Calculating axiomatic semantics from program equations

by means of functional predicate calculus
(Some initial results of recent work — not for dissemination)

Raymond Boute INTEC — Ghent University ~ 2004/02
Overview

0. Motivation

1. Calculating the “axioms” for assignment from equations

. Generalization to program semantics

. Application to assignment, sequencing, choice and iteration

A~ 0N

. Final remarks and conclusions

0 |Motivation

0.0 General
e Educational: axiomatic semantics (Hoare, Dijkstra) nonintuitive, “opaque”

e Research: further unification of mathematical methods
for continuous and discrete systems (ongoing work)

0.1 Specific

e Justification of axiomatic semantics usually detours via denotational semantics
e.g. Mike Gordon, Bertrand Meyer, Glynn Winskel

e Confusing terminology: what looks like propositions is often called predicates

e Correct semantics for assignment seems “backwards” (as observed by Gordon)
Certain “forward" semantics is also correct (reinforces the “mystery”),
eg., {v=d}v:=e{v=ce[}} provided v & ¢ d

1 |Calculating the “axioms” for assignment from equations

1.0 Principle

a. Basic ideas

e If pre- and postcondition /ook like propositions, treat them as such

e Derive axiomatic semantics from basic program equations. Convention:
for program variable v, new vars: ‘v before command, v’ after command.
— Antecondition @ becomes «[!, and postcondition p becomes p|!,
— Substitution and change of variables are familiar in engineering math
— Consider axiomatic semantics just as “economy in variable use”

e Advantages of the approach:
— Expressivity: direct formalization of intuitive program behaviour
— Calculationally: all becomes predicate calculus (no “special” logics)

b. Convention
e Mnemonic symbols, even for bound variables (as in physics, applied math)

e We prefer “ante” over “pre” (better preposition, leads to distinct letters)

2

c. Expressing Floyd-Hoare semantics in terms of a program equation

e Side issue: assume v to be of type V' (as specified by the declarations)

e Intuitive understanding of behaviour of assignment: equation |v" = e[l

e Use in formalizing intuitive understanding of Floyd-Hoare semantics:

— About ‘v and v we know a[!, and v' = e[, (no less, no more).

— Hence any assertion about v must be implied by it, in particular p[!).
Formally: a[Av' = e[V, = p[% (implicitly quantified over ‘v and v').

{a}v:i=e{p} = Vv V.V V. all, AV =¢€[l,= p[’, (0)

No detour via denotational semantics; assertions remain propositions.

e Example: assume x declared as integer. Then, by the preceding definition,

{x>27} x := x+3 {x > 30}

V:Z.Vx':Z.'x >2TANx' =%+3=%x>30

The latter expression evaluates to 1 (or T if one prefers) by calculation.

3

1.1 Calculating the weakest antecondition

e Calculation (assuming type correctness checked, viz., V'v:V .e[l € V)

{a} v:=e {p} (Definit. (0)) Vo:V. Vo' :V.all, AV =ell, = p["
(Shunting) V'w:V . Vu':V.all = v =e[, = p[!
(Rdist V/=) V:V .a[l, = Vv : V.0 =¢l = p[l
(One-pt. rule) V'v:V .a efeV = p[ZK,
(Assumption) V'v:V .ali, = p[f, U

[

[

[
(Change vars.) Vv :V .a = p[!

e This proves the | Theorem: {a} v :=e {p} = Vv:V .a = p[!| Hence

— p[¥ is at most as strong as any antecondition a.

v

_pe

—

is itself an antecondition since {p[!} v:=e {p} = Yv:V .p[l= p|

e Therefore |wav:=¢]p = p[! (1)

1.2 Calculating the strongest postcondition

e Calculation

{a} v:=e{p} = (Definit. (0)) Vv:V . Vo' :V . a[l, AV = e[, = p[’
= (Swap V/V) Vo'V .YV . a[l, AV = e[, = p[’
= (Ldist V/=) Vo': V.3 (v:V.a[, AV =e[l) = p[Y
= (Change var) Vo:V.3(w:V.a[l, Av=ell)=p

e Hence | Theorem: {a} v:=e {p} = Vu: V.3 (u:V.a[l ANv=¢l) = p| so

— J(u:V.a[l ANv=el) is at least as strong as any postcondition p.

— J(u:V.a[l Nv=¢€) is itself a postcondition.

u

e Therefore |spfv:=¢]a = F(u:V.allAv=c¢") (2)

1.3 A few interesting excursions / illustrations

a. Justifying the “forward” rule |[{v =d} v:=e {v =¢[}} provided v ¢& ¢d

{v=d}tv:=e{v=c¢[j

(Definit. (0)) V'v:V.Vo':V.'v=dff, Av' = e[, = = e[y,
(v opd Yw:V.V:V. U—d/\v—e[:>1)—e[d

(Leibniz, bis) V'u:V.Vo':V.%v=dA v =e[l, = e[l =e[!
(Reflex. =) 1 (or T if one prefers)

b. Bouncing ante- and postconditions Letting ¢ := [v := €], calculation yields

pAJu:V.v=e[
Ju:V.a[j Ne=¢]

spc(wacp)
wac(spca)

Eg,ci="y:=y*+7 andp:='y>11"and¢:='y< 7 and a:="y > 2’
wacp) = y>11ATJx:Z.y= 2>+ 7 (simplifies to y > 11)

espc(wacq) = y<7A3Jw:Z.y=x>+7 (simplifies to 0 or F)

e wac(spca) = Jz:Z.x > 2Ny +7 =247 (yieldsy > 2Vy < —2)

e spc(w

6

2 | Generalization to program semantics

2.0 Conventions

a. Preliminary remark A familiar “problem”: Given a variable x, we have
x € Variable (at metalevel) and, for instance, = € Z (in the language).
Not resolvable without considerable nomenclature, yet clear from the context.
Conclusion: let us exploit it rather than lose time over it (at this stage).
Remark: similar (more urgent) problem in calculus: how to “save Leibniz" by
formalizing if y = 2% then dy =2-2-dx (partial solution 11 years ago)

b. State space

e Not the denotational semantics view where state s: Variable — Value

e State space S is Cartesian product determined by variable declarations.
Henceforth, s is shorthand for the tuple of all program variables.
Auxiliary variables (“ghost” or "rigid” variables) appended if necessary.

e Example: var x : int, b : boolyields S=7Z xB and s = x, b.

e In what follows, v is a tuple of variables, type S, in particular S = S;.

7

2.1 Expressing Floyd-Hoare semantics in terms of program equations
a. Program equations formalizing the intuitive behaviour of command ¢

e Rc('s,s') expressing the state change (suitable R:C' — S* — B)

e T c s expressing termination of ¢ started in state s (suitable 7: C'— S — B)
In further treatment: only guaranteed, not just possible termination
E.g., not as in the example in Gordon's Specification and Verification 1,
which would amount (with our conventions)to T'cs = 35 :S. Rc(s, s).

b. Formalizing intuitive Floyd-Hoare semantics for weak correctness

e About ‘s and 5" we know a[¥, and Rc('s, s’), no less, no more.
e Therefore: a[l, A Rc('s,s") = p[% (implicitly quantified over ‘s and s').
e Hence |{a}c{p} = V's:S.Vs:S.all, ARc('s,s) = p[5% (3)

c. Strong correctness: defining Term by | Termca = Vs:S.a= T cs (4)

{a} ¢{p} A Termca or, blending in (3):
V's:S.Vs':S.alf,= Tc'sA (Re(s,s') =p[5) (5)

8

[p]
[p]

a]
la]

&
C

2.2 Calculating the weakest antecondition

e Calculation

(Definit. (5)) V's:S.Vs:S.a[l,= Tc'sA (Rc('s,s') = p[})
(Rdist V/=) V's:S.a[l,=Vs:S.Tec'sA (Re('s,s) = p[%)
(Sdist V/A) V's:S.a[l,=Tc'sAVs:S.Rc('s,s’) = p[
(Change vars.) Vs:S.a=TcsANVs:S.Re(s,s) = p[%

=
ene e =
o
=

e So we proved |[a] c[p] = Vs:S.a=TecsAVs:S.Rc(s,s) = p[

— Observe, as before, that Tcs A Vs':S. Re(s,s) = p[s is
at most as strong as any antecondition a and is itself an antecondition

— Hence |wacp = TesAVs:S.Re(s,s) =pl5 (6)

e Liberal variant: \wlacp = V§':S.Rc(s,s) =p[5 (7)
(shortcut: obtained by substituting T'cs = 1)

2.3 Calculating the strongest postcondition

e Calculation

la] ¢ [p]
= (Def. (3-5)) TermcaAV's:S.Vs':S.all, ARc('s,s') = p[%
(Swap V) TermcaAVs:S.V's:S.a[l, ARc(‘s,s") = p[%
(Ldist V/=) Termca AV s':S.3('s:S.all, ARc('s,s)) = p[5

(Change var) Termca AVs:S.3('s:S.all, ARc('s,s)) = p

e So we proved |[a] ¢ [p] = TermcaAVs:S.3('s:S.all, ARc(‘s,s)) =p

— Assuming Term ca, observe, as before, that 3's:S.a[l, ARc('s,s) is at
least as strong as any postcondition p and is itself a postcondition

— Hence |[spcp = 3's:S.a[l, ARc('s,s) provided Termca (8)

e Liberal variant: |slpcp = 3's:S.a[l; ARc(‘s,s) (9)

10

3 |Application to assignment, sequencing, choice and iteration

3.0 Assignment revisited (embedded in the general case)
a. We consider (possibly) multiple assignment Let c:=[v := €]

e Here v may be a tuple of variables and e a matching tuple of expressions.

e Convenient in calculations: (W.L.O.G.) s = v+ w (w rest of variables);
similarly ‘s = ‘v +‘w and s’ = v/ +H '

b. Formalizing intuitive understanding (note simplest choice of bound variables)

Rc(s,s) = 5[2 (10)
Tcs

_ O»

Eg, Rly,j := y*+3,3+1((v,3:k), (v, 3°K)) =y, 3" K =y +5,5 + Lk
c. Weakest ante- and strongest postconditions From (6) and (8) with (10),

ple (11)
Sy .all, Av=c¢[l, (12)

wa v :=¢]p
splv:=¢€]a

11

3.1 Sequencing

a. Formalization of intuitive understanding of behaviour

dt:S. R ('s,t) AR (¢,)

R [[C/, C//]] (\S7 S/)
! TdsAVt:S.Rd (s,t)=Tt (13)

T[] s

b. Weakest antecondition (strongest postcondition similar) Let c:=[c; "] in

wacp

(Eqn. wa (6)) T'csA Vs :S.Rc(s,s') = p[s

(Def. R (13)) TcsA Vs :S.3(t:S. R (s,t) AR (t,5)) = p[%

(Ldist. V/=) TesAVs:S.Vt:S. R (s,t) NR'(t,s) = p[%
(Rearrange) T csAVt:S.Rd (s,t) =Vs:S. R (t,5) = p[

(Blend T (13)) T sAVt:S. R (s,t) =T "t A\Vs':S. R (t,5) = p[%
(Eqn. wa (6)) T'dsA Vt:S.Rd (s,t) = (wac’p)[;

(Eqn. wa (6)) wac (wac’p)

Remark: Gordon observes that this could not be obtained by T'cs = 3¢:S. Re (s, t)

12

3.2 Choice (nondeterministic; deterministic as particular case)

a. Formalizing intuitive understanding Let ch:=[if [J[i:].b; -> ¢; £i] in

R ch (s,5)
T chs

Ji:1.b; NRe;i(s,s) (14)
Vi:l.bj=Tc¢;s

Remark: [is just a (finite) indexing set, say, 0..n — 1 for n alternatives.
b. Weakest ante-, strongest postcondition Let ch:=[if [Ji:[.b; -> ¢ fi] in

wachp = (Eqn.wa (6)) T'chs AVs :S.Rch(s,s') = p[
= (Def. R (14)) T chsAVs:S.3(i:1.b; A\Rc;(s,5)) = p[5
= (Sdist V/=) T chsAVs:S.Vi:I.bjARci(s,s)=p[
= (Shunt, dist.) T'chs AVi:l.b;=Vs:S.Rc;(s,s) = p[’
= (Blend T' (14)) Vi:I.b; = Tc;s AVs':S.Rci(s,s) = p[3
= (Egn.wa (6)) Vi:[l.b; = wac;p

spcha = (Similarcalc.) Jdi:1.spc;(aAb;), provided Term ca

c. Particular case: defining [if b then ¢ else ¢’ fi] = [if b > [-b-> " fi]
yields wa [if b then ¢ else ¢’ fi]p = (b= wacd' p) A (—b=wac’p)

13

3.3 lteration

a. Formalizing intuitive understanding Let [:=[do b -> ¢ od] in what follows.

Then |l = [if =0 ->skip[b -> ¢; [£i] | formalizes intuition about behaviour.

b. Calculating R, T'l and wal Using the earlier results, (head) calculation yields:

Ri(s,s) = (mb=>s=5)AN(b=3t:S.Rc(s,t) NRI(t,s")) (15)
Tls = b=TcsAVt:S.Rc(s,t)=TIt (16)
walp = (mb=p) A (b= wac(walp)) (17)
Equivalently: walp = (=bAp)V (bAwac(walp)). Unfolding suggests defining
Wyt lp = (2bApP)V (bAwac(w,lp))
wolp = —bAD

By induction, one can prove Vn:N.w,lp=walpso|3(n:N.w,lp) = walp

c. Bounded nondeterminism: extra requirement T'ls = 3 (n:N.d,ls) where
dols = —band d,11ls = b=TcsAVt:S.Rc(s,t) = d,lt (# steps < n).
Then (walp = 3(n:N.w,lp)|(as in Dijkstra's A Discipline of Programming).

14

4 |Final remarks and conclusions

4.0 Final remarks
e On loops: Exploring R, T'l and sp! is left as an exercise
e General All properties in the literature sampled about wa and sp and their

liberal variants can be derived and thereby better understood. Noteworthy:
Law of the excluded miracle | = (wacO)|is|Tcs =35 :S.Rc(s,s)

4.1 Conclusions

e Expressing semantics by program equations is the simplest and most direct
formalization of intuitive understanding of program behaviour.
Inspired by analogy with “circuit equations”.
Also: similarities with Hehner's formulation became clear at WG2.1 meeting.

e The separate termination predicate complements the relational part so it can
properly deal with nondeterminism and termination.

e All properties of Hoare and Dijkstra semantics are calculated by the formal
rules for quantification in the functional predicate calculus.

15

