When is a function a fold or an unfold?

Jeremy Gibbons
University of Oxford
WG2. 1 \#57, April 2003

1. Universal property as characterization

Folds:

$$
h=\operatorname{fold}_{\mathcal{F}} f \Leftrightarrow h \cdot \text { in }=f \cdot \mathcal{F} h
$$

Unfolds:

$$
h=\operatorname{unfold}_{\mathcal{F}} f \quad \Leftrightarrow \quad \text { out } \cdot h=\mathcal{F} h \cdot f
$$

Exact characterizations, but intensional rather than extensional. Also require second-order quantifications.

2. Partial extensional characterizations

An injection is a fold:
For injective total function h, there exists a g with $g \cdot h=i d$.
So $h=\operatorname{fold}_{\mathcal{F}}(h \cdot$ in $\cdot \mathcal{F} g)$.
Dually, a surjection is an unfold:
For surjective function h, there exists a g with $h \cdot g=i d$.
So $h=\operatorname{unfold}_{\mathcal{F}}(\mathcal{F} g \cdot$ out $\cdot h)$.
But these are only implications. Not all folds are injections, nor all unfolds surjections.

3. Earlier results (CMCS2001): Folds

Define ker $f=f^{\circ} \cdot f$.
Say ' f ' is an \mathcal{F}-congruence for g ' if $g \cdot \mathcal{F} f \subseteq f \cdot g$. (Usually used when f is an equivalence.)

Theorem:
Total function h is a fold iff ker h is an \mathcal{F}-congruence for in.
For example, 'safe tail' function
stail $x s=$ if null $x s$ then $x s$ else tail $x s$
is not a fold, because lists with equal safe-tails are not closed under cons.
Results dualize too.

4. Last meeting (\#56, September 2001)

Result for folds generalizes to partial functions too.
But the elegant relational proof I had did not generalize.

5. Quotients and kernels

Define quotients \and / by

$$
\begin{aligned}
& X \subseteq R \backslash S \quad \Leftrightarrow \quad R \cdot X \subseteq S \\
& X \subseteq S / R \quad \Leftrightarrow \quad X \cdot R \subseteq S
\end{aligned}
$$

Revise definition of kernel to:

$$
\begin{aligned}
\operatorname{ker} R & =(R \backslash R) \cap(R \backslash R)^{\circ} \\
& =(R \backslash R) \cap\left(R^{\circ} / R^{\circ}\right)
\end{aligned}
$$

(Coincides with earlier definition for simple and entire R.)
Define

$$
\operatorname{dom} R=\left(R^{\circ} \cdot R\right) \cap \mathrm{id}
$$

6. When is a partial function a fold?

Theorem:
For simple R, exists simple S with $R=$ fold $_{\mathcal{F}} S$ iff $\operatorname{ker}(\mathcal{F} R) \subseteq \operatorname{ker}(R \cdot$ in $) \wedge \quad \operatorname{dom}(\mathcal{F} R) \supseteq \operatorname{dom}(R \cdot i n)$

6.1. Lemma: Simple postfactors

Theorem is a direct corollary of this lemma:
For simple R, T, exists simple S with $T=S \cdot R$ iff

$$
\operatorname{ker} R \subseteq \operatorname{ker} T \quad \wedge \quad \operatorname{dom} R \supseteq \operatorname{dom} T
$$

(with $R:=\mathcal{F} R$ and $T:=R \cdot \mathrm{in}$).

6.2. Sublemma

Kernel has a universal property (from definition of quotient):

$$
\operatorname{ker} R \supseteq S \quad \Leftrightarrow \quad R \supseteq R \cdot S \wedge R \supseteq R \cdot S^{\circ}
$$

(ie ker R is largest S with $R \supseteq R \cdot S \cap R \cdot S^{\circ}$).
Hence $Q^{\circ} \cdot Q \subseteq \operatorname{ker} Q$ for simple Q :

$$
\begin{array}{lc}
& Q^{\circ} \cdot Q \subseteq \operatorname{ker} Q \\
\Leftrightarrow & \{\mathrm{UP} \text { of kernel }\} \\
& Q \supseteq Q \cdot Q^{\circ} \cdot Q \wedge Q \supseteq Q \cdot Q^{\circ} \cdot Q \\
\Leftrightarrow & \{\text { monotonicity }\} \\
& \text { id } \supseteq Q \cdot Q^{\circ} \\
\Leftrightarrow &
\end{array}
$$

Q is simple

6.3. Another sublemma

$$
\begin{array}{lc}
& Q \cdot \operatorname{ker} Q \subseteq Q \\
\Leftrightarrow & \{\text { quotient }\} \\
& \text { ker } Q \subseteq Q \backslash Q \\
\Leftrightarrow & \{\text { kernel }\}
\end{array}
$$

6.4. Proof of lemma: Right to left

Let $S=T \cdot R^{\circ}$.
Then

$$
T=T \cdot \operatorname{dom} T \subseteq T \cdot \operatorname{dom} R \subseteq T \cdot R^{\circ} \cdot R \quad(=S \cdot R)
$$

and

$$
T \cdot R^{\circ} \cdot R \subseteq T \cdot \operatorname{ker} R \subseteq T \cdot \operatorname{ker} T \subseteq T
$$

Moreover, S is simple:

$$
S \cdot S^{\circ}=S \cdot R \cdot T^{\circ}=T \cdot T^{\circ} \subseteq \mathrm{id}
$$

6.5. Proof of lemma: Left to right

Conversely, suppose R, S simple, and let $T=S \cdot R$. Then

```
    \(\operatorname{ker} R \subseteq \operatorname{ker} T\)
\(\Leftrightarrow\)
    ker \(R \subseteq \operatorname{ker}(S \cdot R)\)
\(\Leftrightarrow \quad\{U P\) of kernel\}
    \(S \cdot R \cdot \operatorname{ker} R \subseteq S \cdot R \quad \wedge \quad S \cdot R \cdot \operatorname{ker} R \subseteq S \cdot R\)
\(\epsilon \quad\) \{symmetry; monotonicity\}
    \(R \cdot \operatorname{ker} R \subseteq R\)
\(\Leftrightarrow \quad\) \{lemma; \(R\) simple\}
    true
```

and

$$
\operatorname{dom} R \supseteq \operatorname{dom} T \quad \Leftrightarrow \quad \operatorname{dom} R \supseteq \operatorname{dom}(S \cdot R) \quad \Leftrightarrow \quad \text { true }
$$

7. When is a partial function an unfold?

Define ran $R=R \cdot R^{\circ} \cap$ id.
Lemma (simple prefactors):
For simple R, T, exists simple S with $T=R \cdot S$ iff

$$
\operatorname{ran} R \supseteq \operatorname{ran} T
$$

Theorem (a corollary):
For simple R, exists simple S with $R=$ unfold S iff

$$
\operatorname{ran}(\mathcal{F} R) \supseteq \operatorname{ran}(\text { out } \cdot R)
$$

(Generalizes 'surjective function is an unfold'.)

7.1. Proof of lemma: Right to left

By symmetry, we'd expect to let $S=R^{\circ} \cdot T$, but in general this is not simple.

Instead, choose $Q \subseteq R^{\circ}$ such that Q is simple yet $\operatorname{dom} Q=\operatorname{dom} R^{\circ}$, and let $S=Q \cdot T$.
(By Axiom of Choice, any relation has a simple domain-preserving refinement).

We'll show that $T=R \cdot S=R \cdot Q \cdot T$.

7.2. Sublemma

For simple relations, equality follows from inclusion and common domain: For simple R, S,

$$
R=S \Leftarrow R \subseteq S \wedge \operatorname{dom} R \supseteq \operatorname{dom} S
$$

(Note that domain inclusion is equivalent to domain equality here.)
Proof uses shunting for simpletons.

7.3. Continuing proof of lemma

Want to show that $T=R \cdot Q \cdot T$.
By sublemma, suffices to show:
(i) $T, R \cdot Q \cdot T$ simple,
by construction
(ii) $T \supseteq R \cdot Q \cdot T$,

$$
T=\operatorname{ran} T \cdot T \subseteq \operatorname{ran} R \cdot T=R \cdot R^{\circ} \cdot T \subseteq T \text { (because } R \text { simple) }
$$

(iii) $\operatorname{dom} T \subseteq \operatorname{dom}(R \cdot Q \cdot T)$.

```
dom}(R\cdotQ\cdotT)=\operatorname{dom}((\operatorname{dom}R)\cdotQ\cdotT)
dom}((\operatorname{ran}Q)\cdotQ\cdotT)=\operatorname{dom}(Q\cdotT)=\operatorname{dom}(\operatorname{dom}Q\cdotT)
dom}(\operatorname{ran}R\cdotT)=\operatorname{dom}(R\cdot\mp@subsup{R}{}{\circ}\cdotT)=\operatorname{dom}
```


7.4. Proof of lemma: Left to right

Of course, if $T=R \cdot S$ then ran $T \subseteq \operatorname{ran} R$.

8. Dualization

We have:
For simple R, exists simple S with $R=$ fold $_{\mathcal{F}} S$ iff $\operatorname{ker}(\mathcal{F} R) \subseteq \operatorname{ker}(R \cdot \operatorname{in}) \wedge \quad \operatorname{dom}(\mathcal{F} R) \supseteq \operatorname{dom}(R \cdot \mathrm{in})$
and
For simple R, exists simple S with $R=$ unfold S iff

$$
\operatorname{ran}(\mathcal{F} R) \supseteq \operatorname{ran}(\text { out } \cdot R)
$$

They are not each other's duals, because we broke the symmetry by insisting on simplicity.

Therefore their respective duals are worth investigating.

8.1. When is an injection an unfold?

Define img $R=\operatorname{ker} R^{\circ}=(R / R) \cap(R / R)^{\circ}$.
Lemma (on injective prefactors):
For injective R, T, exists injective S with $T=R \cdot S$ iff

$$
\operatorname{img} R \subseteq \operatorname{img} T \quad \wedge \quad \operatorname{ran} R \supseteq \operatorname{ran} T
$$

(In fact, exists injective such S iff exists any such S.)
Theorem (a corollary):
For injective R, exists injective S with $R=$ unfold S iff

$$
\operatorname{img}(\mathcal{F} R) \subseteq \operatorname{img}(\text { out } \cdot R) \quad \wedge \quad \operatorname{ran}(\mathcal{F} R) \supseteq \operatorname{ran}(\text { out } \cdot R)
$$

8.2. When is an injection a fold?

Lemma (on injective postfactors):
For injective R, T, exists injective S with $T=S \cdot R$ iff $\operatorname{dom} R \supseteq \operatorname{dom} T$
(Again, 'exists injective' is redundant: exists injective such S iff exists any such S.)

Theorem (a corollary):
For injective R, exists injective S with $R=$ fold $_{\mathcal{F}} S$ iff

$$
\operatorname{dom}(\mathcal{F} R) \supseteq \operatorname{dom}(R \cdot \mathrm{in})
$$

(Generalizes 'injective total function is a fold'.)

