
Let R be a regular language, and for strings s and t define

s → t ⇔ (∃x, y, z, r : xyz = s ∧ xrz = t ∧ r ∈ R)

Show that {t : 0 →∗ t} is regular.



Getting to first-order

Ernie Cohen

March 30, 2003



why do we want first-order invariants?

• going from HOL to FOL can be a big win for automatic
verification

• first-order data = spatial locality, so no problem with pointer
swing

• first-order invariants more robust to asynchrony

goal: HOL at the top (strategy) level, FOL at the bottom

today: some good ways to get to first-order invariants

• don’t introduce unnecessary inductive structures

• replace inductive structures with first-order structures

• replace spatial induction with temporal induction



ex: permutation inversion

problem: invert a permutation (stored in an array) in-place, using

at most one extra bit per element (plus a fixed number of index

variables)

obvious approach: invert one cycle at a time

Gasteren/Gries: translate cycles to nonrepeating cyclic sequences



spec: {(∀i : b.i = B.i)} P {(∀i : b.(B.i) = i)}

inv1: (∀i : m.i ⇒ b.(B.i) = i)

obvious update: ¬m.i; b.(B.i), m.i := i, true

problem: how to compute B?

inv2: ¬m B = ¬m (cb � b)

cb.i := b.i
∨ (m.i; cb.i := ⊥)
∨ (¬m.i; cb.(B.i); b.(B.i), m.i := i, true

choose operation order to keep the size of cb at most 2

no cycles!



ex: reference counters

idea: a reference counter represents an algebra of sets with op-

erations

• empty set

• test for emptiness

• singleton set

• disjoint union

• subset difference

implement these as 0,= 0,1,+, and −



Depth-First Search

usual invariants include “every visited node is marked or an an-

cestor of the current node in the DFS tree”

instead of defining ancestors inductively, keep the ancestry rela-

tion in a ghost variable



FIFO queues

usual approach: model queues as sequences

alternatives:

• use commutativity (as in omega algebra)

c!u c?v = c.e {u = v} + c?v c¬u

• keep messages as explicit objects; use graph homorphism

instead of prefix



ex: distributed dining philosophers

idea: philosopher eats only when it has all forks that it shares

how do we guarantee progress?

solution: make sure that the “waits-for” graph is well-founded.

problem: introduces a recursive data structure; concurrent up-

dates are tricky

alternative solution: maintain the invariant “every eventually

hungry philosopher will eventually eat” (global in time, but local

in space)

to guarantee the invariant holds initially, make sure that each

philosopher eats at least once


