A Survey of Command Algebra

Bernhard Möller
Institut für Informatik, Universität Augsburg
Collaborators: Walter Guttmann (Ulm)
Peter Höfner, Kim Solin (Augsburg)
Georg Struth (Sheffield)

1 Introduction

approaches to semantics of imperative programs

- partial/total correctness (wlp/wp) [Hoare 69, Dijkstra 74]
- general correctness [Morgan/Morris/Nelson 87, Doornbos 94]
- Kleene algebra with tests (partial correctness) [Kozen 97]
- demonic relational semantics [Nguyen 91, Backhouse 93, Desharnais 95, Desharnais/Mili/Nguyen 97, Desharnais/Möller/Tchier 02/04]
- Unifying Theories of Programs (UTP) [Hoare/He 98]
- omega algebra [Cohen 00]
- demonic refinement algebra (DRA) [von Wright 02]
how do all these interrelate?

2 Commands (General Correctness)

basic idea [Broy et al. 79, Berghammer/Zierer 86, Parnas 83]

- model a program as a pair (a, p) consisting of
- a transition relation a between states and
- a set p of states with guaranteed termination
- [Parnas 83] required $p \leq \operatorname{doma}$ (= set of starting states of a)
- allows distinguishing the "must-termination" given by p from the "may-termination" given by dom a
- excludes "miraculous" program behaviour
- [Morgan/Morris/Nelson 87] dropped this restriction
basic non-iterative commands

$$
\begin{aligned}
\text { fail } & \stackrel{\text { def }}{=}(0,1) \\
\text { skip } & \stackrel{\text { def }}{=}(1,1) \\
\text { loop } & \stackrel{\text { def }}{=}(0,0) \\
(a, p) \square(b, q) & \stackrel{\text { def }}{=}(a \vee b, p \wedge q) \\
(a, p) ;(b, q) & \stackrel{\text { def }}{=}(a \wedge b, p \wedge[a] q)
\end{aligned}
$$

where
$-0 \widehat{=}$ empty transition relation/false

- $1 \widehat{=}$ identical transition relation/true
$-[a] q \stackrel{\text { def }}{=} \neg \operatorname{dom}(a \wedge \neg q) \quad($ analogue of $w / p)$
algebraic properties:
- ($\operatorname{COM}(S), \square$, fail, ; skip) is a left semiring
- fail is only a left zero
- even right-distributive
- associated natural order on $\operatorname{COM}(S)$:

$$
(\mathrm{a}, \mathrm{p}) \leq(\mathrm{b}, \mathrm{q}) \Leftrightarrow \mathrm{a} \leq \mathrm{b} \wedge \mathrm{p} \geq \mathrm{q}
$$

- if S is a complete lattice then so is $\operatorname{COM}(S)$
- if S has a greatest element T then chaos $\stackrel{\text { def }}{=}(T, 0)$ is the greatest element of $\mathrm{COM}(\mathrm{S})$
- whereas havoc $\stackrel{\text { def }}{=}(T, 1)$ represents the most nondeterministic but everywhere terminating program
- weakest (liberal) precondition

$$
\begin{aligned}
& w l p \cdot(a, p) \cdot q \stackrel{\text { def }}{=}[a] q \\
& w p \cdot(a, p) \cdot q \stackrel{\text { def }}{=} p \wedge w \mid p \cdot(a, p) \cdot q
\end{aligned}
$$

■ then $p=w p .(a, p) .1$, so that, for command k,

$$
\text { wp.k.q }=\text { wp.k. } 1 \wedge \text { wlp.k.q }
$$

(Nelson's pairing condition)
■ by antitony of box: $k \leq l \Rightarrow$ wp. $k \geq w p . l$
(converse of the usual refinement relation)

3 wp is wlp

- definition of commands based on tests (abstract versions of assert-statements that characterise sets of states)
- analogous test commands: $(p, 1)$ where p is a test
- this admits a domain operation on commands:

$$
\operatorname{dom} k=(\operatorname{grd} . k, 1)
$$

where, as usual,

$$
\operatorname{grd} .(a, p) \stackrel{\text { def }}{=} \neg \text { wp. }(a, p) \cdot 0=p \rightarrow \operatorname{dom} a
$$

- corresponding box operator

$$
[k](q, 1)=(w p . k . q, 1)
$$

- this equation explains the title of this section:
wp is nothing but wlp in the semiring of commands
- except for fail the usual wp/wlp laws are just general laws for box operators
- moreover, we can re-use the general soundness and relative completeness proof for propositional Hoare logic from [Möller/Struth 04]
- this yields fairly quickly a sound and relatively complete proof system for wp
refinement relation:

$$
(\mathrm{a}, \mathrm{p}) \sqsupseteq(\mathrm{b}, \mathrm{q}) \stackrel{\text { def }}{\Rightarrow} \mathrm{q} \leq \mathrm{p} \wedge \mathrm{q} \wedge \mathrm{a} \leq \mathrm{b}
$$

- \sqsupseteq is a preorder
- associated equivalence:

$$
(a, p) \equiv(b, q) \Leftrightarrow p=q \wedge p \wedge a=p \wedge b
$$

4 Relation to UTP

- UTP specs and programs are predicates relating initial values v of variables with their final values v^{\prime}
- ok \leftrightarrow program has been started
- $\quad o k^{\prime} \leftrightarrow$ program has terminated
- both may occur freely in predicates
- set of all such predicates is too general
- subclass: designs

$$
\mathrm{P} \vdash \mathrm{Q} \stackrel{\text { def }}{\Leftrightarrow}\left(o k \wedge \mathrm{P} \Rightarrow o k^{\prime} \wedge \mathrm{Q}\right)
$$

where $o k$ and $o k^{\prime}$ do not occur in P or Q

- informal meaning: a computation is allowed by the design iff when started in a state satisfying P it will terminate in a state satisfying Q
- still narrower subclass: normal (or (H3)) designs
- where the precondition P may involve only initial values
- such a predicate is formally called a condition
- an (H3) design $p \vdash a$ can be modelled as the command (a, p)
- (actually as an equivalence class under refinement equivalence)
- the more general normal prescriptions of [Dunne 01] correspond precisely to the set of all commands (without a quotient formation)
- feasible (or (H4)) designs model programs that cannot "recover" from nontermination
- characterised by chaos $; k=$ chaos
- equivalent to Parnas's condition $p \leq \operatorname{dom} a$
general UTP predicates:
- can be modelled as 2×2-matrices that record the residual predicates for the four possible combinations of the values of $o k$ and $o k^{\prime}$ [Möller 06]
- in this way the unobservables $o k$ and $o k^{\prime}$ are truly hidden
- choice then becomes matrix addition
- and ; becomes matrix multiplication
- designs and prescriptions correspond to matrices of special shapes, from which many of the relevant laws can be derived more simply and concisely than from the original predicative specifications

5 Relation to Demonic Semantics

demonic semantics is a simplification of the general command semantics for feasible commands

- projection: $(a, p) \mapsto(p \wedge a, p \wedge \operatorname{dom} a)$
- for such commands the termination information coincides with the domain of the first component,
- hence can be omitted

■ i.e., $(a, p) \mapsto p \wedge a$ suffices

- inverse operation (up to refinement equivalence) $b \mapsto(b$, dom $b)$
- this is the view of demonic semantics:
- all states that have the possibility of triggering a non-terminating computation are considered "unsafe", and hence all "proper" transitions for them are deleted as well
- hence all such states are excluded from the domain of the corresponding semantic element
- this means that the transition part alone is sufficient
- the demonic operators can now be calculated from the command versions using the above projection/injection pair [Guttmann/Möller 06]

6 Iteration and Demonic Refinement Algebra

- finite/infinite iteration: (left) Kleene/ ω algebra
- DRA: strong iteration (finite or infinite iteration)
- connection [Höfner/Möller/Solin 06]

DRA	$=$ left ω algebra + chaos is a left zero
strong iteration	$=*+\omega$

- in particular, the commands form a DRA
- this can be non-extensional, hence not isomorphic to a predicate transformer model
- therefore the DRA axioms do not characterise predicate transformer models uniquely

