
Datatype-Generic Programming 1

Datatype-Generic Programming

Jeremy Gibbons

University of Oxford

March 2003

Datatype-Generic Programming 2

0. Outline

1. generic programming

2. C++ template meta-programming

3. algebra of programming

4. datatype-generic programming

5. two cultures

6. looking forward

Datatype-Generic Programming 3

1. Generic programming

Generic programming is a matter of making programs more adaptable by
making them more general.

The intention is to allow the programmer to capture more recurring
patterns as abstractions.

This is achieved by providing a wide variety of kinds of parameter:
non-traditional polymorphism.

Parameters may have a rich structure: eg types, type constructors, other
programs, class hierarchies, programming paradigms. . .

Mostly popular realization today is through the C++ Standard Template
Library.

Datatype-Generic Programming 4

2. C++ template meta-programming

Methods and classes parametrized by types:

template<class T>
void swap (T& a, T& b) { T c = a; a = b; b = c; }
main() {
int i1 = 3, i2 = 4; swap<int>(i1,i2);
double d1 = 3.5, d2 = 4.5; swap<double>(d1,d2);

}

. . . and by (integral, enumerated or pointer) values:

template<class T, int size>
class Vector { private: T values[size]; ... };
main() {
Vector<int, 3> v;
Vector<Vector<double,100>, 100> matrix;

}

Datatype-Generic Programming 5

2.1. Bluffer’s guide to the STL

A library of collection types and algorithms using C++ templates.

Container types: parametrically-polymorphic collection types —
arrays, sequences, etc

Iterators: abstraction of pointer; increment, decrement, arithmetic,
dereference as l-value or r-value

Algorithms: functions defined over container types: count, sort,
reverse, etc

Concepts: abstract requirements of a template parameter;
iterator concepts form interface between algorithms and containers

Function objects: objects providing operator() method;
other parameters to algorithms (eg ordering for sorting)

Datatype-Generic Programming 6

2.2. Compile-time meta-programming

In fact, there is a lot more to templates than appears in the STL.

The template language forms a simple, purely-functional sublanguage
that is executed at compile time.

The language is Turing complete: Unruh showed how to compute primes
in the compiler, and Czarnecki and Eisenecker implement a rudimentary
LISP interpreter via templates. (Compilers typically provide only bounded
recursion, though.)

Not just a cute trick: Alexandrescu shows some startling
meta-programming paradigms (such as the generic abstract factory).

Datatype-Generic Programming 7

2.3. Primes at compile-time (after Unruh)

template<int p, int d>
struct noDiv {
enum {

ans = (p==2) ||
((p%d) &&
noDiv<(d>2?p:0),d-1>::ans)

};
};
template<> struct noDiv<0,1> {
enum { ans = 1 };

};
template<> struct noDiv<0,0> {
enum { ans = 1 };

};

template<int n> struct isPrime {
enum { ans = noDiv<n,n-1>::ans };

};

template <int i> struct D {
D(void*);

};

template<int n> struct primes {
primes<n-1> rest;
void f() {
D<n> current =
isPrime<n>::ans ? 1 : 0;

rest.f();
}

};
template<> struct primes<1> {

void f() { D<1> current = 0; }
};

main() {
primes<10> junk; junk.f();

}

Datatype-Generic Programming 8

2.4. Generic abstract factory (Alexandrescu)

ProductB

ProductB2ProductB1

AbstractFactory

+createProductA():ProductA

+createProductB():ProductB

ProductA2ProductA1

ProductA

ConcreteFactory1

+createProductA():ProductA

+createProductB():ProductB

ConcreteFactory2

+createProductA():ProductA

+createProductB():ProductB

Client

<<instantiate>>

<<instantiate>>

<<instantiate>>

<<instantiate>>

Datatype-Generic Programming 9

2.5. The problem with templates

A class template is not a class: it cannot be manipulated until it is
instantiated.

There is no static checking (other than some syntax checking) of templates.
The instances are statically checked, but not the template itself.

A class template is not a formal construct with its own semantics: it is
more like a macro. There is no hope of a theory of generic programming
with templates.

Template meta-programming is extremely awkward. True
meta-programming would support ‘programs as data’ as first-class
citizens, with perspicuous rather than obscure techniques for
manipulation.

Datatype-Generic Programming 10

3. The algebra of programming

The STL succeeds in providing a generic library of datatypes and
algorithms. However, the template mechanism prohibits reasoning about
those datatypes and algorithms.

Moreover, the library is rather impoverished: the datatypes are all kinds
of sequence. An iterator is a very small window through which to view a
data structure. ‘The moving finger writes, and having writ, moves on.’

It is impossible using STL to write generic algorithms that exploit the
shape of data (parsers, pretty-printers, encoders, marshallers, etc.) One
can only write algorithms that ignore the shape or discard it.

We know how to do better.

Datatype-Generic Programming 11

3.1. Lists in Haskell

> data List a = Nil | Cons (a, List a)

> foldL :: b -> ((a,b)->b) -> List a -> b
> foldL e f Nil = e
> foldL e f (Cons (a,x)) = f (a, foldL e f x)

> mapL :: (a->b) -> List a -> List b
> mapL f = foldL Nil (\ (a,y) -> Cons (f a,y))

Datatype-Generic Programming 12

3.2. Binary trees in Haskell

> data Tree a = Tip a | Bin (Tree a, Tree a)

> foldT :: (a->b) -> ((b,b)->b) -> Tree a -> b
> foldT f g (Tip a) = f a
> foldT f g (Bin (t,u)) = g (foldT f g t, foldT f g u)

> mapT :: (a->b) -> Tree a -> Tree b
> mapT f = foldT (Tip . f) Bin

Datatype-Generic Programming 13

3.3. Generic definitions in Haskell

> class Bifunctor h where bimap :: ...
> data Bifunctor h => Fix h a = In (h a (Fix h a))

> foldF :: Bifunctor h => (h a b->b) -> Fix h a -> b
> foldF f (In x) = f (bimap (id, foldF f) x)

> mapF :: Bifunctor h => (a->b) -> Fix h a -> Fix h b
> mapF f = foldF (In . bimap (f,id))

> data ListF a b = NilF | ConsF (a,b)
> instance Bifunctor ListF where ...
> type List’ a = Fix ListF a

> data TreeF a b = TipF a | BinF (b,b)
> instance Bifunctor TreeF where ...
> type Tree’ a = Fix TreeF a

Datatype-Generic Programming 14

3.4. Generic Haskell

Standard Haskell suffices for higher-order parametrically-polymorphic
definitions like foldF and mapF. These preserve shape, but cannot
manipulate it.

More generally, we want to compute with shape (for example, to define a
generic marshaller and unmarshaller between complex datatypes to
bit-sequences).

That entails the ability to inspect datatype definitions, as provided in
Generic Haskell:

map<Unit> () = ()
map<Const a> x = x
map<:+:> f g (Inl u) = Inl (f u)
map<:+:> f g (Inr v) = Inr (g v)
map<:*:> f g (u,v) = (f u,g v)

Datatype-Generic Programming 15

4. Datatype-generic programming

We already have a good understanding of the theory of first-order
parametric polymorphism (such as foldL and foldT), and of higher-order
parametric polymorphism (such as foldF).

We are making some steps forward in programming using higher-order
ad-hoc polymorphism (for example, in Generic Haskell). But we know very
little of the theory underlying this.

We call this kind of parametrization datatype-generic programming.
(We considered talking about type-parametrized–type—parametrized
programs.)

An understanding of this theory would allow us to treat datatype-generic
programs (the analogue of template meta-programs) as formal constructs.

We would then have a sound basis for manipulating them:
static checking, reasoning, derivation, etc.

Datatype-Generic Programming 16

5. Two cultures

Proceedings of the IFIP TC2 Working Conference on Generic Programming,
J. Gibbons and J. Jeuring (eds), Kluwer Academic Publishers, 2003.

1. Generic Programming within Dependently-Typed Programming

2. Generic Haskell, Specifically

3. Generic Accumulations

4. A Generic Algorithm for Minimum Chain Partitioning

5. Concrete Generic Functionals

6. Making the Usage of STL Safe

7. Static Data Structures

8. Adaptive Extensions of Object-Oriented Systems

9. Complete Traversals as General Iteration Patterns

10. Efficient Implementation of Run-Time Generic Types for Java

Datatype-Generic Programming 17

5.1. . . . and maybe the twain should meet?

I believe that the template meta-programming and the algebra of
programming worlds could each teach the other a thing or two:

• template meta-programming sorely needs the sound theoretical
foundations that the algebra of programming provides;

• the algebra of programming could do with a corpus of examples and
case studies to motivate development.

Datatype-Generic Programming 18

5.2. Patterns generically

Perhaps certain design patterns form a suitable meeting point?

For example, the STL input iterator concept roughly corresponds to the
Iterator design pattern. There ought to be a CoIterator design
pattern, corresponding to output iterators. These are analogues of
functions that yield the contents of a collection, and that generate a
collection (of some otherwise-determined shape) from such contents.

The Visitor pattern is approximately the OO equivalent of the AoP fold.
It provides a means to traverse a data structure, accumulating some result.

We might be able to bridge the gap by exploring the relationships between
the OO and the AoP concepts.

Datatype-Generic Programming 19

6. Looking forward

The Datatype-Generic Programming project starts on 1st August 2003.

I have a DPhil studentship to offer, working on the ideas described here:

• modelling current practice with generic meta-programming

• developing a methodology for constructing datatype-generic
programs

• feeding back into practice by providing tool support

Roland Backhouse at Nottingham has a postdoc position to offer, working
on more theoretical aspects:

• modular specifications via parametrized signatures

• higher-order naturality properties

• generic theories of termination and well-founded datatypes

