Calculating Requirements: an Approach Based on Architecture Style

Dave Wile Teknowledge Corp. Dwile@teknowledge.com

RE Calculi Candidates

- Performance
- Reliability
- Security
- Robustness

but, over what atoms?

The "Requirements"

- Integrate the functionality of:
 - Cell Phone (CP)
 - PDA
 - Digital Camera (DC)
 - GPS
 - Watch
 - Compass
 - Voice recorder
 - Email machine
 - Internet node
- Size, weight, resiliency, security, performance are important

Too Implementation Oriented? Functional spec instead:

- Take and store pictures: time, date, position, and orientation-stamped.
- Call people: dial, voice activated, from address book, and from GPS DB.
- Receive calls from people: live, callback, recorded message.
- Take memos: voice, text, positions.
- Keep track of addresses and phone numbers

More Functions

- Manipulate to-do list, with alarms.
- Keep track of date book with appointment alarms
- Send and receive email.
- Internet access.
- Find businesses and friends close to where I am.
- Provide driving instructions.
- Check time easily.

Pretty Brittle!

Engineering

- Incremental evolution from known solutions
- Error analysis
- Sensitivity analysis performance envelope
- Non-functional requirements

Non-functional Requirement Specification

- Basics
 - Components
 - Connectors
 - Types
 - Attachments of connectors to components
 - Subarchitectures
 - Properties
- Associate structure with the connectors
- Analyzers for non-functional properties
- But, calculation too hard in general (requires catamorphism over cyclic structures Gibbons)

BUT...

(Ta da) Architecture Styles

- May be much more constrained in their use of connectors
- Example: Model / View / Controller
- MVC idea is to separate
 - Information (model)
 - From the way it is displayed (view)
 - From the GUI for selecting it (controller)
- Our specifications will represent components of these three types (as sets)
- Connected by 5 operators
- Normally, we would have a graphical representation, but sometimes 1000 words produces prodigiously large pictures!

"Models:" Operators Intuitions

- + Each model is kept separate: *e.g.* addressList + memos.
- | Only one model will be chosen in the specification: *e.g. addresses* | *phones*.
- < The right model overrides the left one: *e.g. PDA.time* < *GPS.time*.
- # An integration or synchronization activity is necessary to put the two models together: *e.g.* CP.phoneNums # PDA.addresses

Views: Operator Intuitions

- + Each view is kept separate: *e.g.* calendar + time.
- | Only one view will be chosen in the specification: *e.g. addressList* | *todoList*.
- < The right view overwrites the left one: e.g. normal < alarm.
- # An integration activity is necessary to put the two views together:
 e.g. map # currentPosition

Controllers: Operator Intuitions

- + -Each event is possible in parallel:
 e.g. ctlKey + |/{Akey, ..., Zkey}
- | Only one event will occur: *e.g. scrollUp* | *scrollDown*.
- < The right event overrides the left one: e.g. onOff < reset.
- # An integration activity is necessary to put the two controls together:
 e.g. placeCall # selectAddress

Conventions

- + / {a,...,z} = a + ... + z
- $\{a, b\}$ instead of $\{a\} + \{b\}$
- {a: x} means a has the structure of x
- {Type ...} means a set of elements of that type.
- || x means x | |/ x. E.g. a directory (x) is shown or one of the elements of x.
- x.y is used to refer to some attribute y of x
- operator precedence is strictly left-to-right
- nesting is indicated by parentheses
- Singleton confusion: $a \# S = \{a\} \# S$ (when obvious)

Graphical Representation

- Would allow properties to be attached to each application of an operator
- Would also connect
 - the views with the models viewed
 - the views with the controllers
 - Here, connection indicated as additional properties e.g. ModelFor('showAddressList')
- (Would eliminate parentheses)

Example PDA MVC Spec

- Models: {addresses: {Address...}, toDos: {ToDo ...}, appointments: {Appointment ...}, memos: {Memo...}, time, preferences}
- Controls: //{grafitti, keyboard, find, viewAppointments, viewToDos, viewAddresses, viewMemos, viewFind, viewPreferences, onOff}

Example CP MVC Spec

- Models: {phones: {Phone ...}, missedCall: {Call...}, dialingNumber, time, preferences}
- Views: |/{ ||phones, ||missedCall, ||outgoingCalls, ||incomingCalls, dialingNumber}
 + (time < preferences)
- Controls: //{enterDigit, answer, hangUp, selectPhones, selectMissed, selectOutgoing, SelectIncoming, viewPreferences, onOff}

A Composite Specification

- Electronic Swiss Army Knife (ESAK)
- May want to write: *DC* #GPS #PDA #CP (leaving all implementation decisions to the implementer!)
- More controlled spec:
 - M ESAK = M DC + M GPS + M PDA + M CP
 - V ESAK = V DC | V GPS | V PDA | V CP
 - C ESAK = C DC + C GPS + C PDA + C CP

Introduce "-" Operator

- C ESAK = onOff +
 - (*C* DC- DC.onOff) + (*C* GPS- GPS.onOff) + (*C* PDA- PDA.onOff) + (*C* CP- CP.onOff)

(note singleton confusion)

- ESAK.onOff= DC.onOff # GPS.onOff # PDA.onOff # CP.onOff
- *M*ESAK = ...+ (CP.phones <PDA.addresses) +...

A Calculus (almost)

- Positive Selection Operators in a formula
- Number of Selects Value

NS(a+b) NS(a-b) NS(a|b) NS(a<b) NS(a#b) NS(a) NS(a) + NS(b) NS(a) - NS(b) NS(a) + NS(b) + 1 NS(a) + NS(b) NS(a) + NS(b) 0

A Calculus: Tables

• Built in homomorphism

 $F(a op b) = F_{op} (F(a), F(b))$

- Sometimes need information from node itself
- Built in paramorphism

$$F(a \ op \ b) = F_{op} \ (node, F(a), F(b))$$

Where node = (op, a, b)

• E.g. factor of memory used, *ifactor*

(Maximum) Resources Used

•	Resources Used	Apply to R(a), R(b)
	R	where $node = (op, a, b)$
	a+b	+
	a-b	_
	a b	max
	a <b< th=""><th>λ ra,rb . (ra+rb) * node.ifactor</th></b<>	λ ra,rb . (ra+rb) * node.ifactor
	a#b	λ ra,rb . (ra+rb) * node.ifactor
	a	node.PR

Across-type Effects

- Need to reference Model from Controller, for example
 - Might use connectors
 - Here, use property MCB model controlled by
- Example, interested in resiliency:
 - compute Number of Available Controls as memory components degrade
 - Apply NAC to Controllers

Resilience: Number of Available Controls

NAC Apply to NAC(a), NAC(b) w/ node free a+b +a-b a|b +a<b λ ra, rb . if AV(node.b.MCB) then rb else ra a#b λ ra, rb . if AV(node.MCB) then rb + ra else 0 if AV(node.MCB) then 1 else 0 a

Availability Predicate

Apply to AV(a), AV(b), node free • *AV* and a+b a-b λ (ra,rb) ra a|b and a<b or a#b and Exists r: resource \mathcal{A} *node*.*AssignedTo=r* and *LiveResource(r)*

Samsung SPH-i300 (CP+PDA)

• Models:

(MPDA - PDA.addresses - PDA.time) +

(M CP + outgoingCalls +incomingCalls - CP.phones - CP.time) + ((CP.phones + voiceData) # PDA.addresses.phones) + [[1]] (PDA.addresses -PDA.addresses.phones)) + **[**[**2**]] (PDA.time < CP.time)) + [[3]] {CP.thisNumber, CP.serviceNumber, CP.speedDial}

Notes

- 1. Voice data added to phone list and then integrated with address book phones
- 2. Remainder of the address book information
- 3. Separate memories used

(All this is known because PDA/CP died)

Problems

- Equational reasoning:
 - interfered with by using node-specific properties. E.g. |/a # |/b = |/(a#b)may not hold if properties are attached to #.
 - property equivalence classes ~ comments
 - may need to consider other relationships between architectural elements that are not described by connectors, MCB, similarly
- Normal architectures have more complex (cyclic) structures graph paramorphism as limit on tree paramorphisms

More Work

- Formalize imprecise semantics of operators leads to sloppiness
- Abstraction wo / MVC
- Flesh out MVC style
- Calculus for another style with less hierarchy
- Promotion theorems