Datatype-Generic Programming

Datatype-Generic Programming

Jeremy Gibbons
University of Oxford
March 2003

Datatype-Generic Programming

0. Outline

= W N

. generic programming
. C++ template meta-programming
. algebra of programming

. datatype-generic programming

5. two cultures

. looking forward

Datatype-Generic Programming

1. Generic programming

Generic programming is a matter of making programs more adaptable by
making them more general.

The intention is to allow the programmer to capture more recurring
patterns as abstractions.

This is achieved by providing a wide variety of kinds of parameter:
non-traditional polymorphism.

Parameters may have a rich structure: eg types, type constructors, other
programs, class hierarchies, programming paradigms. ..

Mostly popular realization today is through the C++ Standard Template
Library.

Datatype-Generic Programming

2. C++ template meta-programming

Methods and classes parametrized by types:

template<class T>
void swap (T& a, T& b) { T c =a; a=Db; b =2c; }
main() {
int 11 = 3, 12 = 4; swap<int>(11l,12);
double dl1 = 3.5, d2 = 4.5; swap<double>(dl,d2);
¥

...and by (integral, enumerated or pointer) values:

template<class T, int size>
class Vector { private: T values[size]; ... };
main() A

Vector<int, 3> v;

Vector<Vector<double,100>, 100> matrix;

}

Datatype-Generic Programming

2.1. Bluffer’s guide to the STL

A library of collection types and algorithms using C++ templates.

Container types: parametrically-polymorphic collection types —
arrays, sequences, etc

Iterators: abstraction of pointer; increment, decrement, arithmetic,
dereference as 1l-value or r-value

Algorithms: functions defined over container types: count, sort,
reverse, etc

Concepts: abstract requirements of a template parameter;
iterator concepts form interface between algorithms and containers

Function objects: objects providing operator () method;
other parameters to algorithms (eg ordering for sorting)

Datatype-Generic Programming

2.2. Compile-time meta-programming

In fact, there is a lot more to templates than appears in the STL.

The template language forms a simple, purely-functional sublanguage
that is executed at compile time.

The language is Turing complete: Unruh showed how to compute primes
in the compiler, and Czarnecki and Eisenecker implement a rudimentary

LISP interpreter via templates. (Compilers typically provide only bounded
recursion, though.)

Not just a cute trick: Alexandrescu shows some startling
meta-programming paradigms (such as the generic abstract factory).

Datatype-Generic Programming

2.3. Primes at compile-time (after Unruh)

template<int p, int d> template <int 1> struct D {
struct noDiv { D(void*);
enum { }s
ans = (p==2) ||
((p%d) && template<int n> struct primes {
noDiv<(d>27p:0),d-1>::ans) primes<n-1> rest;
b void f() {
}: D<n> current =
template<> struct noDiv<0,1> { isPrime<n>::ans 7?7 1 : 0;
enum { ans = 1 }; rest.f();
Ji ¢ ¥
template<> struct noDiv<0,0> { };
enum { ans = 1 }; template<> struct primes<1l> {
}: void f() { D<1> current = 0; }
Ji ¢
template<int n> struct isPrime {
enum { ans = noDiv<n,n-1>::ans }; main() {
}: primes<10> junk; junk.f();
¥

Datatype-Generic Programming

2.4. Generic abstract factory (Alexandrescu)

<<instantiate>> |

Datatype-Generic Programming

2.5. The problem with templates

A class template is not a class: it cannot be manipulated until it is
instantiated.

There is no static checking (other than some syntax checking) of templates.
The instances are statically checked, but not the template itself.

A class template is not a formal construct with its own semantics: it is
more like a macro. There is no hope of a theory of generic programming
with templates.

Template meta-programming is extremely awkward. True
meta-programming would support ‘programs as data’ as first-class
citizens, with perspicuous rather than obscure techniques for
manipulation.

Datatype-Generic Programming

3. The algebra of programming

The STL succeeds in providing a generic library of datatypes and
algorithms. However, the template mechanism prohibits reasoning about

those datatypes and algorithms.

Moreover, the library is rather impoverished: the datatypes are all kinds
of sequence. An iterator is a very small window through which to view a
data structure. ‘The moving finger writes, and having writ, moves on.’

It is impossible using STL to write generic algorithms that exploit the
shape of data (parsers, pretty-printers, encoders, marshallers, etc.) One
can only write algorithms that ignore the shape or discard it.

We know how to do better.

10

Datatype-Generic Programming

3.1. Lists in Haskell

>

data List a = N1l | Cons
foldL :: b -> ((a,b)->b)
foldlL e £ Nil =
foldlL e f (Cons (a,x)) =

mapL :: (a->b) -> List a

mapL £ = foldL Nil (\ (a,

(a, List a)

-> List a -> b
e
f (a, foldl e f x)

-> List b
y) -> Cons (f a,y))

11

Datatype-Generic Programming

3.2. Binary trees in Haskell

>

data Tree a = Tip a | Bin (Tree a, Tree a)

foldT :: (a->b) -> ((b,b)->b) -> Tree a -> b

foldT £ g (Tip a) =1 a

foldT £ g (Bin (t,u)) = g (foldT £ g t, foldT £ g u)
mapT :: (a->b) -> Tree a -> Tree b

mapT f = foldT (Tip . f) Bin

12

Datatype-Generic Programming

3.3. Generic definitions in Haskell

>
>

class Bifunctor h where bimap :: :
data Bifunctor h => Fix h a = In (h a (Fix h a))

foldF :: Bifunctor h => (h a b->b) -> Fix h a -> b
foldF £ (In x) = £ (bimap (id, foldF f) x)

mapF :: Bifunctor h => (a->b) -> Fix h a -> Fix h b
mapF £ = foldF (In . bimap (f,1id))

data ListF a b = Ni1lF | ConsF (a,b)
instance Bifunctor ListF where
type List’ a = Fix ListF a

data TreeF a b = TipF a | BinF (b,b)
instance Bifunctor TreeF where
type Tree’ a = Fix TreeF a

13

Datatype-Generic Programming 14

3.4. Generic Haskell

Standard Haskell suffices for higher-order parametrically-polymorphic
definitions like foldF and mapF. These preserve shape, but cannot
manipulate it.

More generally, we want to compute with shape (for example, to define a
generic marshaller and unmarshaller between complex datatypes to
bit-sequences).

That entails the ability to inspect datatype definitions, as provided in
Generic Haskell:

map<Unit> () O
map<Const a> x = X
map<:+:> f g (Inl u) = Inl (f u)
map<:+:> f g (Inr v) = Inr (g v)
map<:*:> f g (u,v) = (f u,g v)

Datatype-Generic Programming 15

4. Datatype-generic programming

We already have a good understanding of the theory of first-order
parametric polymorphism (such as foldL and foldT), and of higher-order
parametric polymorphism (such as foldF).

We are making some steps forward in programming using higher-order
ad-hoc polymorphism (for example, in Generic Haskell). But we know very
little of the theory underlying this.

We call this kind of parametrization datatype-generic programming.
(We considered talking about type-parametrized-type—parametrized
programs.)

An understanding of this theory would allow us to treat datatype-generic
programs (the analogue of template meta-programs) as formal constructs.

We would then have a sound basis for manipulating them:
static checking, reasoning, derivation, etc.

Datatype-Generic Programming 16

5. Two cultures

Proceedings of the IFIP TC2 Working Conference on Generic Programming,
J. Gibbons and J. Jeuring (eds), Kluwer Academic Publishers, 2003.

1.

p—
=

© g N en oes BY e

Generic Programming within Dependently-Typed Programming
Generic Haskell, Specifically

Generic Accumulations

A Generic Algorithm for Minimum Chain Partitioning

Concrete Generic Functionals

Making the Usage of STL Safe

Static Data Structures

Adaptive Extensions of Object-Oriented Systems

Complete Traversals as General Iteration Patterns

Efficient Implementation of Run-Time Generic Types for Java

Datatype-Generic Programming 17

5.1. ...and maybe the twain should meet?
I believe that the template meta-programming and the algebra of
programming worlds could each teach the other a thing or two:

e template meta-programming sorely needs the sound theoretical
foundations that the algebra of programming provides;

e the algebra of programming could do with a corpus of examples and
case studies to motivate development.

Datatype-Generic Programming

5.2. Patterns generically

Perhaps certain design patterns form a suitable meeting point?

For example, the STL input iterator concept roughly corresponds to the
ITERATOR design pattern. There ought to be a COITERATOR design
pattern, corresponding to output iterators. These are analogues of
functions that yield the contents of a collection, and that generate a
collection (of some otherwise-determined shape) from such contents.

The VISITOR pattern is approximately the OO equivalent of the AoP fold.
It provides a means to traverse a data structure, accumulating some result.

We might be able to bridge the gap by exploring the relationships between
the OO and the AoP concepts.

18

Datatype-Generic Programming 19

6. Looking forward

The Datatype-Generic Programming project starts on 1st August 2003.

I have a DPhil studentship to offer, working on the ideas described here:
e modelling current practice with generic meta-programming

e developing a methodology for constructing datatype-generic
programs

e feeding back into practice by providing tool support

Roland Backhouse at Nottingham has a postdoc position to offer, working
on more theoretical aspects:

e modular specifications via parametrized signatures
e higher-order naturality properties

e generic theories of termination and well-founded datatypes

