Calculating axiomatic semantics from program equations by means of functional predicate calculus

(Some initial results of recent work — not for dissemination)

Raymond Boute

INTEC — Ghent University

2004/02

Overview

- 0. Motivation
- 1. Calculating the "axioms" for assignment from equations
- 2. Generalization to program semantics
- 3. Application to assignment, sequencing, choice and iteration
- 4. Final remarks and conclusions

0

Motivation

0.0 General

- Educational: axiomatic semantics (Hoare, Dijkstra) nonintuitive, "opaque"
- Research: further unification of mathematical methods for continuous and discrete systems (ongoing work)

0.1 Specific

- Justification of axiomatic semantics usually detours via denotational semantics e.g. Mike Gordon, Bertrand Meyer, Glynn Winskel
- Confusing terminology: what looks like *propositions* is often called *predicates*
- Correct semantics for assignment seems "backwards" (as observed by Gordon) Certain "forward" semantics is also correct (reinforces the "mystery"), e.g., $\{v=d\}$ v:=e $\{v=e[^v_d]$ provided $v \notin \varphi d$

1 Calculating the "axioms" for assignment from equations

1.0 Principle

- a. Basic ideas
 - If pre- and postcondition *look* like propositions, *treat* them as such
 - Derive axiomatic semantics from basic program equations. Convention: for program variable v, new vars: v before command, v' after command.
 - Antecondition a becomes $a[v \\ v]$ and postcondition p becomes $p[v \\ v]$
 - Substitution and change of variables are familiar in engineering math
 - Consider axiomatic semantics just as "economy in variable use"
 - Advantages of the approach:
 - Expressivity: direct formalization of intuitive program behaviour
 - Calculationally: all becomes predicate calculus (no "special" logics)

b. Convention

- Mnemonic symbols, even for bound variables (as in physics, applied math)
- We prefer "ante" over "pre" (better preposition, leads to distinct letters)

2

- c. Expressing Floyd-Hoare semantics in terms of a program equation
 - ullet Side issue: assume v to be of type V (as specified by the declarations)
 - Intuitive understanding of behaviour of assignment: equation $v' = e[v] \over v'$
 - Use in formalizing intuitive understanding of Floyd-Hoare semantics:
 - About 'v and v' we know a[v, v] and v' = e[v, v] (no less, no more).
 - Hence any assertion about v' must be implied by it, in particular $p[^v_{v'}]$. Formally: $a[^v_{v} \wedge v' = e[^v_{v} \Rightarrow p[^v_{v'}]$ (implicitly quantified over v and v').

No detour via denotational semantics; assertions remain propositions.

• Example: assume x declared as integer. Then, by the preceding definition,

The latter expression evaluates to 1 (or ${\scriptscriptstyle \rm T}$ if one prefers) by calculation.

1.1 Calculating the weakest antecondition

• Calculation (assuming type correctness checked, viz., $\forall \ v : V \cdot e[\ v \in V]$

- This proves the Theorem: $\{a\}\ v := e\ \{p\} \equiv \forall\, v : V \,.\, a \Rightarrow p {v\brack e}$. Hence
 - $-p_{e}^{v}$ is at most as strong as any antecondition a.
 - $p[^v_e$ is itself an antecondition since $\{p[^v_e\} \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e \Rightarrow p[^v_e \Rightarrow p[^v_e = v] \;] \; | \; v := e \; \{p\} \; \equiv \; \forall \, v : V \; . \; p[^v_e \Rightarrow p[^v_e \Rightarrow$
- Therefore $wa \llbracket v := e \rrbracket p \equiv p \llbracket v \rrbracket e$ (1)

4

1.2 Calculating the strongest postcondition

Calculation

- Hence Theorem: $\{a\}\ v:=e\ \{p\}\ \equiv\ \forall\ v:V\ .\ \exists\ (u:V\ .\ a[^v_u\wedge v=e^v_u)\Rightarrow p$, so
 - $\ \exists \ (u : V \ . \ a[^v_u \wedge v = e^v_u)$ is at least as strong as any postcondition p.
 - $\ \exists \, (u \, ; V \, . \, a[^v_u \wedge v = e^v_u)$ is itself a postcondition.
- Therefore $sp \llbracket v := e \rrbracket a \equiv \exists (u : V . a \llbracket v \wedge v = e^v_u)$ (2)

1.3 A few interesting excursions / illustrations

a. Justifying the "forward" rule v = d v := e v = e[v] provided $v \notin \varphi d$

b. Bouncing ante- and postconditions Letting $c:=\llbracket v:=e \rrbracket$, calculation yields

$$\begin{array}{l} \operatorname{sp} c \left(\operatorname{wa} c \, p \right) \; \equiv \; p \wedge \exists \, u \, \colon V \, . \, v = e[^{v}_{u} \\ \operatorname{wa} c \left(\operatorname{sp} c \, a \right) \; \equiv \; \exists \, u \, \colon V \, . \, a[^{v}_{u} \wedge e = e^{v}_{u} \\ \end{array}$$

E.g., c:= 'y := y² + 7' and p:= 'y > 11' and q:= 'y < 7' and a:= 'y > 2'

- sp c (wa cp) $\equiv y > 11 \land \exists x : \mathbb{Z} . y = x^2 + 7$ (simplifies to y > 11)
- sp c (wa cq) $\equiv y < 7 \land \exists x : \mathbb{Z} . y = x^2 + 7$ (simplifies to 0 or F)
- wa $c \operatorname{(sp} c a) \equiv \exists x : \mathbb{Z} \cdot x > 2 \land y^2 + 7 = x^2 + 7 \text{ (yields } y > 2 \lor y < -2 \text{)}$

6

Generalization to program semantics

2.0 Conventions

- a. Preliminary remark A familiar "problem": Given a variable x, we have $x \in Variable$ (at metalevel) and, for instance, $x \in \mathbb{Z}$ (in the language). Not resolvable without considerable nomenclature, yet clear from the context. Conclusion: let us exploit it rather than lose time over it (at this stage). Remark: similar (more urgent) problem in calculus: how to "save Leibniz" by formalizing if $y = x^2$, then $\mathrm{d}\,y = 2 \cdot x \cdot \mathrm{d}\,x$ (partial solution 11 years ago)
- b. State space
 - Not the denotational semantics view where state $s: Variable \rightarrow Value$
 - State space S is Cartesian product determined by variable declarations. Henceforth, s is shorthand for the tuple of all program variables. Auxiliary variables ("ghost" or "rigid" variables) appended if necessary.
 - ullet Example: var x : int, b : bool yields $\mathbf{S}=\mathbb{Z} imes \mathbb{B}$ and $s=\mathtt{x},\mathtt{b}.$
 - In what follows, v is a tuple of variables, type S_v , in particular $\mathbf{S} = S_s$.

2.1 Expressing Floyd-Hoare semantics in terms of program equations

- a. Program equations formalizing the intuitive behaviour of command c
 - $R\,c\,({}^{\backprime}s,s')$ expressing the state change (suitable $R:C\to {f S}^2\to {\Bbb B}$)
 - $T\ c\ s$ expressing termination of c started in state s (suitable $T:C\to \mathbf{S}\to \mathbb{B}$) In further treatment: only guaranteed, not just possible termination E.g., **not** as in the example in Gordon's *Specification and Verification 1*, which would amount (with our conventions) to $T\ c\ s\equiv \exists\ s':\mathbf{S}\ .\ R\ c\ (s,s')$.
- b. Formalizing intuitive Floyd-Hoare semantics for weak correctness
 - About 's and s' we know $a[s \atop s]$ and Rc(s,s'), no less, no more.
 - Therefore: $a[s \land R c (s, s') \Rightarrow p[s \land R c (s, s')]$
- c. Strong correctness: defining Term by $Term\ c\ a \equiv \forall s : \mathbf{S} . \ a \Rightarrow T\ c\ s$ (4)

$$[a] c [p] \equiv \{a\} c \{p\} \land Term c a \quad \text{or, blending in (3):}$$

$$[a] c [p] \equiv \forall 's : \mathbf{S} . \forall s' : \mathbf{S} . a[^s_{s} \Rightarrow T c's \land (R c ('s, s') \Rightarrow p[^s_{s'})) \quad (5)$$

8

2.2 Calculating the weakest antecondition

Calculation

- So we proved $abseleft[a] c [p] \equiv \forall s : \mathbf{S} . a \Rightarrow T c s \land \forall s' : \mathbf{S} . R c (s, s') \Rightarrow p^s_{s'}$
 - Observe, as before, that $T c s \wedge \forall s' : \mathbf{S} \cdot R c (s, s') \Rightarrow p[^s_{s'}]$ is at most as strong as any antecondition a and is itself an antecondition
 - Hence $\operatorname{wa} c p \equiv T c s \wedge \forall s' : \mathbf{S} . R c (s, s') \Rightarrow p[^{s}_{s'}]$ (6)
- Liberal variant: $wla c p \equiv \forall s' : \mathbf{S} . R c(s, s') \Rightarrow p[^s_{s'}]$ (shortcut: obtained by substituting $T c s \equiv 1$)

2.3 Calculating the strongest postcondition

Calculation

```
 \begin{array}{l} [a] \ c \ [p] \\ \equiv \ \langle \mathsf{Def.} \ (\mathsf{3---5}) \rangle \ \ \mathit{Term} \ c \ a \wedge \ \forall \ `s : \mathbf{S} \ . \ \forall \ s' : \mathbf{S} \ . \ a[\ ^s_s \wedge R \ c \ (`s,s') \ \Rightarrow \ p[\ ^s_{s'} \ \\ \equiv \ \langle \mathsf{Swap} \ \forall \rangle \ \ \ \mathit{Term} \ c \ a \wedge \ \forall \ s' : \mathbf{S} \ . \ \exists \ (`s : \mathbf{S} \ . \ a[\ ^s_s \wedge R \ c \ (`s,s') \ \Rightarrow \ p[\ ^s_{s'} \ \\ \equiv \ \langle \mathsf{Ldist} \ \forall /\Rightarrow \rangle \ \ \mathit{Term} \ c \ a \wedge \ \forall \ s' : \mathbf{S} \ . \ \exists \ (`s : \mathbf{S} \ . \ a[\ ^s_s \wedge R \ c \ (`s,s') \ ) \ \Rightarrow \ p[\ ^s_{s'} \ \\ \equiv \ \langle \mathsf{Change} \ \mathsf{var} \rangle \ \ \mathit{Term} \ c \ a \wedge \ \forall \ s : \mathbf{S} \ . \ \exists \ (`s : \mathbf{S} \ . \ a[\ ^s_s \wedge R \ c \ (`s,s) \ ) \ \Rightarrow \ p \ \end{cases}
```

- So we proved $arrange [a] c [p] \equiv Term c a \land \forall s : \mathbf{S} . \exists (`s : \mathbf{S} . a[^s_{`s} \land R c (`s, s)) \Rightarrow p$
 - Assuming $Term\ c\ a$, observe, as before, that \exists 's: \mathbf{S} . $a[^s_{`s} \land R\ c\ (\ 's,s)$ is at least as strong as any postcondition p and is itself a postcondition
 - Hence $\operatorname{sp} c p \equiv \exists s : \mathbf{S} . a[s \wedge R c(s, s) \text{ provided } Term c a$ (8)
- Liberal variant: $slp c p \equiv \exists `s : S . a[\stackrel{s}{\cdot}_s \land R c (`s, s)$ (9)

10

3 Application to assignment, sequencing, choice and iteration

3.0 Assignment revisited (embedded in the general case)

- a. We consider (possibly) multiple assignment Let $c := \llbracket v := e \rrbracket$
 - ullet Here v may be a tuple of variables and e a matching tuple of expressions.
 - Convenient in calculations: (W.L.O.G.) s = v + w (w rest of variables); similarly 's = v' + w' and s' = v' + w'
- b. Formalizing intuitive understanding (note simplest choice of bound variables)

$$R c(s, s') \equiv s' = s \begin{bmatrix} v \\ e \end{bmatrix}$$
 (10)
$$T c s \equiv 1$$

$$\textbf{E.g., } R \, \llbracket \textbf{y,j} \; := \; \textbf{y+j,j+1} \rrbracket \, ((\textbf{y},\textbf{j},\textbf{k}),(\textbf{y}',\textbf{j}',\textbf{k}')) \, \equiv \; \textbf{y}',\textbf{j}',\textbf{k}' = \textbf{y}+\textbf{j},\textbf{j}+\textbf{1},\textbf{k}$$

c. Weakest ante- and strongest postconditions From (6) and (8) with (10),

3.1 Sequencing

a. Formalization of intuitive understanding of behaviour

$$R \llbracket c'; c'' \rrbracket (`s, s') \equiv \exists t : \mathbf{S} . R c' (`s, t) \wedge R c'' (t, s')$$

$$T \llbracket c'; c'' \rrbracket s \equiv T c' s \wedge \forall t : \mathbf{S} . R c' (s, t) \Rightarrow T c'' t \qquad (13)$$

b. Weakest antecondition (strongest postcondition similar) Let c := [c'; c''] in

```
\begin{array}{l} \operatorname{wa} c\, p \\ \equiv \ \langle \operatorname{Eqn.} \, \operatorname{wa} \, (6) \rangle \ T\, c\, s \wedge \ \forall \, s' \colon \mathbf{S} \, .\, R\, c\, (s,s') \Rightarrow p[^s_{s'}] \\ \equiv \ \langle \operatorname{Def.} \, R\, (13) \rangle \ T\, c\, s \wedge \ \forall \, s' \colon \mathbf{S} \, .\, \exists \, (t \colon \mathbf{S} \, .\, R\, c'\, (s,t) \wedge R\, c''\, (t,s')) \Rightarrow p[^s_{s'}] \\ \equiv \ \langle \operatorname{Ldist.} \, \forall /\Rightarrow \rangle \ T\, c\, s \wedge \ \forall \, s' \colon \mathbf{S} \, .\, \forall \, t \colon \mathbf{S} \, .\, R\, c'\, (s,t) \wedge R\, c''\, (t,s') \Rightarrow p[^s_{s'}] \\ \equiv \ \langle \operatorname{Rearrange} \rangle \ T\, c\, s \wedge \ \forall \, t \colon \mathbf{S} \, .\, R\, c'\, (s,t) \Rightarrow \forall \, s' \colon \mathbf{S} \, .\, R\, c'\, (t,s') \Rightarrow p[^s_{s'}] \\ \equiv \ \langle \operatorname{Elend} \, T\, (13) \rangle \ T\, c'\, s \wedge \ \forall \, t \colon \mathbf{S} \, .\, R\, c'\, (s,t) \Rightarrow T\, c''\, t \wedge \ \forall \, s' \colon \mathbf{S} \, .\, R\, c''\, (t,s') \Rightarrow p[^s_{s'}] \\ \equiv \ \langle \operatorname{Eqn.} \, \operatorname{wa} \, (6) \rangle \ T\, c'\, s \wedge \ \forall \, t \colon \mathbf{S} \, .\, R\, c'\, (s,t) \Rightarrow (\operatorname{wa} \, c''\, p)[^s_t] \\ \equiv \ \langle \operatorname{Eqn.} \, \operatorname{wa} \, (6) \rangle \ \operatorname{wa} \, c'\, (\operatorname{wa} \, c''\, p) \end{array}
```

Remark: Gordon observes that this could not be obtained by $T c s \equiv \exists t : \mathbf{S} . R c(s, t)$

12

3.2 Choice (nondeterministic; deterministic as particular case)

a. Formalizing intuitive understanding Let $ch := [if [i:I.b_i \rightarrow c_i fi]]$ in

$$R ch (s, s') \equiv \exists i : I . b_i \land R c_i (s, s')$$

$$T ch s \equiv \forall i : I . b_i \Rightarrow T c_i s$$

$$(14)$$

Remark: I is just a (finite) indexing set, say, 0 ... n-1 for n alternatives.

b. Weakest ante-, strongest postcondition Let $ch := [if [i:I.b_i \rightarrow c_i fi]]$ in

```
\begin{array}{lll} \operatorname{wa} \, ch \, p & \equiv & \langle \operatorname{Eqn.} \, \operatorname{wa} \, (\mathsf{6}) \rangle & T \, ch \, s \wedge \forall \, s' \, \colon \mathbf{S} \, . \, R \, ch \, (s,s') \Rightarrow p[^s_{s'} \\ & \equiv & \langle \operatorname{Def.} \, R \, (\mathsf{14}) \rangle & T \, ch \, s \wedge \forall \, s' \, \colon \mathbf{S} \, . \, \exists \, (i \, \colon I \, . \, b_i \wedge R \, c_i \, (s,s')) \Rightarrow p[^s_{s'} \\ & \equiv & \langle \operatorname{Sdist} \, \forall / \Rightarrow \rangle & T \, ch \, s \wedge \forall \, s' \, \colon \mathbf{S} \, . \, \forall \, i \, \colon I \, . \, b_i \wedge R \, c_i \, (s,s') \Rightarrow p[^s_{s'} \\ & \equiv & \langle \operatorname{Shunt, \, dist.} \rangle & T \, ch \, s \wedge \forall \, i \, \colon I \, . \, b_i \Rightarrow \forall \, s' \, \colon \mathbf{S} \, . \, R \, c_i \, (s,s') \Rightarrow p[^s_{s'} \\ & \equiv & \langle \operatorname{Blend} \, T \, (\mathsf{14}) \rangle \, \, \forall \, i \, \colon I \, . \, b_i \Rightarrow T \, c_i \, s \wedge \forall \, s' \, \colon \mathbf{S} \, . \, R \, c_i \, (s,s') \Rightarrow p[^s_{s'} \\ & \equiv & \langle \operatorname{Eqn.} \, \operatorname{wa} \, (\mathsf{6}) \rangle \, \, \, \forall \, i \, \colon I \, . \, b_i \Rightarrow \operatorname{wa} \, c_i \, p \\ & \operatorname{sp} \, ch \, a \, \equiv \, \langle \operatorname{Similar \, calc.} \rangle \, \, \exists \, i \, \colon I \, . \, \operatorname{sp} \, c_i \, (a \wedge b_i), \, \operatorname{provided} \, Term \, c \, a \end{array}
```

c. Particular case: defining [if b then c' else c'' fi] = [if $b \rightarrow c'$ [$\neg b \rightarrow c''$ fi] yields [if b then c' else c'' fi] $p \equiv (b \Rightarrow \mathsf{wa}\,c'\,p) \land (\neg\,b \Rightarrow \mathsf{wa}\,c''\,p)$

3.3 Iteration

a. Formalizing intuitive understanding Let $l := [do\ b \rightarrow c\ od]$ in what follows.

Then
$$l = [if \neg b \rightarrow skip]b \rightarrow c; l fi]$$
 formalizes intuition about behaviour.

b. Calculating Rl, Tl and wa l Using the earlier results, (head) calculation yields:

$$R l (s, s') \equiv (\neg b \Rightarrow s = s') \land (b \Rightarrow \exists t : \mathbf{S} . R c (s, t) \land R l (t, s'))$$

$$T l s \equiv (\neg b \Rightarrow 1) \land (b \Rightarrow T c s \land \forall t : \mathbf{S} . R c (s, t) \Rightarrow T l t)$$

$$\mathsf{wa} l p \equiv (\neg b \Rightarrow p) \land (b \Rightarrow \mathsf{wa} c (\mathsf{wa} l p))$$

$$(15)$$

Equivalently: wa $l p \equiv (\neg b \land p) \lor (b \land \mathsf{wa} \, c \, (\mathsf{wa} \, l \, p))$. Unfolding suggests defining

$$w_{n+1} l p \equiv (\neg b \wedge p) \vee (b \wedge \mathsf{wa} c (w_n l p))$$
$$w_0 l p \equiv \neg b \wedge p$$

By induction, one can prove $\forall n : \mathbb{N} \cdot w_n \, l \, p \Rightarrow \text{wa} \, l \, p \text{ so } \exists \, (n : \mathbb{N} \cdot w_n \, l \, p) \Rightarrow \text{wa} \, l \, p$

c. Bounded nondeterminism: extra requirement $T \, l \, s \Rightarrow \exists \, (n : \mathbb{N} \, . \, d_n \, l \, s)$ where $d_0 \, l \, s \equiv \neg \, b$ and $d_{n+1} \, l \, s \equiv \, b \Rightarrow T \, c \, s \wedge \, \forall \, t : \mathbf{S} \, . \, R \, c \, (s,t) \Rightarrow d_n \, l \, t \, (\# \, \text{steps} \leq n)$. Then $\boxed{\text{wa} \, l \, p \equiv \exists \, (n : \mathbb{N} \, . \, w_n \, l \, p)}$ (as in Dijkstra's $A \, \text{Discipline of Programming}$).

14

4 Final remarks and conclusions

4.0 Final remarks

- On loops: Exploring R l, T l and sp l is left as an exercise
- General All properties in the literature sampled about wa and sp and their liberal variants can be derived and thereby better understood. Noteworthy: Law of the excluded miracle $\neg (wac0)$ is $Tcs \Rightarrow \exists s' : S . Rc(s, s')$

4.1 Conclusions

 Expressing semantics by program equations is the simplest and most direct formalization of intuitive understanding of program behaviour.
 Inspired by analogy with "circuit equations".

Also: similarities with Hehner's formulation became clear at WG2.1 meeting.

- The separate termination predicate complements the relational part so it can properly deal with nondeterminism and termination.
- All properties of Hoare and Dijkstra semantics are calculated by the formal rules for quantification in the functional predicate calculus.