
A Monadic Interpretation of Tactics

Andrew Martin and Jeremy Gibbons

Oxford University Software Engineering Centre
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

Abstract. Many proof tools use ‘tactic languages’ as programs to di-
rect their proofs. We present a simplified idealised tactic language, and
describe its denotational semantics. The language has many applications
outside theorem-proving activities. The semantics is parametrised by a
monad (plus additional structure). By instantiating this in various ways,
the core semantics of a number of different tactic languages is obtained.

1 Introduction

The notion of a tactic as a program used in the construction of a (machine-
assisted) formal proof has become quite widespread. Tactics originate in the work
of Gordon et al [GMW79] on Edinburgh LCF. The extent to which other ‘tactic-
based’ systems implement essentially the same style of programming facilities
varies considerably.

In Edinburgh LCF, a tactic does not itself construct a proof. Rather, it is
used in backward reasoning to construct a validation function which may itself
prove the desired property. Theoremhood is guarded by use of a ‘safe datatype’,
and only sound validation functions may construct elements of this type. In
other work, the type of theorems is protected by having the class of tactics itself
protected, so that it is impossible to build unsound proofs. The account here
tends towards the second view, though the treatment of tactics is actually so
abstract that this may not be an impediment to its application in either sense.

Whilst tactics are widespread, tactic programming remains a difficult task.
In this paper, we consider abstract descriptions of tactics, with the hope that
modern algorithm design techniques, such as those described by Bird and de
Moor [BdM97], can be brought to bear on the discipline on tactic programming.

Earlier discussions of tactics in the abstract (without operational bias to any
particular proof tool) include those by Schmidt [Sch84] and Milner [Mil84]. The
account here builds on the work described in [MGW96]. That paper describes an
abstract tactic language, giving a large set of algebraic laws which show how tac-
tics relate to one another, and how tactics may be transformed. A denotational
semantics was presented using lazy lists, which gives the language an angelic
nondeterminism — or equivalently, backtracking — semantics.

This paper aims to generalise that description by appealing to underlying
structure, that of a monad. This permits the description of tactic relationships
with even less operational bias, and allows an analysis of the effect of allowing
combinations of backtracking, mutable state, and other features. In this way, we

2 Andrew Martin and Jeremy Gibbons

are able to describe the essential features of a large class of different tactic-based
systems.

The following section explains the necessary category theory for our task, and
sets out the definition of a monad, both categorically and in the context of the
Haskell language. Section 3 introduces the Angel language from [MGW96], after
which Section 4 shows how to interpret that language in a number of different
monads. Section 5 considers two ways in which the treatment may be extended
to cover more features of the languages in question, and the paper ends with
some conclusions.

2 Monads

Monads have been known as a categorical construction for some decades [ML98].
In a seminal paper, Moggi [Mog89] showed how monads can be used to model a
number of computational effects in description of the semantics of programming
languages. Spivey [Spi90] and Wadler [Wad92] (among others) have popular-
ized this approach, showing how monads can simulate such computational ef-
fects within a pure value-oriented (‘functional’) language that does not explicitly
provide these features; now monads are a mainstream technique in functional
programming and a central feature of the standard lazy functional programming
language Haskell [JHA+99].

2.1 Categorical perspective

Technically, a category C consists of collections of objects ObjC and arrows ArrC ,
such that:

• every arrow f ∈ ArrC has a source src(f) and a target tgt(f), both in ObjC —
we write ‘f : src(f) → tgt(f)’;

• every object A ∈ ObjC has an identity arrow idA : A → A;
• compatible arrows compose — two arrows f : A → B and g : B → C

compose to form an arrow (g · f) : A → C;
• composition is associative, with appropriate identity arrows as units.

When modelling computations categorically, one typically chooses a category
with ‘types’ as objects, and ‘programs’ from one type to another as arrows.

A functor F : C → C on a category C is a coherent mapping from objects to
objects and from arrows to arrows in C; that is,

• when f : A → B, then F f : F A → F B;
• F(idA) = idFA;
• F(g · f) = F g · F f .

Functors compose: the composition G · F (such that (G · F) A = G (F A) and
(G·F) f = G (F f)) is again a functor, as the reader may check. In computational
settings, functors typically represent ‘type constructors’; for example, the functor

A Monadic Interpretation of Tactics 3

Pair will take a type A to another type Pair A of pairs with elements drawn
from A, and a program f : A → B to another program Pair f : Pair A → Pair B
which applies f pointwise to each element of the argument pair.

One can also define bifunctors, which are binary operations on objects and
on arrows, functorial in each argument. That is, a bifunctor ⊕ satisfies

• when f : A → B and g : C → D, then (f ⊕ g) : (A ⊕ C) → (B ⊕ D);
• idA ⊕ idB = idA⊕B ;
• (g · f) ⊕ (k · h) = (g ⊕ k) · (f ⊕ h).

Two bifunctors that will come up later are the product bifunctor ×, for which
A×B may be thought of as the type of pairs with left components of type A and
right component of type B, and the disjoint sum bifunctor +, for which A + B
may be thought of as the type consisting of the elements of type A together with
those of type B. A third operation on objects and arrows is the function space
operator ⇒, for which A ⇒ B may be thought of as the type of functions from
A to B; for technical reasons — contravariance in the left-hand argument — this
turns out not to be a bifunctor, but the right-hand argument is well behaved,
and the operation (A ⇒) for fixed A taking object B to object A ⇒ B and
arrow f : B → C to arrow (f ·) : (A ⇒ B) → (A ⇒ C) is an ordinary functor.

Given two functors F ,G : C → C, a natural transformation φ : F → G is a
family of arrows φA indexed by the objects of C, such that:

• φA : F A → G A;
• φB · F f = G f · φA for each f : A → B.

Interpreted computationally, one can think of a natural transformation φ : F →
G as a ‘polymorphic function’, of type F A → G A for any A. The second axiom
above guarantees parametric polymorphism, that the actions of φ for each A are
related in a structured way; whatever action φ has is unaffected by the elements
of type A, so essentially all φ can do is to rearrange and discard elements of
the data structure. For example, the polymorphic function fst : Pair A → Id A
for any A (where Id is the identity functor: Id A = A and Id f = f), satisfies
fst · Pair f = Id f · fst .

A monad is a triple (M, η, µ), with a functor M and natural transformations
η : Id → M (the unit of the monad) and µ : M·M → M (the multiplier of the
monad), satisfying the following laws:

• µ · Mµ = µ · µ;
• µ · η = id;
• µ · M η = id.

For example, consider the functor List , for which List A is the type of finite lists
with elements drawn from A, and List f applies f pointwise to each element
of a list. This functor forms a monad, with unit the natural transformation
wrap : Id → List which turns an element into a singleton list, and multipler
concat : List · List → List which concatenates a list of lists into a single long
list. The reader may check the naturality conditions and the extra monad laws

4 Andrew Martin and Jeremy Gibbons

(which state in turn that a list of lists of lists may be concatenated into one list in
two equivalent ways, that wrapping a list then concatenating is a null operation,
and that wrapping every element of a list then concatenating is another null
operation).

2.2 Monads for computational effects

Moggi’s [Mog89] seminal contribution was to observe that monads can capture
various ‘computational effects’, such as non-determinism, exceptions and side-
effects, in describing the semantics of a programming language. Rather than
modelling a program taking a value of type A and returning a value of type B as
an arrow A → B, thereby treating it as a ‘pure function’, doing no more and no
less, Moggi argued for modelling such a program as an arrow A → MB for some
monad M. Intuitively, the object MA represents a computation which, when
executed, may have some computational effects as well as yielding results of type
A — hence the slogan a program is a function from values to computations.

Example 1 (List monad). One might want to model non-deterministic programs,
that may give multiple results of type B from the same input of type A. Then one
should choose the monad List , modelling the program as an arrow A → List B.
(If one chooses the functor of non-empty lists, one gets non-deterministic but
never-failing programs; if one chooses possibly-empty lists one also allows the
possibility for programs that fail, returning no results at all. Both functors form
monads, as the reader may verify.)

Example 2 (Exception monad). If one wants to model possible failure but not
non-determinism, one may choose a functor corresponding to ‘lists of length at
most one’, or equivalently, the functor taking A to 1 + A where 1 is the unit
type with a single element. (The reader may check that this too is a monad.) A
failing program is modelled by returning a trivial result in the left of the sum,
and a non-failing program by returning a normal result in the right side. This
monad may be generalized to take A to E + A for some type E of exceptions.

Example 3 (State monad). Less obviously, a program from A to B which may
modify some stored state of type S can be modelled as a function from A × S
to B × S, or equivalently using currying as a function from A to S ⇒ (B × S).
The functor State S taking B to S ⇒ (B × S) is another monad, with unit
λb. (λs. (b, s)) and multiplier λf. (λs. (λ(g, t). g t) (f s)), as the energetic reader
may check.

Example 4 (Continuation monad). Even continuation-passing style, which has
been used to model many sophisticated programming language features, from
goto statements onwards, fits the monadic pattern. In continuation-passing style,
a computation taking an argument of type A and yielding results of type B is
subject to post-application with a continuation of type B ⇒ R for some overall
result type R, so may be modelled as a function from A to (B ⇒ R) ⇒ R.
It turns out that the functor Cps R taking B to (B ⇒ R) ⇒ R is another

A Monadic Interpretation of Tactics 5

monad. (Note that although the argument type B is used here as the left-hand
argument to a function space constructor, Cps R is nevertheless covariant: in this
case, two wrongs do make a right.) The unit is λb. (λk. k b), and the multiplier
λm. (λc. m (λv. v c)) — a claim that even the energetic reader may wish to take
on trust.

2.3 Combining monads

Of course, one often wants to model not just one kind of computational effect,
but several at once. For example, one might want to model programs that both
are non-deterministic and modify state. For this, one needs to combine monads.
There are no general constructions to achieve this, but in certain special cases
one can make progress [JD93,KW93]. We will return to this point later, when
we consider the interpretation of tactics under particular monads.

2.4 Monads in Haskell

Moggi’s idea was to use monads to simplify and unify disparate constructions
in programming language semantics. Wadler and others realized that monads
could also be used to simplify and unify disparate constructions in programs in
a given language. In many cases, programmers in a pure functional programming
language, which by definition does not provide the various computational effects
mentioned above, wished to simulate such effects in their programs. Each of
the constructions discussed in Section 2.2 was known and used by programmers
before Moggi’s and Wadler’s observations; but their observations revealed that
all of these constructions were instances of the same general scheme.

It turns out to be more convenient in programming to use a different, but
equivalent, formulation of monads. In this view, a monad (M, η, µ) is equivalent
to a Kleisli triple (M, η, ∗), where the operator ∗ lifts an arrow in A → MB to
one in MA → MB. In one direction, the equivalence is given by µ = id∗, and
in the other, by m∗ = µ · Mm. This view is more convenient for programming
because it lives happily with variable binding, whereas the original view leads
more towards a pointfree programming style, which is easier for reasoning but
harder for practical programming [dMG00].

Haskell, therefore, defines the following type class in its standard prelude:

> class Monad m where

> (>>=) :: m a -> (a -> m b) -> m b

> return :: a -> m a

Clearly, return corresponds to η, and (perhaps less clearly) the ‘binding’ oper-
ator >>= to ∗ with the arguments permuted.

Two things are lacking from this declaration. The first is a connection with
functors: despite Haskell’s standard prelude also having a type class

> class Functor f where

> fmap :: (a -> b) -> (f a -> f b)

6 Andrew Martin and Jeremy Gibbons

this has not been required as a superclass of Monad. We take this to be an omis-
sion, and will pretend from now on that the Monad class had been defined

> class Functor m => Monad m where ...

so that every monad is a functor.
The second omission is any mention of the laws a monad should satisfy:

the naturality laws are essentially consequences of the polymorphic types of >>=
and return [Wad89], but the coherence laws cannot be stated in Haskell. The
equivalents in the Haskell presentation of the three monad coherence laws are:

• return v >>= k = k v;
• m >>= return = m;
• (m >>= k) >>= h = m >>= (\ v -> k v >>= h).

The four monads described in Section 2.2 are captured in Haskell as follows.
In each case, the reader may wish to check that the monad coherence laws are
satisfied.

Example 5 (List monad in Haskell).

> instance Monad [] where

> xs >>= f = concat (map f xs)

> return v = [v]

Example 6 (Exception monad in Haskell).

> data Maybe a = Just a | Nothing

> instance Monad Maybe where

> Just v >>= k = k v

> Nothing >>= k = Nothing

> return a = Just a

Example 7 (State monad in Haskell).

> newtype State s a = St (s -> (a,s))

> unSt (St p) = p

> instance Monad (State s) where

> return v = St (\ s -> (v,s))

> St p >>= f = St (\ s -> let (v,s’) = p s in unSt (f v) s’)

Example 8 (Continuation monad in Haskell).

> data CPS r a = CPS ((a -> r) -> r)

> unCPS (CPS p) = p

> instance Monad (CPS r) where

> return v = CPS (\ c -> c v)

> CPS p >>= k = CPS (\ c -> p (\ v -> unCPS (k v) c))

One of the benefits of unifying these monadic notions is that it allows one to
define language support for them. Haskell provides a do notation, an extension
of the list comprehension syntax to arbitrary monads. For example, consider the
problem of taking a pair of monadic values and returning a monad of pairs, with
all possible combinations of a result from the first computation and a result from
the second:

A Monadic Interpretation of Tactics 7

> allPairs :: Monad m => (m a, m b) -> m (a,b)

> allPairs m n = m >>= (\ v -> (n >>= (\ w -> return (v,w))))

(We’ll want to do something very like this in Section 5.2.) Haskell’s do notation
allows one to write instead

> allPairs :: Monad m => (m a, m b) -> m (a,b)

> allPairs m n = do { v <- m ; w <- n ; return (v,w) }

and this syntax works for an arbitrary monad, not just for lists.

2.5 Subclasses of monad

In order to model some aspects of tactic languages, we need more features than
are provided by monads in general. For this purpose, we introduce some sub-
classes of monads, which encapsulate these special cases.

The subclass MonadZero of Monad has a distinguished constant:

> class Monad m => MonadZero m where

> mzero :: m a

The canonical instance of this class is the Maybe type:

> instance MonadZero Maybe where

> mzero = Nothing

but lists are also an instance (with the empty list as the zero). As the name
suggests, this is a zero of the monadic composition:

• mzero >>= k = mzero

The subclass MonadPlus provides a binary operator, with which to combine
monadic values:

> class MonadZero m => MonadPlus m where

> mplus :: m a -> m a -> m a

The canonical instance is the type of (possibly-empty) lists:

> instance MonadPlus [] where

> mplus = (++)

but the Maybe type is also an instance.
As the names suggest, mplus and mzero should form a monoid; moreover, bind

should distribute backwards over mplus:

• (m ‘mplus‘ n) ‘mplus‘ p = m ‘mplus‘ (n ‘mplus‘ p);
• m ‘mplus‘ mzero = m;
• mzero ‘mplus‘ m = m;
• (m ‘mplus‘ n) >>= k = (m >>= k) ‘mplus‘ (n >>= k).

8 Andrew Martin and Jeremy Gibbons

We have made MonadPlus a subclass of MonadZero for simplicity, but we
might have chosen instead to make it a direct subclass of Monad and define
a new subclass of both MonadZero and MonadPlus; then a type of non-empty
lists would be a MonadPlus but not a MonadZero. (In fact, the Haskell standard
prelude defines MonadPlus to have both mzero and mplus, and the option we
have chosen here refines that class hierarchy.)

We introduce a third subclass MonadCut, with an operator mcut which, in-
formally, prunes any non-determinism from a monadic value:

> class Monad m => MonadCut m where

> mcut :: m a -> m a

Cutting is trivial on the Maybe and State monads, since they have no non-
determinism anyway:

> instance MonadCut Maybe where

> mcut = id

> instance MonadCut (State s) where

> mcut = id

but on the list monad it prunes the list to length one:

> instance MonadCut [] where

> mcut = take 1

The laws here seem rather more complicated, and perhaps there is scope for
further exploration and refinement. Obvious laws are that failing computations
are deterministic, so pruning has no effect:

• mcut mzero = mzero,

and that mcut yields deterministic computations, so pruning is idempotent:

• mcut . mcut = mcut.

A computation that yields at least one result will yield no more when pruned:

• mcut (return v ‘mplus‘ m) = return v,

(and so, taking m = mzero in the above, return v is always deterministic). Non-
determinism may be pruned within a computation if it is not needed later:

• mcut (m ‘mplus‘ n) = mcut (mcut m ‘mplus‘ mcut n),
• mcut (k >>= id) = mcut (k >>= mcut).

Other laws of mcut are used in [MGW96] to prove various properties of tactic
programs.

A Monadic Interpretation of Tactics 9

3 Angel

Angel [MGW96] is a generic tactic language. Initially it was intended to support
proofs in the goal-directed style, that is, providing a framework for the compo-
sition of primitive inference rules in the construction of backwards proofs, but
it turns out to be more general than this. Term rewriting, for example, which
in Cambridge LCF [Pau87] is directed by a separate set of operators from those
which describe tactics, could also be described using Angel.

Because Angel is a small language, its semantic description is quite clean and
easy to reason about. Nevertheless it is able to describe a large class of useful al-
gorithms. The language is named Angel because the account in [MGW96] makes
tactics angelically nondeterministic. That is, a tactic is a relation between goals,
rather than a simple function. Thus we may arrange that a compound tactic will
fail only if there is no possible path from input to output: an implementation
must avoid dead-end paths, typically achieves this by a backtracking search. The
angelic style removes the need for the tactic programmer to program backtrack-
ing explicitly.

Primitive inference rules (or rewrites) are referenced using atomic tactics of
the form ‘ruleR’. Other atomic tactics are skip (which always succeeds, leaving
its goal unchanged) and fail, which always fails. Tactics may be sequentially
composed (‘;’), or placed in alternation (‘|’). For efficiency reasons, it may be
appropriate to limit the scope of the angelic choice, so ‘! t’ restricts the nonde-
terminism to the scope of t. This notation resembles the ‘cut’ of Prolog, but
thanks to its scoping, the semantics of this ‘!’ are more compositional (similar
to Isabelle’s DETERM [Pau94]).

For an example, consider tactics over a logical language of first-order predi-
cates. Let the rule alphaConv perform alpha-conversion (renaming bound vari-
ables in a quantified expression), and allIntro perform some kind of forall-
introduction step. This typically has a side-condition, and so may in some sit-
uations need to be preceded by alpha-conversion if failure is to be avoided. A
tactic which does this, then, is:

t1 ≡ (skip | rule alphaConv) ; rule allIntro .

This tactic has the additional property that if post-composed with some other
tactic, the possibility of alpha conversion before all-introduction remains open,
whereas ! t1 fixes the choice so that it cannot be revisited. (In a system displaying
referential transparency, this tactic will be deficient, since the alpha conversion
will always choose the same new bound variable, based only on the predicate
presented to the rule. We will address this issue later.)

The semantics given for Angel in [MGW96] is expressed using a simple theory
of lists, based on [Bir86]. The lists are used to record alternative outcomes of
tactic applications, thus offering backtracking/angelic nondeterminism. This is
reflected in the name Angel.

A simple (in the sense that it imposes total deterministic interpretations on
the primitive rules) translation of the tactic combinators to Haskell would be:

10 Andrew Martin and Jeremy Gibbons

> skip g = [g]

> fail g = []

> rule r g = [r g]

> alt t1 t2 g = t1 g ++ t2 g

> sequ t1 t2 g = concat (map t2 (t1 g))

> cut t g = take 1 (t g)

so that the tactic t1 above may be expressed as:

> sequ (alt skip (rule alphaConv)) (rule allIntro)

which may be expanded to

concat . (map (\ g -> [allIntro g])) . (\ g -> [g] ++ [alphaConv g])

and hence simplified to

(\ g -> [allIntro g, allIntro (alphaConv g)])

The cut version of the tactic — which does not ‘backtrack’ by lazily presenting
alternatives — composes take 1 with this expression.

4 Generalized Tactic Model

Several readers of [MGW96] commented on the similarity of the lists used there
with various other algebraic structures, captured with the categorical notion of a
monad. With this in mind, we may abstract away from the list-based presentation
of tactic semantics, using an arbitrary monad instead. Different instantiations
for the monad will lead to different tactic languages (with different properties,
as we shall see).

4.1 Interpretation of a tactic in a monad

We assume basic types for primitive rules and for variables of the tactic language:

> type Rule = String

The terms of the tactic language are then expressed in the obvious way with the
following datatype:

> data Tactic = Rule Rule

> | Skip

> | Fail

> | Seq Tactic Tactic

> | Alt Tactic Tactic

> | Cut Tactic

A Monadic Interpretation of Tactics 11

The interpretation of terms in the tactic language using a particular monad
is then captured with the function int, which we now discuss. For a particu-
lar monad m and object-level expression type e, this function basically turns a
Tactic into a function of type e -> m e, which takes an expression and yields
a computation with rewritten expressions as results. However, int also takes as
parameter a function r of type Rule -> e -> m e giving the interpretation of
primitive rules. Moreover, the monad m must be a member of all the monad sub-
classes described in Section 2.5, to allow interpretation of the failing, alternation
and cut combinators. We therefore declare

> int :: (Monad m, MonadZero m, MonadPlus m, MonadCut m) =>

> (Rule -> e -> m e) -> Tactic -> e -> m e

The definition of int is given in Figure 1; below, we explain each clause of the
definition of int in turn.

> int :: (Monad m, MonadZero m, MonadPlus m, MonadCut m) =>

> (Rule -> e -> m e) -> Tactic -> e -> m e

> int rule (Rule r) = \ e -> rule r e

> int rule Skip = \ e -> return e

> int rule Fail = \ e -> mzero

> int rule (Seq t u) = \ e -> (int rule t e >>= \ e’ -> int rule u e’)

> int rule (Alt t u) = \ e -> int rule t e ‘mplus‘ int rule u e

> int rule (Cut t) = \ e -> mcut (int rule t e)

Fig. 1. Interpretation of a tactic in a monad

• The interpretation of primitive rules is determined by the parameter r:

> int r (Rule rule) = \ e -> r rule e

• The tactic Skip corresponds to the unit of the monad, returning the object-
level term unchanged and having no computational effect:

> int r Skip = \ e -> return e

• The tactic Fail yields no result:

> int r Fail = \ e -> mzero

• Sequential composition of tactics corresponds to binding in the monad —
the argument is rewritten by the two tactics in turn:

> int r (Seq t u) = \ e ->

> (int r t e >>= \ e’ -> int r u e’)

These complex ‘bind’ expressions are exactly what Haskell’s ‘do’-notation is
designed to clarify: we could define equivalently

12 Andrew Martin and Jeremy Gibbons

> int r (Seq t u) = \ e ->

> do { e’ <- int r t e ; e’’ <- int r u e’ ; return e’’ }

A third way of looking at this is in terms of the pointfree definition of a
monad as a triple (M, η, µ); if we define mu m = m >>= id, which translates
monadic bind into monadic multiplication, then we could define sequential
composition of two tactics equivalently as Kleisli composition of their inter-
pretations:

> int r (Seq t u) = mu . fmap (int r u) . int r t

• Alternation of tactics corresponds to the mplus method of the MonadPlus

class:

> int r (Alt t u) = \ e -> int r t e ‘mplus‘ int r u e

(here, ‘f‘ in Haskell turns the two-argument function f into an infix binary
operator).

• Similarly, the Cut combinator is interpreted using the mcut member of the
MonadCut class:

> int r (Cut t) = \ e -> mcut (int r t e)

4.2 Some example interpretations

Using the list monad given above with the int function gives rise to the Angel
semantics presented in [MGW96], as produced by the simple interpretation given
in Section 3 above. Suppose that we define the tactic

> t1 :: Tactic

> t1 = (Skip ‘Alt‘ Rule "alphaConv") ‘Seq‘ (Rule "allIntro")

and assume an interpretation rule for primitive rules. Then the interpretation
int t1 of the tactic in the List monad is

> int t1 g = rule "allIntro" g ++

> concat (map (rule "allIntro") (rule "alphaConv" g))

essentially as before. Such behaviour is also possible in Isabelle [Pau89], though
several combinators are offered there.

Interpretation in the exception monad gives rise (essentially) to the tactic
language of Edinburgh (and Cambridge) LCF. To be more precise, LCF allows
side-effects in tactics (see below); the logical framework 2OBJ [GSHH92] imple-
mented precisely this semantics. For clarity, we could define

> try (Just x) _ = Just x

> try Nothing y = y

to try a second computation only if a first fails, and

> lift f (Just x) = f x

> lift f Nothing = Nothing

A Monadic Interpretation of Tactics 13

to lift a monadic function with a plain argument to work on monadic arguments,
then the interpretation of t1 in the Maybe monad is

> t1 g = try (rule "allIntro" g)

> (lift (rule "allIntro") (rule "alphaConv" g))

(In fact, try is just mplus, and lift f x is x >>= f.)
The semantics of systems such as LCF requires state, and the State monad

given above implements this. Such a state is necessary for the practical imple-
mentation of rules such as alpha-conversion: by allowing a state component to
record information about variable names in use, we may ensure the selection of
an entirely fresh name when we need it. State alone forms a monad, but not all
of the foregoing subclasses of monad. Therefore, a practical implemtation such
as LCF will use State together with Maybe. We have not explored this monad
combination here, though it is one of the combinations mentioned in [KW93].

A more general combination (capturing more accurately, for example, the
choice semantics possible in Isabelle) involves combining State with lists. There
are several ways to accomplish such a combination, but not all are equally good.
Straightforward composition of functors suggests either S ⇒ (List B × S), in
which all outcomes of a non-deterministic computation share the same final
state, or List (S ⇒ (B×S)), which is not obviously a monad. The most promising
approach seems to be to use S ⇒ List (B × S). Here, each alternative outcome
gets its own copy of the state; this is the choice defined by King and Wadler.

In Haskell, this functor would be defined

> data LState s a = LSt (s -> [(a,s)])

> unLSt (LSt p) = p

Installation as an instance of Functor is simplest expressed as a list comprehen-
sion:

> instance Functor (LState s) where

> fmap f (LSt p) = LSt (\ s -> [(f a, s’) | (a,s’) <- p s])

For a plain monad, we define

> instance Monad (LState s) where

> return a = LSt (\ s -> [(a,s)])

> LSt p >>= f = LSt (\ s -> [(a’,s’’) | (a,s’) <- p s,

> (a’,s’’) <- unLSt (f a) s’])

The instances of the three subclasses of Monad lift in a straightforward way from
the list monad:

> instance MonadZero (LState s) where

> mzero = LSt (\ s -> [])

> instance MonadPlus (LState s) where

> LSt p ‘mplus‘ LSt q = LSt (\ s -> p s ++ q s)

> instance MonadCut (LState s) where

> mcut (LSt p) = LSt (\ s -> take 1 (p s))

14 Andrew Martin and Jeremy Gibbons

Most proof tools in the LCF family have an interactive mode of operation, in
which various goals and subgoals can be selected for consideration, or deferred
until later. This is generally a very high level of interaction, and not part of the
consideration of tactics. In Ergo 5 [MNU97a] however, those facilities are fully
part of the tactic language — which in other respects implements state with
lists, as above. In summary, the user is allowed to defer treatment of a goal at
any time, whereupon it is placed in a pool of open goals, to be re-opened at
any time. We believe that the Ergo 5 tactic semantics therefore corresponds to a
combination of lists, state, and continuations. This assertion has yet to be tested
against the Prolog code for Ergo 5.

Of course, a huge class of other possible monads exists, and it may be that
others of these represent useful semantics for tactic languages, perhaps in com-
bination with the features explored above.

5 Extensions

The previous section defined an interpretation of a simple tactic language in a
variety of monads. We have omitted from that initial treatment two significant
aspects of Angel, namely recursive tactics and structural combinators. The first of
these does not interact significantly with the monadic interpretation; we explain
the necessary adjustments in Section 5.1. The second requires some kind of
generic programming for a proper treatment, but in Section 5.2 we outline a
close approximation in Haskell.

5.1 Treatment of recursion

Angel also provides for recursively-defined tactics (µX • tac(X)), where X is a
variable and tac(X) a tactic in which X may appear as if it were itself a tactic.
(Of course, the ‘µ’ here has nothing to do with the multiplier of a monad.) The
tactic (µX•tac(X)) behaves like tac(X), but with each occurrence of X behaving
like (µX • tac(X)). The introduction of recursion in the language necessary
introduces also the possibility of non-termination of tactic programs, for which
we define the atomic tactic abort. This is different from mere failure of a tactic
to apply, and is typically not something one would ever write in a tactic program,
but (following Morgan [Mor94]) we find it convenient to be able to reason about
it.

We can extend our interpretation to cover recursion as follows. We define a
type of variable names:

> type Var = String

and introduce three new constructors for terms in the tactic language:

> data Tactic = ...

> | Mu Var Tactic

> | Var Var

> | Abort

A Monadic Interpretation of Tactics 15

The interpretation function int takes an extra argument, an environment rho

of type [(Var, e -> m e)] recording the interpretation of the tactic variables in
scope, leading to the type declaration

> int :: (Monad m, MonadZero m, MonadPlus m, MonadCut m) =>

> (Rule -> e -> m e) -> [(Var, e -> m e)] ->

> Tactic -> e -> m e

The three extra clauses of the definition are as follows:

• Variable bindings augment the environment with a new maplet, and are in-
terpreted as ‘letrec’ bindings on account of the recursive where clause (that
is, recursion in the tactic language corresponds to recursion in the imple-
mentation language):

> int r rho (Mu v t) = h where h = int r ((v,h):rho) t

• Variable use depends on the environment, and fails for unbound variables:

> int r rho (Var v) = \ e -> case lookup v rho of

> Nothing -> mzero

> Just h -> h e

(here, the function lookup :: Eq a => a -> [(a,b)] -> Maybe b from the stan-
dard prelude looks up an entry in an association list).

• abort really corresponds to an erroneous tactic program:

> int r rho Abort = error "Aborting tactic"

The other clauses remain unchanged, apart from having to pass around the
argument rho.

5.2 Treatment of structural combinators

In [MGW96] the language Angel is extended to provide for structural combina-
tors. When an operator ♣ appears as the top-level constructor in an object level
term (e1 ♣ e2), applying the tactic t1 ♣ t2 involves the application of t1 to e1

and t2 to e2, leaving the ♣ constructor in place. (Clearly, this combinator is not
validity-preserving for all object-level constructors; some monotonicity property
is needed.) This mechanism allows Angel tactics to be applied to the leaves of a
proof tree under construction: we may apply tactics selectively within the list of
open nodes by lifting the tactics over the constructor for the open node list.

We can extend our interpretation of tactics within a monad to cover struc-
tural combinators, with a little effort. We redefine the datatype Tactic as follows:

> data Tactic f g = Rule Rule

> | Skip

> | Fail

> | Seq (Tactic f g) (Tactic f g)

> | Alt (Tactic f g) (Tactic f g)

> | Cut (Tactic f g)

> | Struct (g (Tactic f g))

16 Andrew Martin and Jeremy Gibbons

The two type constructor parameters f and g are both required solely for the
structural combinator case. Informally, f is the base functor of the recursive
type of object-level terms, and g gives the members of this base functor; but
this informal description is expanded and explained below when we come to
discussing the interpretation of the tactic language in a particuar monad.

The object-level terms can now no longer arbitrary, because structural tactics
must interact with their structure. We therefore represent these terms by a
recursive datatype Expr:

> data Functor f => Expr f = Fix (f (Expr f))

> unFix (Fix x) = x

Here, the parameter f is the base functor of the type, and Expr f is (intended
to be) isomorphic to f (Expr f); the isomorphism is given in one direction by
the type constructor Fix, and in the other by the function unFix. The same f is
intended to be the first parameter of the tactic datatype constructor Tactic.

For example, consider a simple datatype of boolean expressions, constructed
from literals using negation, conjunction and disjunction. We represent this by
the following datatype:

> data BoolExprF b = Lit Char | Neg b | And b b | Or b b

> type BoolExpr = Expr BoolExprF

The term p ∧ ¬q would be represented by the expression

Fix (And (Fix (Lit ’p’)) (Fix (Neg (Fix (Lit ’q’)))))

Angel would provide four structural combinators for this term type, one
for each variant. (The base case of literals might be omitted.) We simplify the
definition by providing a a single structural combinator, covering all variants
simultaneously. This single structural combinator needs to take five tactics as
arguments: one tactic to be applied in case the term is a negation; two tac-
tics, one for each argument, in case it is a conjunction; and two more, in case
it is a disjunction. We therefore provide a datatype BoolSubs, for the possible
subexpressions of a boolean expression:

> data BoolSubs a = BS a (a,a) (a,a)

The relationship between BoolExprF and BoolSubs is captured by an auxilliary
type class, which we call Subs:

> class Subs f g where

> distribute :: g a -> f b -> f (a,b)

The method distribute labels an expression of type f b with additional labels
of type a drawn from a data structure of type g a. (If the f is single-shaped, then
g and f will be equal and distribute will be a kind of zip [HB97]; but in general,
f will be a sum with several variants, and the sums in f will be expanded to
products in g.) The types BoolExprF and BoolSubs instantiate this class:

A Monadic Interpretation of Tactics 17

> instance Subs BoolExprF BoolSubs where

> distribute (BS _ _ _) (Lit c) = Lit c

> distribute (BS b _ _) (Neg e) = Neg (b,e)

> distribute (BS _ (b1,b2) _) (And e1 e2) = And (b1,e1) (b2,e2)

> distribute (BS _ _ (b1,b2)) (Or e1 e2) = Or (b1,e1) (b2,e2)

Such a g is intended to be the second argument to the type constructor Tactic.
The Struct constructor takes a g of tactics, and appropriate ones are applied to
the subterms of a term.

One more issue needs to be addressed. Once each subterm of a term has
been rewritten, we end up with an outermost object-level term constructor with
monadic subterms. Those monadic effects should be promoted outside the term
constructor and collected into a single overall monadic effect. This promotion is
captured by the following type class:

> class Promotable f where

> promote :: Monad m => f (m a) -> m (f a)

and instantiated for boolean expressions as follows:

> instance Promotable BoolExprF where

> promote (Lit c) = return (Lit c)

> promote (Neg x) = do { e <- x ; return (Neg e) }

> promote (And x y) = do { e1 <- x ; e2 <- y ; return (And e1 e2) }

> promote (Or x y) = do { e1 <- x ; e2 <- y ; return (Or e1 e2) }

These ingredients are sufficient to extend the interpretation of a tactic within
a monad to cover structural combinators too. We enforce instances of these two
classes on our tactics:

> data (Promotable f, Subs f g) => Tactic f g = ...

We revise the type of int to

> int :: (Functor m, Monad m, MonadZero m, MonadPlus m, MonadCut m,

> Functor f, Subs f g, Promotable f) =>

> (Rule -> Expr f -> m (Expr f)) ->

> Tactic f g -> Expr f -> m (Expr f)

and add the clause for structural combinators:

> int r (Struct subs) =

> fmap Fix . promote . fmap (uncurry (int r)) . distribute subs . unFix

Let us unpack this rather dense expression. We are given an expression e, and we:
strip the constructor Fix from e = Fix x, yielding x :: f (Expr f); distribute
the structural rules subs, yielding a value of type f (Tactic f g, Expr f); ap-
ply each tactic to the corresponding subexpression, yielding f (m (Expr f));
promote the monadic effects, yielding m (f (Expr f)); reapply the constructor,
yielding m (Expr f).

Note that the monadic aspects of terms constructed from monadic values
can be collected in different ways; in particular, there is a choice as to whether

18 Andrew Martin and Jeremy Gibbons

the effect of a lefthand subterm precedes or follows that of a righthand subterm.
However, it seems reasonable to impose a left-to-right ordering on subterms,
allowing instances of the Promotable class to be mechanically derived. Similarly,
the subexpression type (like BoolSubs) and the instantiation of the Subs type
could also be mechanically derived. We see this as an elegant application of
Generic Haskell [Hin00], but have not yet had time to explore this connection.

Another paper [MNU97b] explores the algebraic treatment of associative
structural combinators in the Gumtree interpretation of Angel. Associative match-
ing potentially increases the complexity of tactic evaluation quite considerably,
but through an algebraic treatment of tactic arity (essentially, a simple typing
scheme for tactics), considerable optimisations can be made. We expect that this
generalised treatment of structural combinators could be incorporated into our
monadic treatment, and hope to explore that possibility in future.

6 Conclusions

One of the contributions of the paper on Angel was to show how a large class of
tactic programs could be treated algebraically, giving for the first time a way to
discuss the flow of control and essential use of failure in tactic languages of the
LCF family.

In this paper, we have generalised that treatment, and shown how a semantics
using monads can give rise to many of the algebraic laws previously considered
as essential definitions of the tactic language. The foregoing discussion of exten-
sions points to much scope for future work on structural combinators. Such a
language may be seen as an economical way to describe proof procedures at a
high level, wherein their efficiency and optimisation can be considered. The alge-
braic properties used in such considerations will determine in which monads —
and so, upon which proof platforms — such proof procedures can be executed.

References

[BdM97] Richard Bird and Oege de Moor. Algebra of Programming. Series in Com-
puter Science. Prentice Hall International, Hemel Hempstead, 1997.

[Bir86] Richard S. Bird. An introduction to the theory of lists. Technical Mono-
graph PRG-56, Oxford University Computing Laboratory, Wolfson Build-
ing, Parks Road, Oxford, OX1 3QD, UK, 1986.

[dMG00] Oege de Moor and Jeremy Gibbons. Pointwise relational programming. In
LNCS 1816: Algebraic Methodology and Software Technology, pages 371–
390, May 2000.

[GMW79] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of LNCS. Springer-Verlag,
1979.

[GSHH92] Joseph Goguen, Andrew Stevens, Hendrik Hilberdink, and Keith Hobley.
2OBJ: A Metalogical Theorem Prover based on Equational Logic. Philo-
sophical Transactions of the Royal Society, Series A, 339:69–86, 1992. Also
in C. A. R. Hoare and M. J. C. Gordon, editors, Mechanized Reasoning and
Hardware Design, Prentice-Hall, 1992.

A Monadic Interpretation of Tactics 19

[HB97] Paul Hoogendijk and Roland Backhouse. When do datatypes commute?
In Eugenio Moggi and Guiseppe Rosolini, editors, LNCS 1290: Category
Theory and Computer Science, pages 242–260. Springer-Verlag, September
1997.

[Hin00] Ralf Hinze. A new approach to generic functional programming. In Princi-
ples of Programming Languages. ACM, 2000.

[HS85] C. A. R. Hoare and J. C. Shepherdson, editors. Mathematical Logic and
Programming Languages. Prentice Hall, 1985.

[JD93] Mark P. Jones and Luc Duponcheel. Composing monads. Technical Report
RR-1004, DCS, Yale, December 1993.

[JHA+99] Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton,
Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze,
Paul Hudak, Thomas Johnsson, Mark Jones, John Launchbury, Erik Mei-
jer, John Peterson, Alastair Reid, Colin Runciman, and Philip Wadler.
Haskell 98: A non-strict, purely functional language. www.haskell.org/

onlinereport, February 1999.
[KW93] David J. King and Philip Wadler. Combining monads. In J. Launchbury and

P. M. Sansom, editors, Functional Programming, Glasgow 1992. Springer,
1993.

[MGW96] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A tactic cal-
culus. Formal Aspects of Computing, 8(4):479–489, 1996. An abridged
version appears in the printed journal; the full version is available in the
electronic supplement to Formal Aspects of Computing, 8E, pp244–285.
http://link.springer.de/link/service/journals/00165/supp/list94 96.htm.

[Mil84] R. Milner. The use of machines to assist in rigorous proof. Philosophical
Transactions of the Royal Society, London. Series A, 312:411–422, 1984.
Also in [HS85].

[ML98] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1998.

[MNU97a] A. Martin, R. Nickson, and M. Utting. A tactic language for Ergo. In Lind-
say Groves and Steve Reeves, editors, Formal Methods Pacific ’97, Springer
Series in Discrete Mathematics and Theoretical Computer Science, Singa-
pore, May 1997. Springer-Verlag. Also appears as TR97-16, Software Ver-
ification Research Centre, The University of Queensland, QLD 4072, Aus-
tralia.

[MNU97b] Andrew Martin, Ray Nickson, and Mark Utting. Improving Angel’s parallel
operator: Gumtree’s approach. Technical Report 97-15, Software Verifica-
tion Research Centre, The University of Queensland, QLD 4072, Australia,
1997.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings
Fourth Annual Symposium on Logic in Computer Science. IEEE Computer
Society Press, Washington, D.C., 1989.

[Mor94] Carroll Morgan. Programming from Specifications. Series in Computer Sci-
ence. Prentice-Hall International, second edition, 1994.

[Pau87] Lawrence C. Paulson. Logic and Computation—Interactive Proof with Cam-
bridge LCF. Cambridge University Press, 1987.

[Pau89] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5:363–397, 1989. Also University of Cambridge
Computer Laboratory Technical Report No. 130.

20 Andrew Martin and Jeremy Gibbons

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of
Lecture notes in Computer Science. Springer Verlag, Berlin; New York,
1994. ‘With contributions by Tobias Nipkow’.

[Sch84] David A Schmidt. A programming notation for tactical reasoning. In R. E.
Shostak IV, editor, 7th International Conference on Automated Deduction.
Springer-Verlag, LNCS Volume 170, 1984.

[Spi90] Mike Spivey. A functional theory of exceptions. Science of Computer Pro-
gramming, 14(1):25–42, 1990.

[Wad89] Philip Wadler. Theorems for free! In Functional Programming Languages
and Computer Architecture, pages 347–359. ACM, 1989.

[Wad92] Philip Wadler. The essence of functional programming. In Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 1–14, Allbequerque, New Mex-
ico, USA, January 1992.

Acknowledgements

The first author is grateful to Mike Spivey and Paul Gardiner for suggesting the
connection of the work on Angel with the monadic ideas.

