we remove the parser from
the list and recurse with the input remaining after the parse; if the boolean is
true then we leave the parser on the list and recurse. If the parse fails and the
boolean is true then this is acceptable so we just remove the parser from the
list and recurse; if the boolean is false then we do not allow this parser to fail
so we abort with an error.

4 Pretty-printing Haskell in RTEX

Now that we have an abstract syntax tree for Haskell we need to pretty-print
it in ATEX. Rather than embedding the formatting information in the output,
with the additional disadvantage of needing to alter the code to change it, we
create a style file that defines IWTEX functions and output IATEX code that calls
these functions. A detailed description of all the IATEX functions is beyond the
scope of this report, but we give a brief overview of one of them here.

Figure 56 starts by defining @layoutinner and @layout, two are internal
commands used to set the formatting of paragraphs in many places. A column
type, called Y, is then defined that is the same as a column of type X, defined in
the tabularx package, but with these layout rules applied. We then have two
exported functions; the first, HtLkeyword, takes a single argument, presumed
to be a Haskell keyword, and typesets it in bold face. The “HtL” prefix stands
for “Haskell To I¥TEX” and is designed to try to avoid name collisions. The
final function defined is used to typeset where clauses. The first of the three
arguments is 0 if braces are not required around the contents of the block or 1 if
they are, the second is the contents of the the block and the third is 1 if and only
if a semicolon should follow the block. The layout is handled by a tabularx, a
type of table which will resize columns of type X, or Y as it is defined in terms
of X, to make the table the maximum width available; this allows reasonable
layouts to be easily achieved.

We then write a Haskell module which works through an abstract syntax
tree outputting the appropriate IATEX, making use of these functions. The
module makes use of a few Haskell functions too, for example: a function for
pretty-printing the unqualified half of operators checks to see if the operator is
one of a list of special operators like >= and, if so, outputs special ITEX for
it—in this case $\ge$; the escaping of characters necessary in IATEX is done by
escape, which is applied to any user-entered strings that are to be output and
performs substitutions like $\backslash$ for \; another function substitutes
Greek letters for type variables.
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\def\@layoutinnerd{}
\raggedright
\parindent=0pt}

}

\def\@layout{%
\everypar{\@layoutinner}\@layoutinner

}

\newcolumntype{Y}{>{\@layout}X}

\def\HtLkeyword#1{J
\textbf{#1}%
}

\long\def\HtLwhere#1#2#3{}
\ifcase#1\def\dobracesopen{ }\def\dobracesclose{ }%
\or\def\dobracesopen{ \{\cr}\def\dobracesclose{\}}\fi

\begin{tabularx}{\hsize}[t]{@{}re{ }YQe{}}%
\hspace*{2em}\IGLhaskellkeyword{where}\dobracesopen
\@ifmtarg{#2}{}{& #2\crl}/
\dobracesclose\ifx#31;\fi

\end{tabularx}y,

Figure 56: Extract from the BTEX style file
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Source size | CPU time taken | Processing speed

44k 1m20.600s 551 bytes per second
88k 2m43.620s 543 bytes per second
176k 5m31.870s 535 bytes per second
352k 11m14.850s 526 bytes per second
704k 23m24.520s 505 bytes per second

Figure 57: Experimental data: Times and speeds for complete runs on various
input sizes with the heap controlled by the run-time system

Source size | CPU time taken | Processing speed

44k 1m14.170s 598 bytes per second
88k 2m25.540s 610 bytes per second
176k 4mb52.170s 608 bytes per second
352k 9m42.200s 610 bytes per second
704k 19m22.840s 611 bytes per second

Figure 58: Experimental data: Times and speeds for complete runs on various
input sizes with a fixed 300M heap

5 Discussion

5.1 Ewvaluation

Now that we have completed the pretty-printer and believe that each phase
works in linear time, at least during realistic use, it is time to test our belief.
The result of running the pretty-printer on input of various lengths is shown
in Figure 57; while the results are very respectable they are not linear. A bit
of experimentation shows that the problem is the memory allocation done by
the run-time system—if we for the run-time system to use a 300MB heap in
all cases by adding +RTS -M300M -H300M to the command line then we get the
times in Figure 58. Although these appear to show the pretty-printer working
in better than linear time this is clearly not actually possible—the cause is the
constant startup overhead. The pretty-printer is working at more than %kB /s
on a 733MHz machine, which is fairly modest by today’s standards. The files
being tested are almost entirely Haskell code—in practise we would expect a
literate script to have a high proportion of documentation text which would be
dealt with much more quickly, so we would expect real-world usage to be even
faster.

The parsing phase of HaskelM’IEX successfully pulls together a number
of existing technologies; the result is acceptably fast on modern machines. We
have also made it possible to stop between each stage and output either the data
structures as shown by the derived Show instances or a simple pretty-printing
function. Some sample input together with some of the outputs possible are
shown in Figure 59; output is possible at a few additional points, but the pretty-
printed version is identical to one of the others.

The BTEX output phase is more prototypical; although it produces accept-
able output for simple functions, more complex functions can lead to poor lay-
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N

foox =y +

1]
N
*

where y X
z=x+3

(a) Original input
{1}foo x =y + z
<5>where {11}y = 2 * x

<11>z = x + 3

(b) After indent marking

{foox =y + z
where {y = 2 * x
32 = X 3

H

(c) After layout

{foox=y+zwhere{y=2%x;z=x+3}}
(d) Parseable tokens
fooxr =y + 2z

where y =2 x z
z=z+3

(e) Code

Figure 59: Output from the pretty-printer at various stages
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out. Many of the difficulties faced in the output phase are due to limitations
in 'TEX and TEX. They were designed to be used to typeset English text and
mathematics, while we require a more precise and restrictive layout. However,
there are still acceptable layouts for many of the constructs, but to support
more than one layout for a given construct requires a lot of TEX programming;
a typesetting language designed with this sort of layout in mind would provide
an easier target for a high quality Haskell pretty-printer. One problem with
TEX that is very hard to get round is that anything surrounded by automat-
ically sized parentheses or square brackets, such as the case statement in the
function below, is never split across multiple lines no matter how wide it is.

case z of
foo z = 0 — “hello” + “ world”
_ — “goodbye”

Another issue is that IWTEX and TgX allow hand tweaking by the user as
they accept that they will not be able to produce the optimum result in all
possible cases. This is harder to do in an automated pretty-printer; it would be
possible to pass hints and instructions to the pretty-printer by means of Haskell
comments, although this would reduce the legibility of the plain source code.

5.2 Other applications

The Haskell parser we have developed is not limited to use in a BTEX pretty-
printer. Many other applications are conceivable, from merely pretty-printing
into different languages, e.g., HTML, to program transformation systems like
MAG [10], or even a full Haskell interpreter or compiler.

The parser combinator library is also reusable. With a Position module which
does not perform the unlitting, parsers for other languages defined by syntax
with similar semantics can be written. Indeed, as talked about elsewhere in
this report, this author has already written two other parsers using the parser
combinator library to aid in the writing of the parser and of this report.

5.3 Problems with Haskell report and implementations

As well as the direct contribution to the Haskell community in the form of a
parser and pretty-printer for Haskell, several other contributions have been made
along the way. This project was written during a period when the Haskell 98
report was being revised and many typos, errors and inconsistencies were un-
covered by this author.

During the implementation of the parser many bugs were found in each of
the three major implementations. Some of them were found when they failed to
compile or interpret the code for the parser correctly, some were noticed when
they did not accept the test-suite written to test the parser and others were
found when attempting to confirm the meaning of the report by investigating
what the implementations did and how they differed from each other and what
had been understood from the report.
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A Automaton description

These diagrams show the relationship between the lookup table of the automa-
ton and the Haskell context free grammar. The same program, which is based
on the PC library we have developed, is used to generate both Lout [11] mark-up
files, which Lout then transforms into these diagrams, and the executable code.
Another program, also based on our PC library, parses the EPS files created by
Lout and removes unused functions, comments and blank lines; this represents
a space saving of 50%, or approximately 5.5M on the uncompressed postscript
document and 800k on the gzipped copy.
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