Dijkstra,Kleene,Knuth
 (revised version)

Bernhard Möller

Institut für Informatik, Universität Augsburg

1 The Shortest Path Problem

informal problem statement:

- given:
- directed graph (n, e)
- with node set n and non-negatively weighted edge set e
- a starting node $s \in n$
- task: for each $v \in \mathrm{n}$ return
- length of a shortest path from s to v
- or ∞ if there is no path from s to v.
algebraic formulation:
- calculate $\mathrm{d}=\mathrm{s} ; \mathrm{e}^{*}$
- where ; is path concatenation (under adjustment of costs)
aim of derivation: eliminate the expensive star operation
earlier version: [Backhouse et al. 92/94]

2 Some Properties of Paths

- general idea: work with an algebra of path sets (and their costs)
- edge sets: sets of paths with 2 nodes
- node sets: sets of singleton paths
- concatenation: glue at common intermediate node (associative)
- for node set m and path set a
$-m$; a set of paths in a that start in m-nodes
$-a ; m$ set of paths in a that end in m-nodes
- hence set n of all nodes is the identity of composition
- a* arbitrary finite iteration of a, i.e., all paths that can be constructed out of an arbitrary finite number of a-paths
choice:
- a [] b: for all pairs of nodes take shortest connecting paths provided by a or b
- refinement order: $\mathrm{a} \sqsubseteq \mathrm{b}={ }_{d f} \mathrm{a}\lceil] \mathrm{b}=\mathrm{b}$ (b refines a iff it offers the less costly paths)
- since singleton paths are always cheapest ($\operatorname{cost} 0$), set n of all nodes refines all sets: $a \sqsubseteq n$
- a full graph may offer better paths than a restricted one:

$$
m ; a \sqsubseteq a
$$

- composition distributes over choice, hence is \sqsubseteq-isotone
- convention: composition binds tighter than choice
further details in Appendix II
three essential properties used in the derivation:
- for graph node p and path set a :

$$
\begin{equation*}
p ; a ; p \sqsubseteq p \tag{nodetours}
\end{equation*}
$$

since all path costs are non-negative, any path from p to itself cannot be cheaper than the 0 -cost trivial singleton path consisting just of p

$$
\mathrm{a}^{*}=\mathrm{n}\lceil] \mathrm{a} ; \mathrm{a}^{*}=\mathrm{n}\lceil \rfloor \mathrm{a}^{*} ; \mathrm{a} \quad \text { (star recursion) }
$$

iteration of a either uses zero a-paths or one a-path followed/preceded by zero or more others

- $\left(\mathrm{b}\lceil\mathrm{c})^{*}\right.$: arbitrary alternations of b paths and c paths

$$
\begin{aligned}
\left(\mathrm{b}\lceil\mathrm{c})^{*}\right. & =\mathrm{c}^{*} ;\left(\mathrm{n}\lceil \rfloor \mathrm{b} ;\left(\mathrm{c}\lceil\mathrm{~b})^{*}\right) \quad\right. \text { (path grouping) } \\
& =\left(\mathrm{n}\lceil \rfloor(\mathrm{b}\lceil] \mathrm{c})^{*} ; \mathrm{b}\right) ; \mathrm{c}^{*}
\end{aligned}
$$

exhibit maximal c-sequences at the beginning or end

3 Dijkstra's Algorithm

central ideas:

- generalise the problem by using a set ok of nodes for which the problem is solved exactly
- initially, ok is empty
- extend this set node by node till all are in ok

■ for each node outside ok the algorithm computes an approximation to d, viz.

- the length of a shortest path whose interior nodes are from ok
formalisation:
- use the path algebra with node set n and edge set e
- for $o k \leq \mathrm{n}$ define generalised function $d d$ by

$$
d d(o k)={ }_{d f} s ;(o k ; e)^{*}
$$

- expresses that $d d(o k)$ only considers paths with interior nodes in $o k$
- then, by neutrality of n w.r.t. composition, $d=d d(n)$
- "strategy": extract maximal subexpressions of form $p ; a ; p$ to allow application of no-detours rule
- plan of derivation: find an inductive version of $d d$ that does not use star operations anymore
- maintain the invariant that $d d$ solves the problem exactly, i.e., using all possible paths, for end nodes in ok:

$$
\mathrm{s} ;(o k ; e)^{*} ; o k=s ; e^{*} ; o k
$$

- more compactly,

$$
\begin{equation*}
d d(o k) ; o k=\mathrm{d} ; o k \tag{1}
\end{equation*}
$$

■ induction base: $o k=\emptyset$

$$
d d(\emptyset)=s ; \emptyset^{*}=s ; n=s
$$

- invariant holds trivially for $d d(\emptyset)$
induction step: calculate behaviour of $d d$ when $o k$ is extended by a node $w \leq \neg o k$
from this infer how to choose w appropriately to maintain the invariant

$$
\begin{aligned}
& d d(w\lceil\square o k) \\
= & \{\text { definition } d d \text { and distributivity }\} \\
& s ;\left(w ; e\lceil o k ; e)^{*}\right. \\
= & \{\text { path grouping and distributivity }\} \\
& \mathrm{s} ;(o k ; e)^{*} ;\left(\mathrm{n}\lceil] w ; e ;\left((w\lceil\square o k) ; \mathrm{e})^{*}\right)\right. \\
= & \left\{\text { definition } d d \text { and abbreviation } \mathrm{h}=_{d f}(w\lceil o k) ; e\}\right\} \\
& d d(o k) ;\left(\mathrm{n}\lceil] w ; e ; \mathrm{h}^{*}\right)
\end{aligned}
$$

simplification of second alternative $\left.\left(h=_{d f}(w] o k\right) ; e\right)$:
$w ; e ; h^{*}$
$=\{$ star recursion and definition of $h\}$
$\left.w ; e\lceil] w ; e ; h^{*} ;(w] o k\right) ; e$
$=\{$ distributivity $\}$
$w ; e\lceil \rfloor w ; e ; h^{*} ; w ; e\lceil \rfloor w ; e ; h^{*} ; o k ; e$
$=\{$ middle summand \sqsubseteq first one by no-detours rule $\}$
$w ; e\lceil] w ; e ; h^{*} ; o k ; e$
substituted back:

$$
d d\left(w\lceil o k)=d d(o k) ;\left(n\lceil \rfloor w ; e\left\lceil w ; e ; h^{*} ; o k ; e\right)\right.\right.
$$

now continue simplification with third alternative (after distribution)

$$
\begin{aligned}
& d d(o k) ; w ; e ; h^{*} ; o k ; e \\
\sqsubseteq & \{\text { since } w ; e \sqsubseteq e \text { and } h \sqsubseteq e\} \\
& d d(o k) ; e ; e^{*} ; o k ; e \\
\sqsubseteq & \{\text { definition of } d d(o k) \text { and star rules }\} \\
& s ; e^{*} ; o k ; e \\
= & \left\{\text { definition of } d=s ; e^{*} \text { and invariant } d ; o k=d d(o k) ; o k\right\} \\
& d d(o k) ; o k ; e \\
\sqsubseteq & \left\{\text { definition of } d d(o k)=s ;(o k ; e)^{*} \text { and star rule }\right\} \\
& d d(o k)
\end{aligned}
$$

informal interpretation: shortest paths to nodes outside ok cannot loop back through ok

- in sum:

$$
d d(w\lceil o k)=d d(o k) ;(n\lceil] w ; e) \quad(*)
$$

- algebraic equivalent of the usual set of assignments

$$
d d[v]=\min (d d[v], d d[w]\lceil] \text { weight }(w, v))
$$

for $v \leq n$
■ (where by the invariant $d d(o k) ; o k=\mathrm{d}$; ok only the subset $\neg o k-\{w\}$ needs to be considered)

- now choose w such that the invariant holds for $w[] o k$ again

■ sufficient: $\mathrm{d} ; \mathcal{w}=d d(w[] o k) ; w$
■ by $(*)$ and no-detours rule the rhs is equal to $d d(o k) ; w$

```
abbreviation: \(f={ }_{d f} d d(o k)=s ;\left(o k ; e^{*}\right)\)
    \(d ; w\)
    \(=\{\) definition of \(d\}\)
    \(s ; e^{*} ; w\)
\(=\{\) path grouping, using \(e=o k ; e[] \neg o k ; e\}\)
    \(\mathrm{s} ;\left(\mathrm{ok} ; \mathrm{e}^{*}\right) ;\left(\mathrm{n}[] \neg \mathrm{ok} ; \mathrm{e} ; \mathrm{e}^{*}\right) ; w\)
\(=\left\{\right.\) definitions of \(f\) and setting \(\left.e^{+}={ }_{d f} e ; e^{*}\right\}\)
    \(\mathrm{f} ;\left(\mathrm{n}[] \neg o k ; \mathrm{e}^{+}\right) ; w\)
\(=\{\) splitting \(\neg o k\) into its nodes and distributivity \(\}\)
    \(\mathrm{f} ; w[]\left([]_{v \leq-o k} \mathrm{f} ; v ; \mathrm{e}^{+} ; w\right)\)
so goal achieved if \(\left\lceil_{v \leq-o k} f ; v ; e^{+} ; w \sqsubseteq f ; w\right.\)
```

reduction:

$$
[]_{v \leq \neg o k} f ; v ; \mathrm{e}^{+} ; w \sqsubseteq \mathrm{f} ; w
$$

$\Leftrightarrow\{$ universal characterisation of choice \}

$$
\forall v \leq \neg o k: f ; v ; e^{+} ; w \sqsubseteq f ; w
$$

$\Leftarrow\left\{\right.$ instance $\mathrm{f} ; w ; \mathrm{e}^{+} ; w \sqsubseteq \mathrm{f} ; w$ of no-detours rule $\}$

$$
\forall v \leq \neg o k: f ; v \sqsubseteq f ; w
$$

this holds iff w is a node with minimal cost along ok paths
complete algorithm:

$$
\begin{aligned}
d d(\emptyset)= & s \\
d d(o k\rfloor w)= & d d(o k) ;(n\lceil] w ; e) \\
& \text { if } o k \neq \emptyset \text { and } w \leq \neg o k \text { satisfies } \\
& \forall v \leq \neg o k: d d(o k) ; v \sqsubseteq d d(o k) ; w
\end{aligned}
$$

4 Knuth's Generalisation

observations:

- edge $X Y$ with weight m corresponds to an automaton transition $X \xrightarrow{m} Y$
- matrix algebra approach works, because the problem is essentially about automata/regular languages
- Knuth generalises this to a context-free setting
approach:
- use restricted cfgs of with productions of the shape ($n \geq 0$)

$$
X_{i}::=f\left(X_{i 1}, \ldots, X_{i n}\right)
$$

- and associated \mathbb{N}-valued interpreting functions f^{I} that are
- isotone in each argument
- superior, i.e., satisfy

$$
\forall j: f^{I}\left(x_{1}, \ldots, x_{n}\right) \geq x_{j}
$$

- task: compute for all i

$$
\mathfrak{m}\left(X_{i}\right)={ }_{d f} \min \left\{w^{\mathrm{I}}: w \in \mathrm{~L}\left(\mathrm{X}_{\mathrm{i}}\right)\right\}
$$

the shortest path example:
■ edge $X \xrightarrow{m} Y$ gives production

$$
X::=f(Y)
$$

- with $\mathrm{f}^{\mathrm{I}}(\mathrm{x})={ }_{d f} \mathrm{~m}+\mathrm{x}$
- f is isotone and superior
- for start node S add a production $S::=0$
algorithm:
- use again a set $o k$ and an auxiliary function $m m$
- ok is the set of nonterminals X for which $m(X)$ has been determined
- for all other Y the value $m m(\mathrm{Y})$ approximates $m(\mathrm{Y})$

■ invariant: $\forall X \in o k: m m(X)=m(X)$

- initialisation: ok $:=\emptyset ; \forall X: m m(X):=\infty$
loop:
- if all nonterminals are in ok, stop
- otherwise, for all $\mathrm{Y} \notin o k$, compute

$$
\begin{aligned}
& m m(\mathrm{Y})={ }_{d f} \min \left\{\mathrm { f } ^ { \mathrm { I } } \left(\mathrm{~m}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{m}\left(\mathrm{X}_{\mathrm{n}}\right) \mid\right.\right. \\
& \\
& \left.Y::=\mathrm{f}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \wedge\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \subseteq o k\right\}
\end{aligned}
$$

(if the set involved is empty then $m m(\mathrm{Y})=\infty$)

- choose a Y with minimum $m m(\mathrm{Y})$

■ ok: $=o k \cup\{\mathrm{Y}\}$

- $\mathfrak{m}(\mathrm{Y}):=m m(\mathrm{Y})$
challenge:
find a nice calculational correctness proof/derivation for Knuth's algorithm

Appendix I: Just for Fun - The Floyd/Warshall Algorithm

this is the all-pairs shortest non-empty path problem
specification even simpler than for Dikstra: compute e^{+}
central idea: use again a set $o k$ that restricts the inner nodes of paths and increment it stepwise
specification of auxiliary function:

$$
r t(o k)={ }_{d f} e ;(o k ; e)^{*}
$$

("restricted transitive closure")
here another star property is useful:

$$
(a[] b)^{*}=a^{*} ;\left(b ; a^{*}\right)^{*}=\left(a^{*} ; b\right) ; a^{*} \quad \text { (star of sum) }
$$

induction base:

$$
r t(\emptyset)=e ; \emptyset^{*}=e ; \mathfrak{n}=e
$$

induction step: for arbitrary node w :

$$
\begin{aligned}
& r t(o k] w) \\
= & \{\text { definition } r t \text { and distributivity }\} \\
& e ;(o k ; e\lceil] w ; e)^{*} \\
= & \{\text { star of sum }\} \\
& e ;(o k ; e)^{*} ;(w ; e ;(o k ; e))^{*} \\
= & \left\{\text { fold } \mathrm{e} ;(o k ; \mathrm{e})^{*} \text { twice to } \mathrm{f}={ }_{d f} r t(o k)\right\} \\
& \mathrm{f} ;(w ; \mathrm{f})^{*} \\
= & \{\text { star recursion and distributivity }\} \\
& \mathrm{f}[] \mathrm{f} ; w ; \mathrm{f} ;(w ; \mathrm{f})^{*} \\
= & \{\text { star recursion and distributivity }\} \\
& \mathrm{f}[] \mathrm{f} ; w ; \mathrm{f}\lceil] \mathrm{f} ; w ; \mathrm{f} ;(w ; \mathrm{f})^{*} ; w ; \mathrm{f} \\
= & \{\text { since third alternative } \sqsubseteq \text { second one by no-detours rule }\} \\
& \mathrm{f}[] \mathrm{f} ; w ; \mathrm{f}
\end{aligned}
$$

to guarantee termination, choose $w \notin o k$
complete algorithm:

$$
\begin{aligned}
r t(\emptyset)= & e \\
r t(o k] w)= & f\rfloor f ; w ; f \\
& \text { where } f=r t(o k) \text { and } w \notin o k
\end{aligned}
$$

depending on the underlying cost semiring (see Appendix II) this is the Floyd or Warshall algorithm

Appendix II: Algebraic Background

Definition 4.1 semiring: structure $(S,+, \cdot, \mathbf{0}, \mathfrak{n})$ such that

- $(S,+, 0)$ is a commutative monoid
- $(S, \cdot, \mathbf{1})$ is a monoid
- the distributive laws hold

■ $\mathbf{0}$ is an annihilator: $\mathbf{0} \cdot \mathrm{a}=\mathbf{0}=\mathrm{a} \cdot \mathbf{0}$
if S is idempotent, i.e., $x+x=x$, the relation $\mathrm{a} \leq \mathrm{b} \Leftrightarrow_{d f} \mathrm{a}+\mathrm{b}=\mathrm{b}$ is a partial order, the natural order
interpretation:
$+\leftrightarrow$ choice,

- \leftrightarrow sequential composition
$0 \leftrightarrow$ empty set of choices
$1 \leftrightarrow$ identity
$\leq \leftrightarrow$ increase in information or in choices

Example 4.2 tropical semiring:

- $(\min ,+)=\left(\mathbb{N}_{\infty}, \min ,+, \infty, 0\right)$
- natural ordering: converse of the standard ordering on \mathbb{N}_{∞}
- $\mathbf{1}=0$ is the largest element.
generalisation: cost algebra
- idempotent semiring with total natural order
- in which 1 is the greatest element
further examples:
- $\mathbb{R}_{\geq 0} \cup\{\infty\}$ with the operations as above
- Booleans \mathbb{B} with implication order
$\operatorname{MAT}(M, S)=\left(S^{M \times M},+, \cdot, \mathbf{0}, \mathbf{1}\right)$
- set of matrices with indices in M and elements of semiring S as entries
- again a semiring
- idempotent iff S is
- natural order: componentwise
- $\operatorname{MAT}(M, \mathbb{B})$ isomorphic to semiring $\operatorname{REL}(M)$ of binary relations over M under union and composition
modelling graphs with edge weights:
- $\operatorname{MAT}(N, S)$ where S is a cost algebra
representing sets of graph nodes
- test semiring [Kozen 97]: pair (S , test(S)) with Boolean subalgebra test $(S) \subseteq[\mathbf{0}, \mathbf{1}]$ such that
- $\mathbf{0}, \mathbf{1} \in \operatorname{test}(S)$
$\square+$ is join and \cdot is meet in $\operatorname{test}(S)$
- S is discrete if $\operatorname{test}(S)=\{\mathbf{0}, \mathbf{1}\}$
- $S=(\min ,+)$ is discrete, but $\operatorname{MAT}(M, S)$ can be made non-discrete:
- choose as tests all matrices with tests on the main diagonal and 0 outside
- over discrete S, matrix p is a point if it is an atom in test $(\operatorname{MAT}(M, S))$,
- i.e., if it has exactly one entry 1 in its main diagonal (and hence $\mathbf{0}$ everywhere else)
- general tests represent subsets of M in the analogous way
- for points p and q and matrix a

$$
(p \cdot a \cdot q)_{u v}= \begin{cases}a_{u v} & \text { if } u=p \wedge v=q \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 4.3 Consider a discrete cost algebra S, a point p and an arbitrary matrix a of $\operatorname{MAT}(M, S)$. Then $p \cdot a \cdot p \leq p$.
since \mathbb{B} is a cost algebra, this property holds for the relation semiring REL(M), too
iteration: add Kleene star and plus with standard axioms [Kozen94]

Example 4.4 Since in ($\min ,+$) the multiplicative unit $1=0$ is the largest element, and $x^{*}=1$ for all $x \leq 1$, we can extend ($\mathrm{min},+$) uniquely to a Kleene algebra by setting $n^{*}=1$ for all $n \in \mathbb{N}_{\infty}$.
useful law
$(b+c)^{*}=\left(1+(b+c)^{*} \cdot b\right) \cdot c^{*}=b^{*} \cdot\left(1+b \cdot(b+c)^{*}\right) \quad$ (path grouping)
fact [Conway71]: $\operatorname{MAT}(M, S)$ over Kleene algebra S can be extended to a Kleene algebra

Corollary 4.5 Consider a discrete cost algebra S, a point p and an arbitrary matrix a of $\operatorname{MAT}(M, S)$. Then $p \cdot a^{*} \cdot p=p$.
reason: $\mathbf{1} \leq \mathrm{a}^{*}$ holds for all Kleene algebras
connection to path problems:

- for graph matrix $a \in \operatorname{MAT}(M, S)$ over cost algebra S and $x, y \in M$:
- element $a_{x y}^{i}$ gives the minimum cost of paths with exactly i edges from x to y
- hence $a_{x y}^{*}$ is the minimum cost along arbitrary paths from x to y

