
From XQuery to Relational Logics

Predicate logic has long been seen as a good foundation for querying relational data. This is
embodied in the correspondence between relational calculus and first-order logic, and can also be
seen in mappings from fragments of the standard relational query language SQL to extensions of
first-order logic (e.g. with counting). A key question is what is the analog to this correspondence for
querying tree-structured data, as seen, for example, in XML documents. We formalize this as the
question of the appropriate logical query language for defining transformations on tree-structured
data. The predominant practitioner paradigm for defining such transformations is top-down tree

building. This is embodied by the XQuery query language, which builds the output tree in parallel
starting at the root, based on variable bindings and nodeset queries in the XPath language. The
goal of this paper is to compare the expressiveness of top-down tree-building languages based on
a benchmark of predicate logic. We start by giving a “formalized XQuery” XQ that can serve
as a representative of the top-down approach. We show that all queries in XQ with only atomic
equality are equivalent to “first-order interpretations”, an analog to first-order logic (FO) in the
setting of transformations of tree-structured data. We then consider fragments of atomic XQ. We
identify a fragment that maps efficiently into first-order, a fragment that maps into existential
first-order logic, and a fragment that maps into the “navigationally two-variable” fragment of
first-order logic – an analog of two-variable logic in the setting where data values are unbounded.
When XQ is considered with deep equality, we find that queries can be translated into FO with
counting (FO(Cnt)). Translations from XQ to logical languages on relations have a number of
consequences. We use them to derive complexity bounds for XQ fragments, and to bound the
Boolean expressiveness of XQ fragments.

Categories and Subject Descriptors: H.2.3 [Languages]: Query languages

1. INTRODUCTION

The formal foundation for relational query languages is well-established. Much of
relational querying can be done in the relational calculus, which is equivalent in
expressiveness to first-order logic. What about tree-structured data, as exempli-
fied by XML data trees? For Boolean and nodeset queries on pure node-labeled
trees, the querying model is fairly well understood. The predominant practitioner
language is XPath, and over a fixed label alphabet the core of XPath corresponds
in expressiveness to the two-variable fragment of first-order logic over trees [Marx
2005]. The expressiveness of XPath with data value joins over an unbounded set
of data values is less well-understood, although some connections with logic are
known [Anonymous 2008a]. However, when we turn to queries that produce trees
from trees, the logical counterpart becomes less clear, since logics by themselves do
not define mappings from structures to structures.

The predominant paradigm for XML querying in practice is top-down non-recur-
sive tree building, as exemplified in the standard language XQuery. The key fea-
ture of XQuery and its precursors (e.g. Quilt [Chamberlin et al. 2000]) is that the
output tree is built top-down in parallel, with threads of control at every leaf of
the partially-constructed output. Rather than using a general structural recursion
mechanism, these languages use explicit nesting of subqueries to build the output
up to some fixed depth. In our paper we formalize the top-down paradigm by
the query language XQ, an abstraction of XQuery that captures the main tree-
formation constructs. We wish to compare the expressiveness of XQ and its frag-
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ments to some external benchmark. For relational query languages, a benchmark
is first-order logic; the results of Codd show that the relational calculus and re-
lational algebra are both equivalent in expressiveness to first-order logic (see, e.g.
[Abiteboul et al. 1995]), and thus form a natural foundation for query languages. In
this work we will choose to use logics as a benchmark. We rely on the well-known
notion of first-order interpretation [Ebbinghaus and Flum 1999], which associates
a collection of first-order formulas with a mapping from structures to structures.
Informally, a tree-to-tree transformation T is given by a first-order interpretation
if there are a set of relational calculus expressions that produce, from a relational
coding of an input data tree T , the relational coding of T (T ). The use of logics,
rather than relational algebra, will simplify e the proofs; it will also make it possible
to apply prior results from logic in getting expressiveness results for sublanguages.
However, using the classical results cited above, we can see that queries given by
first-order interpretations can be implemented relationally using relational algebra
or relational calculus.

Contributions: We start by showing that XQ queries that cannot make “deep
equality comparisons” (that is, isomorphism tests of subtrees) can be transformed
into equivalent FO interpretations: this is an analog for tree query languages of the
simulations for complex object languages in relational algebra [Paredaens and Van
Gucht 1988]. We then trace how the mapping between XQ and first-order logic
filters down to fragments of XQ. Although the transformation for general XQ
requires exponential time, we prove that it can be done in polynomial time when
restricting to XQ queries in a natural class (the “composition-free” XQ queries
[Koch 2006]). We then examine queries that do not use node equality comparisons;
for queries in this fragment that use only downward navigation, as well as those
that are composition-free, one can map to a restricted fragment of FO, one that
is “almost” within two-variable logic. We show that the positive fragment of XQ
maps to the existential fragment of first-order logic. We establish lower bounds on
the complexity of both of these transformations.

The above concerns the equivalence of XQ with atomic equality and interpre-
tations given by first-order logic/relational calculus. We also study the variant of
XQ where queries can compare trees for structural equality (we refer to this as
“deep equality”, in analogy with the corresponding construct in complex value lan-
guages). Not every such query can be transformed into a corresponding first-order
interpretation. We hence compare the expressiveness of deep equality queries with
interpretations given using first-order logic with counting FO(Cnt), which corre-
sponds to a restricted form of relational calculus with aggregation. Queries given
by these interpretations can still be implemented relationally in a fragment of SQL.
We give a transformation producing from each XQ query with deep equality a
corresponding FO(Cnt) interpretation, and extend the complexity bounds on this
transformation from the first-order case.

Our results are applied to the complexity of XQ. Using our translations, we give
new upper bounds on the data complexity of fragments of XQ, as well as simpler
proofs of prior bounds.

In a companion paper [Anonymous 2008b], we examine the question of mapping
back from relational logics to XQ, considering whether the correspondence between
XQ queries and logics is tight.

Organization: Section 2 gives background on the XQuery fragments we con-
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sider and the notion of logical interpretation that we use to capture query language
expressiveness. Section 3 gives a translation from XQ queries using only atomic
equality into first-order interpretations. The translation algorithm in this section
is also the basis for the analyses that come later in the paper. Sections 4 and 5
prove the correctness of the algorithm. Section 6 looks at properties of this trans-
lation, including the complexity of translation and the behavior of the translation
on fragments of the language. Section 7 gives translations between full XQ and in-
terpretations in first-order logic with a count operator. Section 8 gives conclusions,
while Section 9 discusses related work.

2. BACKGROUND AND NOTATIONS

2.1 Data and Query Model

An unranked ordered tree is a tree in which nodes may have a variable number of
children, with an order among them. A data tree is a two-sorted relational structure
with sorts Node, Lab and signature

σnav = (Haslabel, child, next-sibling, descendant, following-sibling).

This represents a unranked ordered tree whose nodes are the elements of sort Node

and whose labels are the elements of sort Lab. That is, the interpretation of the sorts
will vary with the data tree, and hence we do not assume the labeling alphabet to
be fixed. The binary relation Haslabel represents a partial function lab() : Node →
Lab that takes a node to its label; Haslabel(x, z) holds iff node x has label z,
that is, lab(x) = z. The binary relation child is the parent-child relation among
nodes, next-sibling is the binary immediate right-sibling relation among nodes (i.e.,
next-sibling(x, y) iff y is the right-sibling of x), descendant denotes the descendant
relation, following-sibling is the transitive closure of the next-sibling relation.

The binary relation =atomic is derivable from the above, where for nodes x and
y we have x =atomic y ↔ lab(x) = lab(y). From the basic navigation relations in
σnav we can derive their inverses: parent the inverse of child, ancestor the inverse
of descendant, previous-sibling the inverse of next-sibling, and preceding-sibling the
inverse of following-sibling. For a data tree T , we let the binary relation <T

doc on
nodes be the document-order on T : the depth-first left-to-right traversal order
through T .

A data forest is a relational structure of the same signature σnav, but with the
underlying node structure being a forest; i.e. we allow multiple root nodes, and we
do not have a way of ordering nodes that lie beneath different roots. Given a node
b in a data forest, the subtree of b refers to the σnav-substructure of the data forest
whose domain consists of b and its decendants and the labels associated with those
nodes by the relation Haslabel.

An indexed forest F# is a pair consisting of a data forest and a sequence of its
nodes. It will be convenient for us to consider indexed forests as a two-sorted
relational structure. We will use a two-sorted signature

σnav,ind = (σnav, IsNode, IsInd, ItemOf, <ind).

with a sort Lab for labels and a “combined node/index sort” NI. IsNode is a unary
predicate on the combined sort, identifying the nodes of F#. The unary predicate
IsInd, represents the complement of IsNode within the combined sort, the indices
of F#. ItemOf(x′, x) is a binary relation on the combined sort holding iff index x′
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maps to node x. The binary relation <ind fixes a total order on the index elements.
(Thus the indexes denote a sequence of nodes, as claimed.) The other predicates
are interpreted as before.

All of the trees, forests, and indexed forests considered in this paper will be finite.

Example 2.1. The data tree represented in XML as 〈A〉〈B/〉〈C/〉〈/A〉 is repre-
sented as a σnav structure in which we

—interpret the nodes by a set of three elements Node = {n1, n2, n3},

—interpret the set of labels by Lab = {A,B,C},

—map both child and descendant to {(n1, n2), (n1, n3)},

—map both next-sibling and following-sibling to {(n2, n3)}, and

—interpret Haslabel as {(n1, A), (n2, B), (n3, C)}.

Now consider the indexed forest consisting of the data tree above supplemented
with a sequence consisting of the two non-root nodes n2 and n3, in document order.
Our relational representation of this indexed forest consists of

—the set of indices {i1, i2}

—a set n1, n2, n3, i1, i2, representing the nodes and indices

—the ItemOf relation {(i1, n2), (i2, n3)}

—the <ind relation with (i1, i2)

and the remaining sets and relations are as above.

In the examples we give throughout this paper, we will use XML documents
without attributes or PCDATA as our data trees. In these examples, the tag of an
element in the XML document will correspond to the label of a node in the data
tree. However, we note that data trees can model more complex XML documents.
Since we do not assume that the labels come from a fixed set, the labeling could
represent the value of an attribute node (say, with the attribute name coded into
the value) or the text content of a PCDATA node. Our atomic equality =atomic

would thus allow us to check for equality of attribute values, or to check textual
equivalence of PCDATA elements.

There is some arbitrariness in our choice of predicates: we could have made do
with a single sort, and could have had predicates for nodes, indices, and labels. The
rationale for our particular choices should become clearer later, but we give a hint
as to the reasons now. In the signature for both data trees and indexed forests, we
separate out labels as a distinct sort, because variables will never need to vary over
both labels and non-labels; by having labels as a sort rather than a predicate, we
get a concise notation for restricting a variable or constant to range over labels. In
contrast, in the signature for indexed forests we do not have nodes and indices as
separate sorts because we will occasionally need variables that can range over both
of these. The use of a combined sort will also be helpful in modeling XQuery’s
tree-formation constructors, which build new nodes out of indices.

Equality relativized to nodes will be denoted by =node. Two data forests F ,F ′

are said to be isomorphic if the set of labels occurring on some node is the same
in F and F ′ and there is a bijection between the nodes of F and the nodes of
F ′ that preserves the child and sibling relations as well as the labeling function.
Isomorphism between indexed forests F# and F#

′ is defined similarly, requiring the
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labels of F# and F#
′ to be the same, and requiring a pair of bijections between the

nodes and the indices that together preserve each predicate. Isomorphism between
data forests will be denoted by =deep (also referred to as “deep equality”). Given
two nodes in (possibly distinct) data forests, we will say they are =deep if their
subtrees within the respective forests are isomorphic. Note that for a mapping
between data forests to be an isomorphism, the labels of associated nodes must be
the same; i.e. not just the same up to re-labeling. At the XML level, our deep
equality allows us to model equalities between the string value associated with
interior nodes (e.g. elements) of an XML document.

We will also consider a weaker form of isomorphism in which sibling order is
ignored. For data forests F and F ′ we say that F =deep,un F ′ if there is a
mapping from Dom(F) to Dom(F ′) that preserves all the relations of σnav −
{next-sibling, following-sibling}.

By a data forest query we mean any function taking as input a data forest ex-
panded by an assignment of nodes to a given set of variables and returning a
data forest, and by an indexed forest query a function taking an indexed forest
and a variable assignment and returning an indexed forest. A Boolean query is
any function taking as input either a data forest or indexed forest, expanded by
a variable assignment, and returning a value in {true, false}. We also talk about
a query with parameters v1 . . . vn when we want to specify the variables. Two
data forest queries Q, Q′ with parameters v1 . . . vn are said to be equivalent if

∀(F , b1 . . . bn) Q(F ,~b) =deep Q
′(F ,~b), and equivalent modulo order if for all F and

~b, Q(F ,~b) =deep,un Q
′(F ,~b). The notion of indexed forest queries being equivalent

is defined analogously.

2.2 The XQuery Fragment XQ

Our query language XQ has the abstract syntax given in Figure 1.

query ::= () | query query | var | var/axis :: ν

| 〈a〉query〈/a〉 | 〈lab(var)〉 query 〈/lab(var)〉

| for var in query return query

| if cond then query

cond ::= var =node var | var =atomic var | var =deep var | query

Fig. 1. Syntax of XQ.

In this grammar, a denotes a label, and axis denotes the tree-structure relations
child, parent, descendant, ancestor, previous-sibling, preceding-sibling, next-sibling, and
following-sibling. Above var refers to one in a set of variables $x, $x1, $x2, . . . ,
$y, $z, . . . , and ν to a label test , which is either a label or “*”. Thus, our XQ
fragment extends that of [Koch 2006] by a node equality primitive, which returns
true on a pair of nodes iff they are the same node, and the power to construct new
nodes taking labels from arbitrary input nodes. Note that our data model does
not assume that the set of labels for documents is from a fixed set. Our fragment
extends that used in the expressiveness results of [Koch 2006] by both the presence
of node equality and the inclusion of more tree structure relations (“axes”; those
of XQuery, and additional ones) whereas [Koch 2006] only considers “child” and

5



[[()]]n(F , ~e) := (F , [ ])

[[〈a〉α〈/a〉]]n(F , ~e) := construct(a, [[α]]n(F , ~e))

[[〈lab($xi)〉α〈/lab($xi)〉]]n(F , e1, . . . , en) := construct(lab(ei), [[α]]n(F , ~e))

[[α β]]n(F , ~e) := [[α]]n(F , ~e) ⊎ [[β]]n(F , ~e)

[[for $vn+1 in α return β]]n(F , ~e) := let (F ′,~l) = [[α]]n(F , ~e) in
]

1≤i≤|~l|

[[β]]n+1(F
′, ~e ·~li)

[[$xi]]n(F , e1, . . . , en) := (F , [ei])

[[$xi/χ :: ν]]n(F , e1, . . . , en) := (F , list of nodes v such that χF (ei, v) and

lab(v) = ν in order <
tree(ei)
doc )

[[if φ then α]]n(F , ~e) := if π2([[φ]]n(F , ~e)) 6= [ ] then [[α]]n(F , ~e) else (F , [ ])

[[$xi = $xj ]]n(F , e1, . . . , en) := if ei = ej then construct(“yes”, (F , [ ]))

else (F , [ ])

Fig. 2. Semantics of XQ.

“descendant”. A more detailed comparison with the models used in related work
can be found in Section 9.

Our language aims to capture the major tree-structure forming constructs of the
practitioner language XQuery.

Semantics. The notion of a variable being free in an XQ query is given using
the obvious inductive definition. For example, in for $vn+1 in α return β, the free
variables are those of α and those of β, minus $vn+1. In giving the semantics of XQ
expressions with n free variables, we will choose an ordering of the free variables as
$v1 . . . $vn. We will assume that every XQ query has at least one free variable in it;
since data must be accessed initially via a variable in our fragment, this assumption
does not limit expressiveness.

We define the semantics of an XQ expression α with at most n free variables
using a function [[α]]n – given in Figure 2 – that takes a data forest F and a n-tuple
of nodes from the forest as input and returns an indexed forest.

In Figure 2, in some cases, the index component is described as a list or integer-
indexed sequence, but it can clearly be converted to the relational representation
of indexes required by the signature σnav,ind (e.g. by taking the indexes to be an
initial segment of the integers). We also make use of some functions that construct
indexed forests.

—The operator construct(a, (F , [w1 . . . wn])), denotes construction of a new tree.
The argument a is a label, while F is a data forest and [w1 . . . wn] is a list of nodes
in F . When applied, construct returns an indexed forest (F ∪ T ′, [root(T ′)]),
where T ′ is a tree with domain a new set of nodes, whose root root(T ′) is la-
beled with a, and with the subtree rooted at the ith (in sibling order) child of
root(T ′) being an isomorphic copy of the subtree rooted by wi in F . The function
construct is assumed to return a tree with a distinct set of nodes each time it is
called.

—The symbol ⊎ in Figure 2, takes two indexed forests (F1,~l1), (F2,~l2) where the

Fi are data forests and the ~li are lists of nodes in Fi. It returns an indexed forest
(F1 ∪ F2,~l) where ~l is the concatenation of ~l1 and ~l2.
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—
⊎

is defined similarly to take the union of a sequence of structures; the list
component returned by

⊎

is the concatenation of the lists of its arguments. In

the return clause, ~li is the i-th element of list ~l.

—In the semantics of xi/χ :: ν, we use tree(ei) to denote the (maximal) tree within

the input forest that contains the node ei, hence <
tree(ei)
doc is the document-order

on the tree containing ei. For the “forward axes”, child, descendant, next-sibling,
and following-sibling, χF is simply the interpretation of the axis relation of the
same name in the data forest. For the other axes, χF denotes the corresponding
derived relation: for χ = parent, it is the inverse of child in F#, etc. The equality
lab(v)=‘*’ is true on all nodes v. The semantic function for = is overloaded for
each of the three kinds of equality.

—In the semantics for conditionals, π2 refers to projection on to the second com-
ponent of a pair (in this case, the list component of the indexed forest returned
by the semantic function).

Output-node and Boolean semantics. The general semantics of XQ takes
as input a forest and a variable assignment and produces an indexed forest. An
alternative semantics is to consider only the “reachable output” of a query; that
is, the data-forest-to-data-forest query defined by an XQ expression is obtained
from the prior semantics by returning the forest consisting of all subtrees rooted
at the returned nodes in the nodelist component. We call this the output-node
semantics of an expression, and for an expression Q we write Qout for the query
returning this forest. When comparing the expressiveness of sublanguages of XQ ,
it is natural to use the output-node semantics. However the full semantics will be
needed inductively within proofs.

Finally, we can consider an XQ query Q to define a Boolean query QBool on
data forests: this is the query that returns true on forest F for a given assignment
to the variables iff the list output by Q when applied to F with that assignment
is non-empty. It is easy to show that alternative definitions of Boolean queries
(e.g. by looking at all the queries generated by the “condition” non-terminal in the
grammar) yield the same set of queries.

Example 2.2. Consider the evaluation of query Q

for $w in 〈a〉〈b/〉〈/a〉 return ($v0/descendant :: ∗ $w/child :: ∗)

on an input tree T consisting of two nodes n1 and n2, with n2 a child of n1 and
the free variable $v0 pointing to n1.

Under the full semantics of XQ, Q returns a forest and a sequence of nodes.
The forest component contains the input tree T and two new trees, T ′ consisting
of node n5 labeled b and T ′′ consisting of nodes n3 and n4, where n3 is a root node
labeled a and n4 is a child of n3 and is labeled b (i.e., the single-node tree n4 is a
copy of T ′). The sequence is < n2, n4 >. Under the output-node semantics, Q
outputs a forest consisting of a tree consisting only of n2 and a tree containing only
the node n4. Under the boolean semantics Q returns true. 2

Dialects of XQ. We will consider the following sublanguages of XQ:

—By AtomXQ we denote XQ where we restrict general deep equality comparisons
between variables, and instead allow only conditions var =deep 〈a/〉 for labels a.
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—By PosXQ, we refer to the subset where deep equality is not permitted at all.

—AtomXQ− denotes the sublanguage of AtomXQ where comparisons var =node

var are forbidden, and PosXQ− denotes the corresponding sublanguage of PosXQ.

We will also consider fragments obtained from these sublanguages by excluding the
next-sibling and following-sibling axes. Moreover, for purely technical reasons, we
will also introduce the language AtomXQ+, which extends AtomXQ by a true
composition construct, in Section 3.

Derived Operators. In our definition of the syntax of XQ, we have been
economical with operators introduced. For example, we use only simple axis ex-
pressions as primitives in a “step”. In fact, one can show that one could have
included all of Core XPath [Gottlob et al. 2005] as a sublanguage without affecting
the expressiveness; indeed, this follows from the results of this paper along with
[Anonymous 2008b]. For the moment, we note that the following useful constructs
can be derived:

(let $x := α0) β := for $x in α0 return β

φ or ψ := φ ψ φ and ψ := if φ then ψ

true := 〈a/〉 not φ := (let $v := 〈a〉φ〈/a〉) $v =deep 〈a/〉

some $x in α satisfies φ := for $x in α return φ

where 〈a/〉 is a shortcut for 〈a〉()〈/a〉. In using the above as a definition of let, we
must restrict α0 to be either of form 〈a〉φ〈/a〉 or 〈lab(var)〉φ〈/lab(var)〉, if we want
this notation to be consistent with our requirement that variables bind always to
single nodes. Conditions every $x in α satisfies φ are defined using not and
some in the obvious way.

Let us now explain in what sense these definitions capture the usual logical rela-
tions. Recall that an XQ expression Q defines a Boolean query QBool holding iff Q
is nonempty. Using this definition we can see that the Boolean query correspond-
ing to φ and ψ evaluates to true for a given binding of the free variables iff the
Boolean queries corresponding to φ and to ψ both evaluate to true. Similarly, the
other derived operators give Boolean queries with the semantics corresponding to
their usual meaning in logic. In particular, the Boolean query that is defined will
be independent of which particular label “a” is used in the definition of not. Let
us note also that the restricted form of deep equality of AtomXQ is sufficient to
define negation, but this power is missing from PosXQ (thus the name, suggesting
“positive” XQ).

Our largest syntactic divergence from XQuery is that we assume if-expressions
of the form “if φ then α” rather than “if φ then α else β”: it is easy to see that
the more general if can be simulated in any of our languages except for PosXQ,
using:

for $v in 〈a〉φ〈/a〉 return (if $v =deep 〈a/〉 then β)

As with the simulation of not, the particular label that we use (above, a) is fixed
but arbitrary above. Which particular label is used will not impact the sequence
component of the answer, but will affect the forest component in a superficial way;
if an a is used as the label in the simulation, the output forest will include the
“temporary” tree rooted with a.
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Faithfulness to XQuery standard. We discussed one syntactic deviation from
the XQuery standard just above. Another syntactic distinction is that we have
included the “immediate next and immediate previous” sibling axes previous-sibling

and next-sibling, which are not part of XQuery. There is no reason to exclude them
for our purposes, since all of our results hold in their presence.

In the semantics, we have made some simplifications over the standard, as given
in [World Wide Web Consortium 2002]. Since our data model does not distinguish
values of various types, hence the output types of our query language are simpler
than XQuery’s. To simplify further, we have avoided dealing with multiple output
types in XQ entirely, and have assumed that all queries output a list of nodes,
each of which is associated with a tree in the output forest. These assumptions are
made to simplify syntax and semantics, but the expressiveness results would not
change if the natural distinction among queries with output types node, sequence of
node, and Boolean was introduced (e.g. with conditions cond producing a Boolean).
In our semantics we also assume, in order to simplify the semantic function, that
XQ variables always bind to single nodes rather than lists; our fragment assures
this. We do not model the document() function of XQuery, which is used to bind
variables to a document or a query result. Instead, we assume that there exist one
or more initial free variables that are each bound to a node of the input forest.

XQuery has several modes of equality, including value equality, general equality,
and node equality. We do not make a formal claim that these can be simulated in
our framework, which would require us to formalize a relationship of the XQuery
data model to ours. But we give an informal claim of the relationships below, which
the reader can check against the semantics in Subsection 4.5 of [World Wide Web
Consortium 2002]. XQuery’s value equality, when restricting the compared items
to expressions returning a single node (as our fragment guarantees), corresponds to
the use of our =deep. Our =atomic corresponds to a restricted use of value equality,
used on some atomic value associated with a node: the most obvious way to use
=atomic is to simulate value equality applied to the label of a node, but one can
also simulate value equality on an attribute or PCDATA node. XQuery’s general
equality generalizes value equality to deal with sequences; in our language equality
is restricted to variables, which bind to a single node, so there is no need for this
distinction. XQuery’s node equality corresponds to the use of our =node.

Of course, our fragment, like those of many other research studies (and as in
[Koch 2006]) deals with only a subset of the language. It deals with a simplified data
model, in which (for example) no distinction is made among nodes of various kinds
(attribute, element, comment etc.), and it also ignores the various primitive value-
manipulation functions of XQuery (e.g. concatenation), many of which work only
on nodes of a particular kind. The excluded features can have a dramatic impact
on the expressiveness of the query language. We do not downplay their importance,
but we believe that they are orthogonal to the issue of the expressiveness of the
navigational and tree construction operators, which is the focus of this work.

2.3 Tree Structures and First-Order Interpretations

We now show how query languages on data forests can be defined via relational
logics.

A common way to capture transformations using a logic is via the notion of
interpretation in model theory (see e.g. [Gurevich and Shelah 1989]). One describes
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the domain of the output by a formula to be evaluated on the input structure, and
also describes each relation in the output structure via formulas that are to be
evaluated on the input structure. For example, consider the transformation that
takes a directed graph relation (V,E) and returns the “reversed digraph”. This
would be described by the interpretation consisting of two formulas φV (x) = true,
φE(x, y) = E(y, x). This states that the new graph has as its vertices all of the
vertices of the input, and as its edges the reverse of the edges of the input. We can
produce an output that is bigger than the input by allowing formulas with multiple
variables in the interpretation. For example, consider the transformation that takes
a directed graph (V,E) and returns the complete digraph on |V |2 vertices. This
would be described by the interpretation consisting of two formulas φV (x1, x2) =
true, φE(x1, x2; y1, y2) = true. This states that the new graph has as its vertices all
of the pairs of vertices of the input, and its edge relation is obtained by connecting
every two pairs.

We need to use a variation of the standard definition of interpretation in our
setting. The standard definition is on one-sorted structures, while we use the nat-
ural extension to many-sorted structures. We also allow the formulas in our inter-
pretation to have additional “parameter variables”, which correspond to the free
variables in a query, and which we will consistently denote by v1 . . . vn throughout
this article.

In addition to extending the usual definition, we restrict our interpretations in
several ways. The standard definition allows even equality in the new structure
to be interpreted by a formula. In our interpretations, we require equality to be
interpreted by equality on tuples. We also demand that the labels of the output
must come only from the input labels or a fixed set of constants, and we do not
produce “unused labels”. The interpretations we produce from XQ queries will
satisfy these restrictions.

Indexed forest interpretations. Interpretations can be defined over any logic;
indeed over any query language. To interpret AtomXQ formulas, we will use for-
mulas of first-order logic, built up using existential and universal quantifiers and
boolean connectives. We use the usual notation and semantics for FO (e.g. [Ebbing-
haus and Flum 1999]). We will deal with many-sorted first-order logic, in which
each variable has a sort and every place in a relation or function symbol is associ-
ated with a sort. Given a first-order formula ψ(~v; ~x), where ~v are a distinguished
set of n free parameter variables and ~x are further free variables, over some signa-

ture σ, a structure A, and elements b1 . . . bn of A, then ψ(A,~b) denotes the relation
{~x | A � ψ[b1, . . . bn, ~x]}.

For a signature σ and number n, a σ(v1 . . . vn) structure is a pair consisting of a
σ-structure and an n-tuple of elements from the structure. We say that a logical
formula is “over σ(v1 . . . vn)” if it uses symbols from σ and distinguished variables
v1 . . . vn.

An indexed forest interpretation over variables v1 . . . vn is given by a finite set
of constants C = CNI ∪ CLab where CNI are constants of combined sort and CLab are
constants of label sort, integers k, k′ ≥ 1 (k is the node arity and k′ is the index
arity), a new unary node predicate InputNode (Informally, InputNode(x) says that
“x is a node that is not one of the new constant symbols”.), and formulas over
signature (σnav,ind, InputNode, C)(v1 . . . vn)
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—φNode(~v;x1 . . . xk),

—for each binary relation R ∈ {child, descendant, next-sibling, following-sibling} a
formula of the form φR(~v;x1 . . . xk; y1 . . . yk),

—φHaslabel(~v;x1 . . . xk; z), where z is of sort Lab,

—two formulas φInd(~v;x
′
1 . . . x

′
k′ ) and φ<ind

(~v;x′1 . . . x
′
k′ ; y′1 . . . y

′
k′) describing the set

of indexes and the ordering on indices in the new indexed forest, with again the
partition being given with the formula.

—a formula φItemOf(~v;x
′
1 . . . x

′
k′ ;x1 . . . xk), where again the partition of the variables

is part of the input. All of the variables will be of combined sort. This formula
indicates which node an index is associated with.

Interpretations will define mappings from σnav,ind(v1 . . . vn) structures to σnav,ind-
structures. To explain the semantics of interpretations, we first have to say what
it means to extend an input σnav,ind(v1 . . . vn) structure using the constants in
C. Given indexed forest F# and an additional finite set of constants C, each of
which may be either of combined sort or label sort, we can form a corresponding
σnav,ind ∪ {InputNode} structure, denoted F# + C, by:

—interpreting the predicate IsNode by the nodes of F#, unioned with a subset of
the constants C of combined sort,

—interpreting predicate IsInd by the indices of F#, unioned with all constants of C
not in the interpretation of IsNode,

—interpreting the combined sort by the union of IsNode and IsInd, and interpreting
the label sort by the set of labels found in any node of the underlying forest of
F# unioned with the constants,

—interpreting InputNode by the set of nodes in F#, and

—letting the other predicates (ItemOf, <ind, . . .) hold as before, with their domains
excluding all elements of C.

Note that predicates of F# + C are defined arbitrarily on the constants. The
truth value of a formula on F# + C is only well-defined if it is independent of such
choices. The presence of the predicate InputNode will be a convenience in performing
composition; note that this predicate is definable in F# + C as the conjunction of
inequalities with the constants.

We are now ready to give the semantics of an interpretation. Given constants
C = CNI∪CLab, we get a function taking a σnav,ind(v1 . . . vn) structure (F#, b1 . . . bn)
as input and returning a σnav,ind structure. The σnav,ind structure of the output is
defined by evaluating the formulas in the interpretation over F#∪C. So the output
structure would be:
(

IsNode = {~x ∈ (NIF# ∪ CNI)
k

: F# ∪ C |= φNode(~b; ~x)},

IsInd = {~x′ ∈ (NIF# ∪ CNI)
k′

: F# ∪ C |= φInd(~b; ~x
′)},

child = {(~x, ~y) ∈ (NIF# ∪ CNI)
2k

: F# ∪ C |= φchild(~b; ~x; ~y)},

descendant = {(~x, ~y) ∈ (NIF# ∪ CNI)
2k

: F# ∪ C |= φdescendant(~b; ~x; ~y)},

next-sibling = {(~x, ~y) ∈ (NIF# ∪ CNI)
2k

: F# ∪ C |= φnext-sibling(~b; ~x; ~y)},

following-sibling = {(~x, ~y) ∈ (NIF# ∪ CNI)
2k

: F# ∪ C |= φfollowing-sibling(~b; ~x; ~y)},

Haslabel = {(~x, z) ∈ (NIF# ∪ CNI)
k
× (Lab(F#) ∪ CLab) : F# ∪ C |= φHaslabel(~b; ~x; z)},
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IsLab = {z ∈ LabF# ∪ CLab : F# ∪ C |= ∃~x φNode(~b; ~x) ∧ φHaslabel(~c; ~x; z)},

ItemOf = {(~m, ~m′) ∈ (NIF# ∪ CNI)
k′+k

: F# ∪ C |= φItemOf(~b; ~m; ~m′)},

<ind = {(~m, ~m′) ∈ (NIF# ∪ CNI)
2k′

: F# ∪ C |= φ<ind
(~b; ~m; ~m′)},

)

That is, the set of k-tuples φNode(F# ∪ C) is identified as the domain of the Node

sort of the output structure. The child relation is interpreted by the set of pairs
of k-tuples of nodes satisfying φchild, and similarly for the other axes. The labeling
relation is given by the labeling formula, and the labels are derived from the nodes
and the labeling relation (i.e. they are the labels that occur on some node). The
rest of the structure (indices, indexing relation, index ordering) is given by formulas
in the same way.

Abbreviations and Extensions. We need to make a few extensions to the
notion of interpretation above.

—Abbreviating conventions. To write out all the formulas of an interpretation
is tedious, and we will require some conventions that make the output more suc-
cinct. The first convention is that once we have the formula φNode giving the nodes
of the output forest in an interpretation, we will assume that any variables that
interpret nodes in other formulas must satisfy φNode. Thus a formula φchild(~v; ~x; ~y)
is an abbreviation for the formula φNode(~v; ~x) ∧ φNode(~v; ~y) ∧ φchild(~v; ~x; ~y). Like-
wise, φItemOf(~v; ~x

′; ~x) is implicitly conjoined with φInd(~v; ~x
′) and φNode(~v; ~x), while

φ<ind
(~v; ~x′; ~y′) is implicitly conjoined with φInd(~v; ~x

′) and φInd(~v; ~y
′).

—Embedding Formula. We will also include in an interpretation an additional
embedding formula φemb(~v;x;x1 . . . xk). This predicate will give an isomorphism
of the input into the output structure. That is, we will consider only interpre-

tations such that for every input indexed forest, vector of nodes ~b, and node a,
there is a unique tuple a1 . . . ak, where each ai is a node or index of the input

or a constant, such that φNode(~b; a1 . . . ak) ∧ φemb(~b; a; a1 . . . ak) holds, and the
corresponding function from the input forest to the output forest is a data forest
isomorphism.
Thus, the result of applying an indexed forest interpretation to an input indexed
forest is not only an output structure, but an isomorphism of the input into a
substructure of the output. We need this additional structure to form interpre-
tations compositionally. The embedding is required to deal with the fact that
first-order logic and pure relational calculus do not have the ability to “create
fresh nodes” as needed in a naive simulation of element construction (see the
function construct used in the semantics of Figure 2). In our approach, we will
deal with this as follows: when we have two subqueries Q1 and Q2 that we
are translating, we will not be able to inductively assume that the new nodes
returned by Q1 are disjoint from those of Q2. But we will record in our interpre-
tation which are the newly-constructed nodes and which are in the copy of the
input tree for each Qi, using the formula φemb. Using this information, whenever
we have a query Q that combines those two subqueries (e.g. Q = Q1Q2), we will
be able to identify the old elements in Q1 and in Q2 in the interpretation for Q
while making the new nodes in Q1 and Q2 disjoint. Intuitively, we can think of
an alternative semantics for XQ queries (but equivalent up to isomorphism) in
which construct does not necessarily return different nodes each time, but where
(O1, l1)⊎ (O2, l2) is replaced with an operation that takes as an additional argu-
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ment an embedding of the input forest into O1 and O2, and returns a data forest
in which the images of the input are identified and the additional nodes are made
disjoint (and similarly for

⊎

).

—Restricting variables to range over nodes. The use of one “combined sort”
for nodes and indices will allow us to more easily compose interpretations, since
when building up new queries in interpretations we will sometimes want to turn
the indices of one structure into the nodes of another (as in the new-tree formation
construction of XQ). However, it has a distinct notational inconvenience, in that
restricting a variable or constant to range over nodes or indices will now require a
formula, rather than being implicit in the sort. To preserve some of the advantage
in brevity of the single-sort notation, we will say that a variable x or constant
is “enforced to range over nodes” (resp. over indices) to mean that whenever x
occurs in a formula, this formula is taken to be conjoined with IsNode(x) (resp.
IsInd(x)).

We will, by abuse of notation, use the term indexed forest interpretation to
mean an interpretation including the additional embedding formula above. For
such an interpretation we use [I] to refer both to the semantic function given by
the interpretation and to the function that returns the output indexed forest alone,
without the embedding. Which of these we mean will be clear from the context.

We say that I defines an indexed forest query if for every F# and every ~c, the
structure [I](F#,~c) is an indexed forest, with the nodes of [I](F#,~c) a superset
of the image of the nodes of F# under φemb(~c;F# ∪ C), and φemb(~c/~v) defines a
σnav-preserving embedding of F# into [I](F#,~c).

Example 2.3. Consider the query Q from Example 2.2 once more. Q can be de-
scribed by an indexed forest interpretation with constants ca, cb, cemb, d of combined
sort, node arity k = 2 and index arity k′ = 1. The free variables in the formulas
below will all be enforced to range over nodes. The forest structure is then given as
follows:

φNode(v0;x1, x2) := (x1 = ca ∧ x2 = ca) ∨ (x1 = cb ∧ x2 = cb) ∨

(x1 = cb′ ∧ x2 = cb′) ∨

(x1 = cemb ∧ InputNode(x2) ∧

(descendant(v0, x2) ∨ v0 = x2))

φchild(x1, x2; y1, y2) := (x1 = ca ∧ x2 = ca ∧ y1 = cb ∧ y2 = cb) ∨

(x1 = cemb ∧ y1 = cemb ∧ child(x2, y2))

φdescendant(x1, x2; y1, y2) := (x1 = ca ∧ x2 = ca ∧ y1 = cb ∧ y2 = cb) ∨

(x1 = cemb ∧ y1 = cemb ∧ descendant(x2, y2))

φnext-sibling(x1, x2; y1, y2) := next-sibling(x2, y2)

φfollowing-sibling(x1, x2; y1, y2) := following-sibling(x2, y2)

φHaslabel(x1, x2; z) := (x2 = ca ∧ z = a)

∨ (x2 = cb′ ∧ z = b) ∨ (x2 = cb ∧ z = b) ∨ (x1 = cemb ∧ Haslabel(x2, z))

The nodes in the new tree are represented by the pairs (ca, ca), (cb, cb), and (cb′ , cb′),
and a node b in the input tree is represented by the node (cemb, b) of the interpreta-
tion.
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In the example, we have listed the variable v0 as a free variable only for formulas
where it is used. We have made use of several of the conventions mentioned above.
The domain of the child relation is, again by convention, implicitly restricted to the
pairs (x1, x2) and (y1, y2) that satisfy φNode.

We now give the index structure:

φInd(v0, x1) := (x1 = d) ∨ descendant(v0, x1)

φItemOf(v0;x1;x
′
1, x

′
2) := (x1 6= d ∧ x′1 = cemb ∧ x

′
1 = x1 ∧ x

′
2 6= v0)

∨ (x1 = d ∧ x′1 = cb ∧ x
′
2 = cb)

φ<ind
(x1;x

′
1) := (x′1 = d ∧ x1 6= d)

∨ (x1 6= d ∧ x′1 6= d ∧ descendant(x′1, x
′
2))

The formulas above say that there are indices for every descendant of the input
node, along with one additional index. For an index of the form b, where b is a
descendant of the input node, the node it indexes is (cemb, b): recall from above that
this is the image of b in the output the document. The additional index points to the
unique child node in the newly-created tree, represented by the tuple (cb, cb). The
ordering puts the index of the new node last, and orders the nodes from the input
document according to the descendant relation.

Finally, the embedding formula is φemb(x;x1, x2) := (x1 = cemb ∧ x2 = x). That
is, the embedding of the input into the output is just the function that pads an input
node with the constant cemb. 2

Example 2.4. Consider the query Q♭ that flattens an arbitrary data tree T pro-
ducing a depth-one tree with the same root and leaves as T , where the leaves are
arranged in document order. Below, we focus on the forest structure produced by Q♭

(omitting the index structure), which can be described by the following interpretation
with k = 1:

φNode(x) := (¬∃w child(w, x)) ∨ (¬∃w child(x,w))

φchild(x, y) := (¬∃w child(w, x)) ∧ (¬∃w child(y, w))

φdescendant(x, y) := φchild(x, y)

φnext-sibling(x, y) := following(x, y) ∧ ¬∃w(φNode(w) ∧

following(x,w) ∧ following(w, y))

φfollowing-sibling(x, y) := following(x, y)

φHaslabel(x; z) := Haslabel(x, z)

where the formula following(x, y) is defined as ∃w1 ∃w2 (descendant(w1, x) ∨ w1 =
x) ∧ (descendant(w2, y) ∨w2 = y) ∧ following-sibling(w1, w2).

The first formula says that the nodes of the output structure consist of the root
and the leaves of the input structure. The second and third say that the child (and
descendant) relation in the new structure connects leaves of the input with the root
of the input, while the fourth and fifth say that the sibling relation on the output is
the document-order relation on the input. The final formula says that the labeling
of the output is inherited from the input. 2

FO(Cnt) and FO(Cnt) interpretations. We now extend the discussion above
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from first-order logic to first-order logic with an aggregate operator that can count
tuples.

For a many-sorted vocabulary σ, the logic FO(Cnt)(σ) (or FO(Cnt), when
σ is understood) is defined over variables having either one of the sorts of σ or
the distinguished number sort N . Atomic formulas include all atomic formulas
of σ, while there are no atomic predicates or functions on variables of sort N
(other than equality). Formulas are closed under Boolean operations and quantifiers
∃x, ∀x, ∃i, ∀i for x of domain sort and i of number sort. We also have the counting
quantifiers ∃=i~x, ∀=i~x where i is of N sort and ~x is a tuple of variables. In a formula
of the form ∃=i~x φ(~x, ~y,~j), ~x becomes bound but i is still free.

The semantics of FO(Cnt) formulas is given with respect to a σ-structure A
and an environment mapping variables of any of the sorts of σ to elements of the
corresponding domain in A and variables of sort N to non-negative integers. A
formula ∃=i~x φ(~x, ~y,~j) holds in structure A in an environment assigning ~y to ~c, i

to integer i0 and ~j to integers ~j0 iff |{~d ∈ A | (A, ~c , ~d,~j0) |= φ}| is exactly i0.
One can show that quantifiers ∃>i and ∃<i are expressible in FO(Cnt), on models

(like the ones we consider) which have a total order definable on them. Within such
models every definable set has cardinality equality to that of an initial segment of a
product of the ordering, and inequality in cardinality is equivalent to containment
of the corresponding initial segments. Further, the results of [Barrington et al.
1990] show that the power of FO(Cnt) is not increased if arithmetic is permitted
on variables of integer sort. However, note that FO extended by unary counting
quantifiers ∃=ix is known to be strictly weaker than FO(Cnt) [Schweikardt 2005].
The following is also known:

Theorem 2.5 [Barrington et al. 1990]. Suppose σ contains a binary rela-
tion <, and Lin(σ) is the class of finite σ-structures in which < is interpreted as a
linear-ordering on the domain. Then for any query Q over Lin(σ) invariant under
(σ−{<})-isomorphism, Q is in TC0 iff Q is expressible in FO(Cnt)(σ). That is,
FO(Cnt) captures TC0 over ordered structures.

We refer the reader to [Schweikardt 2005] for more on FO(Cnt) and to [Johnson
1990] for a reference on complexity classes including the classes AC0 and TC0.

For variables v1 . . . vn, a σnav,ind(v1 . . . vn) FO(Cnt) interpretation is defined as
with FO.

By AC0 we refer to the class of languages recognizable by LogSpace-uniform
families of circuits using and- and or-gates of unbounded fan-in of polynomial size
and constant depth. By TC0 we refer to the same class except that in addition
so-called majority-gates are permitted, which compute “true” iff more than half the
inputs are true. For details on the standard complexity classes as well as circuit
complexity and the notion of uniformity the reader can consult [Johnson 1990].

The evaluation complexity of FO and FO(Cnt) interpretations can be read off
from classical results on the logics. Given the standard encoding of a σnav structure
as a string [Immerman 1999],

Proposition 2.6 cf. [Immerman 1999]. Every FO (resp., FO(Cnt)) inter-
pretation over σnav can be evaluated in AC0 (resp., TC0) data complexity and
PSpace combined complexity.
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2.4 Informal Summary of Main Results

Now that we have defined the top-down tree building languages and the relational
logics we deal with, we are ready to state the contributions of this paper more
precisely.

We start by looking at translations from XQuery fragments to first-order inter-
pretations: We will show that every AtomXQ query maps into a first-order inter-
pretation. This follows from a more general result, which extends AtomXQ into
a language AtomXQ+ that has an explicit composition operator. While AtomXQ
queries take as input a forest and output an indexed forest, AtomXQ+ queries take
indexed forests to indexed forests, and hence composing them makes sense. We will
then show that the larger language AtomXQ+ can be captured using an “indexed
forest interpretation” – one that captures both the forest and the sequence com-
ponent of the query output. This more general result is stated in Section 3. Its
proof begins in Section 4, where we show that the basic queries in AtomXQ+, other
than the composition operator, can be captured by interpretations. The case of the
composition operator is handled in Section 5, which shows that interpretations are
closed under composition.

In Section 6, we will consider properties of the translation.

—We will show that PosXQ queries map into “existential first-order interpreta-
tions” – an analog of conjunctive queries.

—We will show that the translation to relational logics requires exponential time in
general (strictly speaking, we show that it cannot be done in polynomial time),
but we identify a fragment ofAtomXQ (the “composition-free queries”) for which
it is polynomial time.

We then give analogous results for full XQ with deep equality (Section 7).

—We show that every XQ query maps into an FO(Cnt) interpretation.

—Again the translation to FO(Cnt) requires exponential time in general, but it is
polynomial time on a subfragment.

A rough picture of the relationship between top-down query languages and logics
can be found in Figure 3 in Section 8.

3. FROM XQ WITH ATOMIC EQUALITY TO FO: FORMALIZATION

We want to compare the expressiveness of XQ with interpretations. We notice
a mismatch immediately, since XQ queries map forests to index-forests, while
our interpretations map indexed forests to indexed forests. However an XQ ex-
pression can be associated with a transformation on indexed forests in the obvi-
ous way: the transformation will be the one that ignores the index component
of the input indexed forest and applies the full semantics of Q to the remain-
ing forest. Formally, we say that an indexed forest interpretation I(v1 . . . vn) is
equivalent to an XQ query Q with free variables $v1 . . . $vn if [I](F#, b1 . . . bn) is

isomorphic to [[Q]]n(F , b1 . . . bn) for every indexed forest F# = (F ,~l) and for arbi-

trary nodes b1 . . . bn ∈ F . (Thus, the choice of ~l has no influence on the result of
[I](F#, b1 . . . bn).)

Our main result is the following.
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Theorem 3.1. There is an ExpTime function that maps every AtomXQ query
Q with free variables $v1 . . . $vn to an FO indexed forest interpretation I such that
Q is equivalent to I(v1 . . . vn).

The proof of this result is rather involved, and will take up the next few sections.

3.1 Extending XQ to an indexed forest query language

As we saw, indexed forest interpretations are more general than XQ queries, since
they can make use of the index structure of their input. We will now make up the
gap somewhat, considering a query language XQ+ on indexed forests that is richer
than XQ , which will include queries that can make use of the index component of
their input. All of the queries Q in XQ+ will have the property that they are in
a sense monotone on the forest component of their input: for every indexed forest

F# = (F ,~l), [[Q]]n(F#, ·)= (F ′,~l′) where F ′ extends F by the addition of new trees.
The language XQ+ extends XQ (considered as an indexed forest query language)
by the following two additional rules:

query := query ◦ query | union $vn+1 over query

The operator ◦ takes two indexed forest queries and returns the query repre-
senting their standard functional composition. That is, if α and β both have free
variables contained in $v1 . . . $vn, we define the semantics of the two operations as:

[[β ◦ α]]n(F#, e1 . . . en) := let F#
′ = [[α]]n(F#, e1 . . . en)

in [[β]]n(F#
′, e1 . . . en)

[[union $vn+1 over β]]n((F ,~l), ~e) :=
⊎

1≤i≤|~l|

[[β]]n+1((F , ()), ~e ·~li)

One can show by induction that a) all queries in this language are monotone
on their forest component, and b) all queries are well-defined. In the induction
step for the composition operator, we know inductively that the forest component

of [[α]]n((F ,~l), e1 . . . en) contains the input forest F , and hence contains e1 . . . en

as well, hence the composition is well-defined. Monotonicity is easily shown to be
preserved by the union operator.

Let AtomXQ+ be the language XQ+ above restricted so that deep equality
=deep is used in tests only with constants, as in AtomXQ. Consider the following
redefinition of for as an indexed forest query in AtomXQ+:

for $vn+1 in α return β := (union $vn+1 over β) ◦ α.

That is, for is the composition of union and ◦. It is immediate that this defi-
nition is compatible with the definition of for as a query from forests to indexed
forests. Thus, we can consider for to be a derived operator in AtomXQ+. Thus in
translating to interpretations, we can concentrate on translating the otherAtomXQ
constructs, union, and the composition operator ◦.

We can now state our modified result, which clearly implies Theorem 3.1.
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Theorem 3.2. There is an ExpTime function that, given any AtomXQ+ query
Q with free variables $v1 . . . $vn, returns an indexed forest interpretation I over vari-
ables v1 . . . vn that is equivalent as a query. That is, for every indexed forest F# and
all bindings of v1 . . . vn to nodes b1 . . . bn in F#, [[Q]]n(F#, b1 . . . bn) is isomorphic
to [I](F#, b1 . . . bn) where the isomorphism restricted to F# agrees with φemb.

4. PROOF OF THEOREM 3.2: THE BASIC CASES

We will now show how, from an AtomXQ+ query α, we can construct the formulas
φα

R that make up an indexed forest interpretation equivalent to α. We translate
expressions to indexed forest interpretations inductively.

We begin by giving the construction for all cases except ◦ – we deal with this
afterwards, since it is more complex. Note that the new tree formation and equality
test queries produce a list component which is a singleton, hence the corresponding
ordered structure in the output will be degenerate: there is only one index, so the
formula φInd holds only of a single constant, and this constant is mapped to a single
tuple by φItemOf .

4.1 New tree formation

Suppose α is the expression 〈a〉β〈/a〉.
We inductively suppose we have an interpretation Iβ for β. For example, for

each navigational predicate R, the interpretation is given by formulas φβ
R(~v; ~x; ~y)

with ~x, ~y having arity kβ . We will assume kβ > 1 (the case kβ = 1 is similar but
simpler). We will let k′β be the arity associated with indices of β.

The arity for nodes of our interpretation will be k = kβ +k′β. The set of constants
used will be those of the interpretation for β, plus new constants ca and cemb of the
combined sort. ca will be used to represent the new root node labeled a and cemb

will be used to pad a representation of the input in the output. The interpretation
will also include the label constant a.

The formulas giving the tree structure are as follows:

φα
Node(~v;x1 . . . xk) :=

(

∧

i

xi = ca

)

∨
((

∧

i≤k′

β

xi = cemb

)

∧ φβ
Node(~v;xk′

β
+1 . . . xk)

)

∨
(

φβ
Ind(~v;x1 . . . xk′

β
) ∧ φβ

Node(~v;xk′

β
+1 . . . xk) ∧

∃r1 . . . rkβ
φβ

ItemOf(~v;x1 . . . xk′

β
;~r) ∧

(

φβ
descendant(~v;~r;xk′

β
+1 . . . xk) ∨

∧

i≤kβ

ri = xk′

β
+i

))

The above formula says that the nodes in the output are the union of

—a unique node marked by ca . . . ca,

—nodes produced by β, padded with a constant cemb on each of the first k′β variables
to indicate that they are copied from the output of β, and

—a new subtree for each index from the index structure of the output of β. The
nodes in the subtree for a given index x1 . . . xk′

β
consist of the node b~x indexed

by ~x in the output of β, along with the descendants of b~x.
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φα
child(~v;x1 . . . xk; y1 . . . yk) :=

(

∧

1≤i≤k

xi = ca ∧ φβ
ItemOf(~v; y1 . . . yk′

β
; yk′

β
+1 . . . yk)

)

∨
((

∧

1≤i≤k′

β

xi = yi = cemb

)

∧ φβ
child(~v;xk′

β
+1 . . . xk; yk′

β
+1 . . . yk)

)

∨
((

∧

1≤i≤k′

β

xi = yi

)

∧ φβ
child(~v;xk′

β
+1 . . . xk; yk′

β
+1 . . . yk)

)

The reader is reminded of our convention that this formula is implicitly conjoined
with φα

Node(~v;x1 . . . xk) and φα
Node(~v; y1 . . . yk).

The above states that the nodes inherited from β have the same child relation as
in β and the new node corresponding to ca has as children all the copies of nodes
indexed by β. The remaining new nodes are each associated with a pair consisting
of a tuple representing an index and a tuple representing a node in β; two such
pairs are in a parent/child relation only if the index portions are the same and the
node portions are in a parent/child relation according to β.

The other axes are similar. Note that in an interpretation we are required to
provide formulas describing the transitive axes (e.g., descendant) on the output,
but that is easy to do in this case. In the case of descendant, we replace child by
descendant in the formulas above, and in the second disjunct we require that the
new node corresponding to ca is above all the copied nodes.

The index structure consists of a single constant of combined sort, which indexes
the tuple which is ca on every component. The label structure is given as follows:

φα
Haslabel(~v;x1 . . . xk; z) := (x1 = ca∧z = a)∨

(

x1 6= ca∧φ
β
Haslabel(~v;xk′

β
+1 . . . xk; z)

)

The formula φα
emb(~v;x;x1 . . . xk) is

x1 = cemb ∧ InputNode(x) ∧ φβ
emb(~v;x;xk′

β
+1 . . . xk).

Note that we could have replaced x1 = cemb in the above by
∧

i≤k′

β
xi = cemb, since

all nodes in the interpretation that have cemb on the first component have cemb on
the first k′β components.

Correctness: To see that this construction works, let F# be an indexed forest,

b1 . . . bn nodes of F#, and F#
β = (Fβ , l1 . . . ls) the indexed forest resulting by ap-

plying β to F# with b1 . . . bn interpreting $v1 . . . $vn, i.e., F#
β = [[β]]n(F#, b1 . . . bn).

By induction, we can assume Iβ correctly interprets β, and hence in particular
there is a valid indexed forest F#

β,I = [Iβ](F#, b1 . . . bn): that is, the child and

sibling relations of F#
β,I do form an ordered tree, the set of indices are linearly

ordered by the <ind relation, etc. Also by induction, we have a bijection Hβ taking

nodes of F#
β to nodes of F#

β,I , where Hβ extends φβ
emb, and a bijection Jβ taking

the indices of F#
β to indices of F#

β,I .

Let F#
α = [[α]]n(F#, b1 . . . bn) and let F#

α,I = [Iα](F#, b1 . . . bn) be the result of
applying the interpretation Iα formed above to F#. Note that the definition of Iα

guarantees that the index component of F#
α is a singleton, as is the case for F#

β .

We will give an isomorphism from the nodes of F#
α to the nodes of F#

α,I . From
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the definition of the constructor 〈a〉β〈/a〉, we see that the nodes of F#
α are either

“inherited nodes” (elements of Fβ), “copied nodes” (copies of the F#
β nodes that

are descendants of some list item li, with a distinct copy for each i), or the new
root node labeled by a. Consider the mapping Hα on the nodes of F#

α that takes:

—the new root of F#
α to (ca)k, where for a constant c and integer i, ci denotes the

i-tuple all of whose elements are c.

—each node b of Fβ to c
k′

β

emb ·Hβ(b), where · denotes concatenation of tuples.

—a node b that is a copy of a node under li to Jβ(i) ·Hβ(b)

We claim that this mapping gives a bijection from the nodes of indexed forest F#
α

to the nodes of F#
α,I preserving the forest structure (which, in particular implies

that F#
α,I is an indexed forest). We first argue that the formula φα

Node enforces
that the nodes of Fα,I are exactly the image of Hα. The first two disjuncts in φα

Node

correspond to the first two cases of Hβ above. The third disjunct in φα
Node states

of a node in Fα,I that it consists of an index output by β – say Jβ(i) for some i
— concatenated with a node that is in the descendant-or-self relation to li. Hence
the third disjunct of φα

Node corresponds to the third case within the definition of Hβ

above.
By induction we know that for each node b in F# there is a unique tuple ~t such

that φβ
emb(b1 . . . bn; b;~t) holds. Letting F β

emb be the function mapping a node to the

corresponding tuple ~t, we see that φα
emb also defines a function, taking a node b in the

input to c
k′

β

emb · F
β
emb(b). Since by induction Hβ extends the function corresponding

to φβ
emb, we see that Hα does indeed extend the function corresponding to φα

emb.
To see that Hα preserves the child relation, note that the first disjunct of φα

child,
along with the correctness of Hβ guarantee that Hα preserves the child relation
on inherited nodes. The second disjunct of φα

child guarantees that the parent/child
relation is preserved when the parent is the new root node, and the third disjunct
of φα

child guarantees that the parent/child relation is preserved when both nodes are
copied nodes.

The correctness of other axes is argued similarly.
Note that the definition of Iα guarantees that the index component of F#

α is a
singleton, and that this element indexes the tuple given by the constant function
ca. This constant tuple is the image under the isomorphism Hβ of the root of F#

α,
and hence must be the sole root of F#

α. From this we see that the mapping Jα

taking the sole index of F#
α to the sole index of F#

α,I is an isomorphism of the
index structure, and that in conjunction with Hα it preserves the ItemOf relation.

Alternative tree formation constructor: Suppose α is the expression

〈lab($vi)〉β〈/lab($vi)〉.

The interpretation is formed similarly to above, except that in the labeling formula,
z = a is replaced by Haslabel(vi, z).

4.2 Sequential Composition

Suppose α is the expression β γ.
By padding β and γ we can assume they have the same free variables v1 . . . vn. As

before, we inductively suppose we have interpretations for β and γ. In particular,
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for each axis relation R we have formulas φβ
R and φγ

R.

First, suppose the the node arities are the same (i.e. kγ = kβ = k), and similarly
assume the interpretations have the same index arity k′. Let cγ , cβ be new constant
symbols of combined sort. Then the interpretation for α will have arity k + 1 for
nodes and k′ + 1 for indices. The tree structure will be given as follows:

φα
Node(~v;x1 . . . xk+1) :=

(

x1 = cβ∧φ
β
Node(~v;x2 . . . xk+1)∧newtupleβ(~v;x2 . . . xk+1))

∨ (x1 = cγ ∧ φγ
Node(~v;x2 . . . xk+1) ∧ newtupleγ(~v;x2 . . . xk+1))

∨
(

∃w InputNode(w) ∧
∧

i≤k+1

xi = w
)

Recall that the formula InputNode(w) states that w is a node but not one of

the constants. We let newtupleβ(~v; ~x) state that ~x represents a “new node” in the
output of β(~v) – one that is not in the embedded image of the input forest; this

can be expressed as φβ
Node(~v; ~x) ∧ ¬∃y φβ

emb(~v; y; ~x). We will return to this formula
later on in the paper.

This definition enforces that the nodes returned by α are the “new” nodes of
β and γ (distinguished from each other by having a distinct constant on the first
component) plus a copy of the nodes from the input tree. This is one of the places
where we require the embedding of the input into the output to be available within
the interpretation.

φα
Haslabel(~v;x1 . . . xk+1; z) := (x1 = cβ ∧ φβ

Haslabel(~v;x2 . . . xk+1; z)) ∨

(x1 = cγ ∧ φγ
Haslabel(~v;x2 . . . xk+1; z)) ∨ (InputNode(x1) ∧ Haslabel(x1, z))

For any axis relation R we set:

φα
R(~v;x1 . . . xk+1; y1 . . . yk+1) := (InputNode(x1) ∧ InputNode(y1) ∧R(x1, y1))

∨ (x1 = cβ ∧ y1 = cβ ∧ φβ
R(~v;x2 . . . xk+1; y2 . . . yk+1))

∨ (x1 = cγ ∧ y1 = cγ ∧ φγ
R(~v;x2 . . . xk+1; y2 . . . yk+1))

For new constants c′β , c
′
γ , we set

φα
Ind(~v;x

′
1 . . . x

′
k′+1) := (x′1 = c′β ∧ φβ

Ind(~v;x
′
2 . . . x

′
k′+1))∨

(x′1 = c′γ ∧ φγ
Ind(~v;x

′
2 . . . x

′
k′+1))
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φα
ItemOf(~v;x

′
1 . . . x

′
k′+1;x1 . . . xk+1) :=

(x′1 = c′β ∧x1 = cβ ∧newtupleβ(~v;x2 . . . xk+1)∧φ
β
ItemOf (~v;x

′
2 . . . x

′
k′+1;x2 . . . xk+1))∨

(x′1 = c′γ ∧x1 = cγ ∧newtupleγ(~v;x2 . . . xk+1)∧φ
γ
ItemOf (~v;x

′
2 . . . x

′
k′+1;x2 . . . xk+1))∨

(

x′1 = c′β ∧ ∃w2 . . . wk+1 φ
β
ItemOf (~v;x

′
2 . . . x

′
k′+1;w2 . . . wk+1) ∧

φβ
emb(~v;x2;w2 . . . wk+1) ∧

∧

3≤i≤k+1

xi = x2

)

∨

(

x′1 = c′γ ∧ ∃w2 . . . wk+1 φ
γ
ItemOf (~v;x

′
2 . . . x

′
k′+1;w2 . . . wk+1) ∧

φγ
emb(~v;x2;w2 . . . wk+1) ∧

∧

3≤i≤k+1

xi = x2)
)

We see above that the node associated with an index is a bit subtle. If the
index is associated with a new node of β – one that is not an input element —
we just use the tuple output from the interpretation of β , marked with cβ . If the
index is associated with an “old node” (i.e., in the input forest) of β, we find the
corresponding input element using the embedding predicate of β, and then use α’s
representation of that input element, which is a constant function. Analogously for
an index associated with a node of γ.

φα
<ind

(~v;x1 . . . xk′+1;x
′
1 . . . x

′
k′+1) :=

(x1 = c′β ∧ x′1 = c′γ) ∨ (x1 = c′β ∧ x′1 = c′β ∧ φβ
<ind

(~v;x1 . . . xk′ ;x′1 . . . x
′
k′))∨

(x1 = c′γ ∧ x′1 = c′γ ∧ φγ
<ind

(~v;x1 . . . xk′ ;x′1 . . . x
′
k′ ))

<ind puts all the k+1 tuples beginning with c′β (i.e. those that represent indices of

β) before those beginning with c′γ (which represent indices of γ). It then uses the
ordering on β (resp. γ) for those k′ + 1 tuples beginning with c′β , and similarly for

c′γ .
The formula φα

emb(~v;x;x1 . . . xk+1) is
∧

1≤i≤k+1 xi = x.
Correctness: Given an input indexed forest F# and an assignment of nodes

b1 . . . bn to the variables, let F#
β = [[β]]n(F#,~b), F#

β,I = [Iβ ](F#,~b), F#
γ =

[[γ]]n(F#,~b), and F#
γ,I = [Iγ ](F#,~b). Let F#

α = [[α]]n(F#,~b) and F#
α,I = [Iα](F#,~b).

We can assume by induction we have bijections Hβ from the nodes of F#
β to the

nodes of F#
β,I and Jβ from the indexes of F#

β to the indexes of F#
β,I , with Hβ

extending the function corresponding to φβ
emb. Similarly we haveHγ extending φγ

emb

and Jγ taking F#
γ to F#

γ,I . We consider the mapping Hα that takes a node b of
F#

α to:

—cβ ·Hβ(b) if b is in F#
β −F#

—cγ ·Hγ(b) if b is in F#
γ −F#

—bk+1 if b is in F#.

Notice that the third case above guarantees that Hα extends φα
emb. Let nβ be the

number of indices in F#
β , and similarly let nγ be the number of indices in F#

γ . We

then let Jα map integer i to the image under Jβ of the ith index of F#
β , if i ≤ nβ

and map nβ + j to the image under Jγ of the jth index of F#
γ , for j ≤ nγ . One

can verify that Hα, Jα form an isomorphism of F#
α to F#

α,I .

22



Remaining cases: If kγ 6= kβ , say kγ − kβ = m where m > 0, we proceed
similarly but with the tuple of elements beginning with cβ being padded out with
cβ on the additional components.

4.3 Cases of navigation

Suppose α is the expression $vi. The node arity for the interpretation correspond-
ing to α will be 1. We will have φα

Node(~v;x1) := IsNode(x1) and φα
R(~v;x1; y1) :=

R(x1, y1) for every axis relation R. The labeling structure will state that the label
of node x1 is just the label x1 has as the input. That is, in this case the query just
returns the tree and label structure copied from the input. The index structure con-
sists of a single element (we use a new constant c for this element, although we could
also have used vi), and the indexing relations are given by φα

Ind(~v;x1) := x1 = c and
φα

ItemOf(~v;x1;x
′
1) := x′1 = vi. The embedding formula φα

emb is the identity.
Suppose α is $vi/descendant :: ν. The tree and label structure are the same as

in the case α = $vi above. The index structure is

φα
Ind(~v;x1) := descendant(vi, x1) ∧ Haslabel(x1, ν)

φα
ItemOf(~v;x1;x

′
1) := x′1 = x1

That is, we have an index for every descendant of vi, and it is associated with the
copy of the corresponding element from the input. The ordering on indices φα

<ind

is given by the document ordering on elements of the input, and the embedding
formula is as with the case immediately above.

The general case of $vi/axis :: ν is done as above, with the only change being
the obvious revision of φα

Ind(~v;x1).
Correctness: Fix an input forest and an interpretation bi of variable $vi. Let

Hα be the identity on nodes. Since all of the data forest structure on the output is
the same as that of the input, Hα preserves all the data forest structure. Because
the document ordering is a linear-ordering, the output tree is always an indexed
forest. Let the function Jα map the jth index of the input to the jth element in
the axis relation to the interpretation of bi. Then the definitions imply that Hα, Jα

preserve the indexing relations.

4.4 Conditional

Suppose α is of the form if β then γ, and suppose γ is given by an interpretation
with node arity k. Then the interpretation for α also has arity k and is given as
φα

Node(~v; ~x) := oldtupleγ(~v; ~x) ∨ (∃~x′ φβ
Ind(~v; ~x

′) ∧ newtupleγ(~v; ~x)).
The formula oldtupleγ(~v; ~x) states that ~x is a representation in the output of the

interpretation for β(~v) of a node from the input forest. This can be expressed as
∃y φγ

emb(~v; y; ~x). The formula newtupleγ is the negation of oldtupleγ .
The formula φα

Node states that we always return the copy of the input in γ, but
return the new nodes of γ only when β returns a non-empty list component.

The formula φα
R is the same as φγ

R for all axis predicates R. Since this formula is
(again, by our convention) conjoined with φα

Node, it will automatically apply only to
the “old nodes” (copies of the input) in the case that β returns an empty sequence
component. The other formulas similarly state that if β returns a nonempty se-
quence component, the label and index predicates are the same as those of γ, while
if β returns an empty sequence, the labels and labeling predicates are just those
of the input, while the index structure is empty. These can easily be expressed in
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FO. For example, we have φα
Ind(~v; ~x) = ∃~x′ φβ

Ind(~v; ~x
′) ∧ φγ

Ind(~v; ~x). The embedding
predicate is that of γ.

Correctness: Given input indexed forest F# and b1 . . . bn nodes of F#, let F#β

be β(F#,~b) and F#
′
β be the result of applying the interpretation for β to (F#,~b).

Similarly, let F#γ be γ(F#,~b), F#
′
γ be the result of applying the interpretation for

γ to (F#,~b), and let Hγ , Jγ be mappings from the nodes and indices of F#γ to the

nodes and indices of F#
′
γ . If the sequence component of F#β is nonempty, we setHα

equal to Hγ and similarly set Jα = Jγ . By correctness of the interpretation for β,

we have that ∃~x′ φβ
Ind(
~b; ~x′) holds in F#, and thus the interpretation above reduces

to Fγ . If the sequence component of F#β has an empty sequence component, we set

Hα to be the identity mapping and Jα to be the empty mapping. One can verify
that the above interpretation reduces to the identity in this case.

4.5 Equality Tests

If condition β is of the form $v1 =node $v2, then let cY be a new constant of
combined sort (denoting “yes”), and “yes” be a label constant. The interpretation
for β will have arity 1, with:

φβ
Node(~v;x1) := InputNode(x1) ∨ (v1 = v2 ∧ x1 = cY )

φβ
Haslabel(~v;x1; z) := (InputNode(x1) ∧ Haslabel(x1, z)) ∨ (x1 = cY ∧ z = “yes”)

φβ
ItemOf (~v;x

′
1;x1) := v1 = v2 ∧ x1 = x′1

The tree structure is simple, representing the disjoint union of the input and
additionally (if v1 = v2) a tree with at most one node. The embedding is the
identity.

If condition β is of the form $v1 =deep 〈a/〉, then let cY be a new constant of
combined sort, and “yes” a label constant. The interpretation for β will have arity
1, with:

φβ
Node(v1;x1) := InputNode(x1) ∨

(Haslabel(v1, a) ∧ ¬(∃y child(v1, y)) ∧ x1 = cY )

φβ
Haslabel(v1;x1; z) := (InputNode(x1) ∧ Haslabel(x1, z) ∨ (x1 = cY ∧ v = “yes”)

The other formulas are similar.
If condition β is of the form $v1 =atomic 〈a/〉, then let cY and “yes” be as for

=deep above, and let φβ
Node(~v;x1) := InputNode(x1) ∨ (Haslabel(v1, a) ∧ x1 = NY ).

The other formulae are as above.
If condition β is of the form $v1 =atomic $v2, then we do as above, except

φβ
Node(~v;x1) := InputNode(x1) ∨ (∃z Haslabel(v1, z) ∧ Haslabel(v2, z) ∧ x1 = cY ).

Correctness is easy to see: note that the output indexed forest differs by at most
one node from the input.

4.6 Other Cases

If expression α is of the form (), then let φα
Node(x1) := InputNode(x1). The formula

for φInd is false. The rest of the forest structure is identical to the input.
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Note that according to our semantics from Subsection 2.2, () does not return an
empty output forest. It returns an indexed forest in which the underlying forest is
the input forest, and the sequence component is empty. The interpretation has the
same property.

4.7 Example

Example 4.1. We illustrate part of the construction of the previous proof with
a concrete example. Consider the XQ expression δ = if α then γ with α =
$v1 =atomic 〈a/〉, γ = 〈b〉β〈/b〉, and β = (). We apply δ to an indexed forest
structure consisting of a single a-labeled node N0, with $v1 assigned to this node.

Then, the interpretation (φβ
Node, . . . ) has one node N0 labeled a, and an empty

set of indices. φβ
emb maps N0 to itself. φγ

Node = {(cemb, N0), (cb, cb)} with labels a, b,
respectively. φγ

child = ∅. The index structure will have one index, which will index
the node (cb, cb). φ

γ
emb maps N0 to (cemb, N0).

In the interpretation for α, φα
Node = {N0, cY }, with these nodes labeled with a

and “yes” respectively. The forest structure will be a forest of two disconnected
nodes. The index structure will have a single index (which can be taken to be cY ),
and this will index the node cY : φα

emb will map N0 to itself.
Since there is a node in φα

Ind, we have that φδ
Node = {(cemb, N0), (cb, cb)} with

labels a and b respectively, and φδ
child = ∅. 2

4.8 Translation of union queries

We now show that union can be captured.

Theorem 4.2. If β($v1 . . . $vn+1) is a AtomXQ+ query, and Iβ is an indexed-
forest interpretation equivalent to β. Then we can compute an indexed forest inter-
pretation equivalent to α = union $vn+1 over β .

To prove this, suppose β($v1 . . . $vn+1) is given by Iβ = (φβ
Node(v1 . . . vn;x1 . . . xk), . . .)

where the node arity is k and the index arity is k′. Then we can show that α is
given by an indexed forest interpretation over v1 . . . vn as follows, where the arity
for the nodes is k + 1 the arity for indices is k′ + 1.

Let c be an additional constant. The interpretation has

φNode(v1 . . . vn, x1 . . . xk+1) := (IsInd(x1) ∧ ∃vn+1 IsNode(vn+1) ∧

ItemOf(x1, vn+1) ∧ newtupleβ(v1 . . . vnvn+1;x2 . . . xk+1))

∨ (x1 = c ∧ ∃w InputNode(w) ∧
∧

2≤i≤k+1

xi = w)

This states that a node is either: (i) a new tuple generated by Iβ for some vn+1 in
the sequence component of the input, where we distinguish vn+1’s that correspond
to different indices by including the associated index as the first element of the
sequence, or (ii) an element of the input, padded by an additional constant. The
definition guarantees that we get one copy of the input forest and disjoint copies of
the new nodes produced for distinct v1 . . . vn+1. The reader should compare with
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the definition of the interpretation for sequential composition βγ.

φHaslabel(v1 . . . vn;x1 . . . xk; z) := (x1 = c ∧ Haslabel(x2, z)) ∨

(x1 6= c ∧ ∃vn+1 ItemOf(x1, vn+1) ∧ φβ
Haslabel(v1 . . . vn+1;x2 . . . xk+1; z))

For axis ∈ {child, descendant, next-sibling, following-sibling} we have

φaxis(~v;x1 . . . xk+1; y1 . . . yk+1) := (x1 = c ∧ y1 = c ∧ axis(x2, y2)) ∨

(x1 6= c ∧ y1 = x1 ∧ ∃vn+1 ItemOf(x1, vn+1) ∧

φβ
axis(v1 . . . vn+1;x2 . . . xk+1; y2 . . . yk+1)

φInd(~v;x
′
1 . . . x

′
k′+1) := ∃vn+1 ItemOf(x′1, vn+1) ∧ φ

β
Ind(v1 . . . vnvn+1;x

′
2 . . . x

′
k′+1)

φItemOf(v1 . . . vn;x′1 . . . x
′
k′+1;x1 . . . xk+1) :=

(

x1 = c ∧ ∃w InputNode(w) ∧
(

∧

2≤i≤k′+1

xi = w
)

∧ ∃w2 . . . wk+1∃vn+1ItemOf(x′1, vn+1)∧

φβ
ItemOf(v1 . . . vn+1;x

′
2 . . . x

′
k′+1;w2 . . . wk+1) ∧

φβ
emb(v1 . . . vn+1;w;w2 . . . wk+1)

)

∨

(x1 = x′1 ∧ ∃vn+1 ItemOf(x′1, vn+1) ∧

φβ
ItemOf(v1 . . . vn+1;x

′
2 . . . x

′
k′+1;x2 . . . xk+1))

φ<ind
(~v;x′1 . . . ~x

′
k′+1; y

′
1 . . . y

′
k′+1) := <ind(x

′
1, y

′
1) ∨ (x′1 = y′1 ∧

∃vn+1 ItemOf(x′1, vn+1) ∧ φ
β
<ind

(v1 . . . vn+1;x
′
2 . . . x

′
k′+1; y

′
2 . . . y

′
k′+1))

The rest of the structure (e.g. φemb) is similar.
Correctness: Assume inductively that the interpretation Iβ represents β. Let

Iα(v1 . . . vn) be the interpretation formed above.
Fix an indexed forest F#. We will take the underlying index set of F# to be an ini-

tial segment of the integers and denote the sequence component as li : i ≤ s. Since
our queries commute with isomorphism, and our result states only equivalence up to
isomorphism, such an assumption is justified. Fix b1 . . . bn interpreting v1 . . . vn. Let
F#

α be [[union $vn+1 over β]]n(F#, b1 . . . bn), and let F#
α,I = [Iα](F#, b1 . . . bn).

We first describe a mapping Hα taking a node b of F#
α to a node of F#

α,I . If
b is a node of F#, then Hα(b) = (c, b . . . b). If b is not a node of F#, then there
is a unique integer i such that b ∈ [[β]]n+1(F#, b1 . . . bn, li). By the induction hy-
pothesis, there are mappings Hβ,i and Jβ,i from nodes and indices, respectively of
[[β]]n+1(F#, b1 . . . bn, li) to nodes and indexes of [Iβ](F#, b1 . . . bn, li) that preserve
the indexed forest structure. Let Hα(b) = (i, y1 . . . yk), where (y1 . . . yk) = Hβ,i(b).

We now define a mapping Jα on indices of F#
α. For i ≤ s, let szβ,i be the size of

the index set of the indexed forest [[β]]n+1(F#, b1 . . . bn, li). Then by the definition
of union we know that there are

∑

i szβ,i indices in F#
α, and each such index is

thus of the form
∑

i′<i szβ,i′ + p for some i ≤ s and some p < szβ,i. We map such
an index to i′ · Jβ,i(p). It is easily verified that Hα, Jα form an isomorphism from

F#
α to F#

α,I .
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5. COMPOSITION OF INTERPRETATIONS AND THE COMPLETION OF THE

PROOF OF THEOREM 3.2

It now remains to show that indexed forest interpretations are closed under the
composition operator ◦. That is, we must show:

Theorem 5.1. Suppose that I1(v1 . . . vn) is an indexed forest interpretation equi-
valent to XQ+ query Q1($v1 . . . $vn), and I2(v1 . . . vn) is an indexed forest inter-
pretation equivalent to XQ+ query Q2($v1 . . . $vn). Then we can form an indexed
forest interpretation I3(v1 . . . vn) that is equivalent (for every input forest F# and
binding b1 . . . bn of the variables to nodes in F#) to Q2 ◦Q1($v1 . . . $vn). The func-
tion that produces I3 from I1 and I2 runs in time at most |I1| · |I2|.

Interpretations in general only mimic an XQ+ query up to isomorphism. In
particular, if we want to compositionally create an interpretation that returns the
indexed forest [[Q2]]n([[Q1]]n(·, b1 . . . bn), b1 . . . bn), for some XQ+ queries Q1 and Q2,
we must consider that an interpretation I1 equivalent to Q1 will produce an output
that does not contain b1 . . . bn, but only isomorphic copies of these nodes. To prove
Theorem 5.1, we must thus show the following variant:

Theorem 5.2. There is a function that, under the assumptions of Theorem 5.1,
produces an interpretation I3 such that: for every input forest F# and binding
b1 . . . bn of the variables v1 . . . vn to nodes in F#, [I3](F#, b1 . . . bn) is isomorphic to
[I2]([I1](F#, b1 . . . bn), b′1 . . . b

′
n) where for 1 ≤ i ≤ n, b′i is the image of bi under the

embedding φI1
emb(b1 . . . bn).

If we have the above, then Theorem 5.1 follows, since [I2]([I1](F#, b1 . . . bn), b′1 . . . b
′
n)

is assumed isomorphic to [[Q2]]n([[Q1]]n(F#, b1 . . . bn), b1 . . . bn).
In this subsection, we give a function that composes an interpretation with an

additional formula. This function will be used to prove Theorem 5.2 by allowing
us to compose an interpretation I1 with an interpretation I2 “one formula of I2 at
a time”.

We first give some notation for defining a relation within an indexed forest. Let
R be a relation symbol of arity d. We consider a formula γ(v1 . . . vn;x1 . . . xd)
over vocabulary σnav,ind, where again the ‘;’ represents a partition of the free
variables into two classes. γ can mention constant symbols C′. For simplicity, we
will consider the case where the variables x1 . . . xk are constrained to be nodes (by
the IsNode predicate). Given such a γ, an indexed forest F#, and nodes b1 . . . bn
in F#, we let R(F#, γ, b1, . . . bn) be the structure for signature {R} whose domain
is (F# ∪ C′) where R is interpreted by the sequence of d-tuples of nodes {q1 . . . qd |
(F# ∪ C′, b1 . . . bn, q1 . . . qd) |= γ}. We will be applying this to the indexed forest
F#

′ that results from applying an interpretation.
We now turn to a formula that “pulls back” a definable relationR of arity d on the

output of an interpretation to the original domain. Let I = 〈φNode(v1 . . . vn;x1 . . . xk), . . .〉
be an indexed forest interpretation with node arity k and index arity l over v1 . . . vn,
using constants C. Suppose that γ′(v1 . . . vn;x1

1 . . . x
1
k, . . . , x

d
1 . . . x

d
k) is a formula in

signature σnav,ind ∪C′, where xj
i : j ≤ d, i ≤ k are variables of combined sort. Intu-

itively, since I produces an indexed forest output structure in which nodes are k-
tuples, γ′ determines a d-ary relation in the output of I. Formally, we define R(γ′, I)
to be the interpretation I ′ for the signature {R} based on the constants of I supple-
mented with any new constants of C′, which takes as input (F#, b1 . . . bn) and out-

27



puts a structure whose domain will be {~x ∈ F#
k : φI

Node(
~b; ~x)∨

∨

c′∈C′

∧

i≤k xi = c′}.
That is, the domain will be the k-tuples corresponding to nodes of I unioned with
the image of the constants under the mapping taking c to ck = (c . . . c). The relation
R will be interpreted using γ′: that is, as a set of k-tuples of d-tuples ~m1, . . . , ~mk

such that γ′(b1 . . . bn; ~m1, . . . , ~mk).
Let h(F#, k, C, C′) be the mapping from (Node(F#)∪C)k∪C′ to (Node(F#)∪C∪C′)k

that is the identity on (Node(F#) ∪ C)k and takes c′ ∈ C′ to c′
k
.

Definition 5.3. Let I be an interpretation of node arity k based on constants C,
and γ(v1 . . . vn;x1 . . . xd) a σnav,ind∪{InputNode}∪C′ formula, where the constants
in C′ are disjoint from those in C and the variables are constrained to be nodes. We
say that another σnav,ind∪{InputNode}∪C∪C′ formula γ′(v1 . . . vn;x1

1 . . . x
1
k . . . x

d
1 . . . x

d
k)

captures the composition of γ and I if for every indexed forest F# and every interpre-
tation of v1 . . . vn by b1 . . . bn in F#, the mapping h(F#, k, C, C′) is an isomorphism
from [R(γ′, I)](F#, b1 . . . bn) to R(γ,F#

′, b′1 . . . b
′
n), where F#

′ = [I](F#, b1 . . . bn),
for i ≤ n, b′i is the image of bi under φI

emb (i.e. b′i is the node corresponding to the

unique k-tuple ~t such that φI
emb(

~b; bi;~t) holds).

Note that both [R(γ′, I)](F#, b1 . . . bn) and R(γ,F#
′, b′1 . . . b

′
n) are structures for

a single d-ary relation.
Above, we have assumed, for simplicity, that all the arguments of the relation

γ are of the same sort (e.g. all of node sort). The generalization of the definition
to formulas γ(x1 . . . xd) where not all xi have the same sort is straightforward: for
each variable xi of γ of sort whose arity in I is j, γ′ will have variables xi

1 . . . x
i
j .

We will show the following “Composition Lemma”:

Lemma 5.4. There is a function Compose(γ, I) that returns a formula γ′ cap-
turing the composition of γ and I, which runs in time O(|γ| · |I|).

The proof is by induction on the formula. We give the function Compose that
provides the proof of the lemma. We assume that the interpretation I is given
by 〈φNode(v1 . . . vn;x1 . . . xk), . . .〉. We let InputNode+(x) abbreviate the formula
InputNode(x) ∨

∨

c∈C x = c. For a sequence of variables ~x let InputNode+(~x) =
∧

i InputNode+(xi). In an input structure of the form F# ∪ C ∪ C′, InputNode+(x)
thus enforces that x is not one of the constants of C′. We will normalize γ by
assuming that variables vi occur only in equalities – such a normalization can be
done in linear time.

—Compose
(

IsNode(xi), I
)

:= φNode(~v;x
1
1 . . . x

1
k)

—Compose
(

IsInd(xi), I
)

:= φInd(~v;x
1
1 . . . x

1
k)

—Compose
(

R(xi, xj), I
)

:= InputNode+(~xi)∧ InputNode+(~xj)∧φR(~v; ~xi; ~xj), for R
any of the navigational predicates

—Compose
(

InputNode(x), I
)

:= InputNode+(~x)

—Compose(xi = xj , I) :=
∧

1≤m≤k x
i
m = xj

m

Compose(xi = c, I) :=
∧

1≤m≤k x
i
m = c, where c is a constant in C′.

Compose(vi = vj , I) := vi = vj and similarly for constant equalities.
Compose(xi = vj , I) := φemb(~v; vj ; ~x

i)

—Compose
(

Haslabel(xi, z), I
)

:= InputNode+(~xi) ∧ φHaslabel(~v; ~x
i; z)
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—Compose
(

ItemOf(xi, xj), I
)

:= InputNode+(~xi)∧InputNode+(~xj)∧φItemOf (~v; ~x
i; ~xj)

—Compose
(

<ind(xi, xj), I
)

:= InputNode+(~xi) ∧ InputNode+(~xj) ∧ φ<ind
(~v; ~xi; ~xj)

—Compose
(

(∃xi η(x1 . . . xd)), I
)

:= ∃~xi Compose
(

η(x1 . . . xd), I
)

where Compose
(

η(x1 . . . xd), I
)

will have free variable ~x1 . . . ~xd,where ~xi is a k-
tuple of variables.

—Compose commutes through Boolean operations.

We now verify that Compose has the required property. We fix an indexed forest

F# and b1 . . . bn interpreting v1 . . . vn. Let F#
′ = [I](F#,~b), and b′i be the image

of bi under φI
emb for i ≤ n. Let h abbreviate h(F#, k, C, C

′). Recall that nodes
of [I](F#, b1 . . . bn) are k-tuples (n1 . . . nk) from F# ∪ C. For such a k-tuple, h is
the identity; for the additional new elements in the domain of R(γ)([I](F#)) – the
constants c in C′ – h(c) is the k-tuple (c, . . . c).

We verify that h is the required isomorphism, by induction on the structure of
γ. For brevity, we execute only two of the cases.

—Base cases for axes. Let γ(x1, x2) = axis(x1, x2). We have to verify that for

m1,m2 nodes of R(γ,F#
′,~b′) we have

R(γ,F#
′,~b′) |= R(m1,m2) ↔ [R(γ′, I)](F#,~b) |= R(h(m1), h(m2)).

Unwinding the definition of γ, γ′, R(γ,F#
′,~b′) and [R(γ′, I)], we see that this is

true iff the following holds for all nodes m1,m2 of F#
′ ∪ C ∪ C′:

F#
′ ∪ C′ |= axis(m1,m2) ↔

F# ∪ C ∪ C′ |= InputNode+(h(m1), h(m2)) ∧ φ
I
axis(

~b;h(m1);h(m2)).

If m1 or m2 is in C′, then axis(m1,m2) cannot hold, since no axis relations hold
of the constants (the axes in our signature do not include self), and neither
does InputNode+(h(m1), h(m2)) hold, since this would require the components
of both arguments to be in F# ∪ C. So it suffices to verify the equivalence for
m1,m2 ∈ F# ∪ C. But there h is just the identity: that is, it maps m1 to the
k-tuple ~m1 that represents it, and similarly for m2. So we need to show that

F#
′ |= axis(m1,m2) ↔ F# ∪ C |= φI

axis(
~b; ~m1; ~m2) But this holds because φI

axis is
the interpretation of axis in [I].

—Base cases for equality.
Consider the case of formula γ(v1;x1) := v1 = x1 We have to verify that for m1

a node of R(γ,F#
′,~b′) R(γ,F#

′,~b′) |= R(m1) ↔ [R(γ′, I)](F#,~b) |= R(h(m1)).
Unwinding the definitions of the two structures, we see that we have to verify that

for all nodesm1 of F#
′∪C′, F#

′∪C′ |= b′1 = m1 ↔ F#∪C∪C′ |= φI
emb(

~b; b1;h(m1)).
For m1 ∈ C′, both sides of the equivalence are false, so the equivalence holds.
For m1 ∈ F#

′, we need to verify that F#
′ ∪ C′ |= b′1 = m1 ↔ F# ∪ C ∪ C′ |=

φI
emb(

~b; b1; ~m1) where ~m1 represents m1 in F#
′. But this holds by the definition

of b′1.

Now consider γ := x1 = c. We need to show that [I](F#,~b) + R(γ) |= R(m1) ↔

[I + R(γ′)](F#,~b) |= R(m2). This unwinds to [I](F#,~b) |= m1 = c ↔ [I +

R(γ′)](F#,~b) |=
∧

i m
i
1 = c. But this again follows from the definition of [I].

The other cases are similar.
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We are now ready for the proof of Theorem 5.2. Suppose that I1(v1 . . . vn) and
I2(v1 . . . vn) are indexed forest interpretations equivalent to Q1 and Q2 respectively.
Suppose that I1(v1 . . . vn) is an indexed forest interpretation, and I2(v1 . . . vn) is an
indexed forest interpretation.

For each symbol β of σnav,ind, we let φI3
β be the formula that captures the com-

position of φI2
Node and I1 (as produced by Lemma 5.4 in the case where all free

variables of φI3
β are constrained to be nodes; in the more general case, we apply the

obvious generalization of the Lemma).

For each relation R of σnav,ind we let φI3
R be the formula that captures the compo-

sition of φI2
R and I1, as produced by Lemma 5.4. This is the required interpretation,

since Lemma 5.4 produces a mapping h that is an isomorphism of the output of the
composition with the output of this interpretation (note that the mapping h given
by the Lemma does not depend on the formula being composed). 2

6. REFINEMENTS AND APPLICATIONS OF THE TRANSLATION FROM

ATOMXQ TO LOGIC

Output-node semantics. Recall from Subsection 2.2 that Qout returns the forest
consisting of the descendants of nodes in the list component returned by Q. It
is easy to revise Theorem 3.1 to preserve the output node semantics. A forest
interpretation is defined similarly to an index-forest interpretation, but without the
index predicates being used in any formulas and without the index formulas and
embedding predicate. Then we have:

Corollary 6.1. There is an ExpTime function that maps every AtomXQ
query Q with free variables $v1 . . . $vn to an FO forest interpretation I such that
Qout is equivalent to I.

Proof: Given an indexed forest interpretation I0 that captures the full semantics,
we can easily obtain a forest interpretation I in the sense of subsection 2.3 that
captures the output-node semantics of Q. We do this by

—replacing predicates IsInd and ItemOf by false and IsNode by true in any formulas
of I0 – this is clearly justified for inputs where the index structure is empty, which
can be taken to be the case,

—dropping all the formulas that interpret the index structure, and

—relativizing the σnav formulas to the nodes ~x that occur in I0 inside subtrees of
indexed nodes, by conjoining with

∃~w~w′ φIsInd(~v, ~w
′) ∧ φItemOf (~v, ~w

′, ~w) ∧ (~x = ~w ∨ φdescendant(~v, ~w, ~x)).

Fragments of AtomXQ. We now consider sublanguages of AtomXQ, with the
goal of seeing what subset of FO they map to. We start with a simple case, that
of PosXQ. Let ∃FO be the fragment of FO built up from the atomic formulas
of σnav and (in)equalities between constants and variables using positive Boolean
operators and existential quantification. As the name implies, PosXQ are positive:
they translate into interpretations in which general negation is not needed. A
disclaimer is needed here about sibling ordering: in XQ, the sibling ordering is
done by relativizing document order to the returned nodes. This requires the use
of negation (see Example 2.4). One may worry that when the sibling axis is then
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used compositionally, this can lead to negation elsewhere in the interpretation.
However, we can show:

Proposition 6.2. For every PosXQ expression Q that does not use the sibling
axes, one can find (in ExpTime) a forest interpretation I equivalent to Qout for
which all formulas are in ∃FO, other than those for the sibling axes.

Proof. The translation that witnesses Theorem 3.2 introduces negation only in
a few places.

One is the formula newtuple, which we have defined using negation on φemb.
However, we can arrange that for any tuple satisfying φNode, whether or not it is in
the image of φemb can be checked with a positive boolean combination of equalities
and inequalities with a fixed set of constants on the first component of the tuple
– hence newtuple and oldtuple are in fact positive formulas. We can arrange this
for constructs other than composition and union by construction. In the prior
constructions we have sometimes used the product of the identity mapping for φemb

(e.g. for sequential composition); instead we could add a new constant and use
this as a marker in the first component. For composition, the embedding is the
result of applying the composition algorithm to a prior interpretation I and the
embedding formula φemb; one can check that the composition of an equality of a
variable with a constant x1 = c is simply the conjunction of φI

Node(~v : ~x1) and a
conjunction of constant equalities. The conjunct φI

Node(~v : ~x1) can be omitted, since
the node formula of the composed interpretation will imply φI

Node(~v : ~x1), and the
variables representing nodes in φemb are automatically relativized to the nodes of
the composed interpretation. Hence the embedding formula φemb will again be a
positive boolean combination of equalities and inequalities.

Note that the operator Compose does not introduce negation. The only other
places where a general negation operator occurs are comparisons with =deep and
the construction of the sibling axis of the output, which is computed using rela-
tivized document order (see the formula φnext-sibling in Example 2.4). General =deep

comparisons are not allowed in PosXQ, so this is not an issue. Notice that for
queries in which the sibling ordering is not used explicitly in an axis, no formulas
in the corresponding interpretations will inductively depend on the sibling axes of
subformulas, other than index ordering formulas and sibling axes formulas. The
formula for the index ordering will not occur in the final forest interpretation, since
(by definition) a forest interpretation outputs only the forest structure. The index
ordering in turn is only used to form the sibling axis in the new tree construction
operator. Thus, if we exclude the formulas for the sibling-axes (as we do by hypoth-
esis here), we can show by induction that in the construction of Theorem 3.2 the
function Compose will never be called on a formula that uses negation. Hence we
can see that for an interpretation of sibling-free, PosXQ formulas, we can translate
into indexed forest interpretations represented with only ∃FO formulas.

Finally, we need to check not only that the formulas produced by the algorithm
of Theorem 3.2 applied to PosXQ queries are in ∃FO, but that ∃FO is preserved
in the step of going from an interpretation for the general semantics to an interpre-
tation for the output-node semantics. However, ∃FO is closed under relativizing
formulas to the nodes within the output list, so this last transformation is not a
problem.
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6.1 Complexity of translation and composition-free queries

Theorem 3.1 gives an ExpTime translation, due to the need to “inline” the same
expression multiple times when translating the for clause. It is thus not surprising
thatXQ queries can be exponentially more succinct than first-order queries. For the
translation from PosXQ to existential FO interpretations, we can show a stronger
result: there is an exponential blow-up even for boolean queries. Whether Boolean
AtomXQ queries can be translated in PTime to FO remains open. This is similar
to the question of the existence of a PTime translation from nested relational
queries on flat structures to relational queries, which has been an open problem in
complex-valued databases for some time [Van den Bussche 2005].

Consider any reasonable measure of the size of queries and interpretations, such
as the number of bytes required to write them in latex.

Theorem 6.3. There is no polynomial time function translating AtomXQ queries
to FO interpretations. For a PosXQ− query, there is no PT ime translation to
∃FO, even for Boolean queries.

We now give the proof of Theorem 6.3.
We first prove the bound for AtomXQ, which uses an argument well-known in

functional programming and nested-relational databases. Consider the sequence of
queries Qn given as

Q0 := 〈B/〉〈B/〉
Qn+1 := 〈A〉

let $v0 := 〈A〉Qn〈/A〉
for $v1 in $v0/child :: ∗

return (for $v2 in $v0/child :: ∗return ($v1 $v2))
〈/A〉

Since the number of nodes returned by Qn is the square of the number returned
by Qn−1, one can verify that Qn produces an output tree of doubly exponential
size in n given a tree with one node as an input. However, an FO interpretation
with formulas of arity k using n node constants can produce given an input of size
1, an output of size at most (n + 1)k, since nodes in the output are k-tuples of
nodes in the input and constants. Hence an interpretation obtained by translation
of Qn bounded in size by polynomial p(n) will be able to produce an output of size
at most (p(n) + 1)p(n) on an input of size 1. In the limit, this clearly cannot equal
the size of the output of Qn.

For the second lower bound, we consider the following sequence of queries Qn: If
all labels are distinct, Q1 will return, for every pair of nodes n1, n2 such that there
is a vertical path of length 2 from n1 to n2, the tree 〈A〉〈lab(n1)/〉〈lab(n2)/〉〈/A〉,
enclosed within a root node 〈R/〉.

Qn+1 := 〈R〉 let ($v := Qn)
for $x1 in $v/descendant :: A return

for $x2 in $v/descendant :: A return

for $m1 in $x1/descendant/previous-sibling :: ∗ return

for $m2 in $x1/descendant/following-sibling :: ∗ return

for $n1 in $x2/descendant/previous-sibling :: ∗ return

for $n2 in $x2/descendant/following-sibling :: ∗ return
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if lab($m2) = lab($n1) then〈A〉〈lab(m1)/〉〈lab(n2)/〉〈/A〉
〈/R〉

Above we have made some abbreviations: For instance, we use sequences of axes
descendant/previous-sibling instead of the equivalent PosXQ expression. We are
also using the inverse axis previous-sibling, while in the definition of XQ , we restrict
the axes by default to be the forward axes. But clearly the inverse axes are definable
in PosXQ.

One can verify that, in a tree in which all labels are distinct, Qn returns a
representation of all pairs of nodes that are 2n apart. From Qn we can form a
Boolean query checking whether the depth of such a tree is at least 2n. However,
an ∃FO formula with p(n) free variables can not distinguish between a chain of
depth 2n−1 and a chain of depth 2n.

We can avoid the blow-up by restricting queries in the source of the translation
to be in a special form. The language composition-free XQ is formed by restricting
the for $v in Q return Q′ construct so that Q must be of the form $v/axis :: ν, and
adding conditions of the form Q1 =deep Q2, where the Qi are restricted to return
singleton lists: i.e. they must be of the form 〈a〉β〈/a〉, 〈lab(var)〉β〈/lab(var)〉, or
var. The semantics is the same as that given by assigning variables v1 to Q1 and
v2 to Q2 and checking if v1 =deep v2: hence this is expressible in XQ .

The idea is that we do not have the ability to assign a variable to a query
result (or to iterate over a query result) — the ability to do this is what allows
XQ to reuse subquery results several times, leading to the exponential blow-up.
The language composition-free AtomXQ is the language formed from AtomXQ by
restricting for as above, and adding the construct not Q with semantics given via
for $v in 〈a〉Q〈/a〉 return $v =deep 〈a/〉. In addition we add $v =atomic 〈a/〉 for
a a label, since we can no longer simulate this using $v =atomic $v′ and for. In the
proof of Theorem 3.1 we can note that the blow-up comes only in the composition
step for ◦. For the special forms of for used above, we do not need to perform any
composition. We will thus be able to show:

Theorem 6.4. There is a polynomial time function producing for every com-
position-free AtomXQ query an equivalent first-order interpretation. For Q a
composition-free query in PosXQ, one can find in PTime an interpretation that is
equivalent to Q, in which all formulas are expressible in ∃FO.

As before (in Proposition 6.2), in the second part of the theorem we assume that
the sibling-axes are not given as part of the interpretation.

We give the modification to the algorithm of Theorem 3.2, leaving the verification
that it can be performed in polynomial time to the reader.

We will perform the algorithm inductively now only on AtomXQ, rather than on
AtomXQ+. All the base cases of AtomXQ, and all the inductive cases other than
for, are the same as in the prior algorithm. Rather than reducing to union and
composition, we perform a new algorithm in the case of the restricted for available
in Composition-free AtomXQ. We will also need to give a direct inductive step for
the construct not β, which is now a primitive.

We first consider the case of α = for $vn+1 in $vi/axis :: ν return β. We let I1
be the interpretation obtained inductively for β, of node arity k and index arity k′.
Then the interpretation for α will have:
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—arity for the nodes is k+1, and the arity for indices is k′+1.

—φNode(v1 . . . vn;x1 . . . xk+1) given by the disjunction of two formulas. The first
formula is

x1 = cemb ∧ InputNode(x2) ∧
∧

2≤i<j≤k+1

xi = xj

This states that for every node in the input, we have a node of the output
consisting of a constant tuple padded by an extra constant.
The second formula is

axis(vi, x1) ∧ newtupleβ(v1 . . . vn, x1;x2 . . . xk+1).

This states that we take all new elements produced by β for any parameter value
x1 related to vi by the axis, distinguishing when the same element is produced
by different values of x1 by including the value of x1 in the tuple.

—φchild(v1 . . . vn;x1 . . . xk+1; y1 . . . yk+1) := (x1 = cemb ∧ y1 = cemb ∧ child(x2, y2)) ∨

(x1 6= cemb∧y1 6= cemb∧∃vn+1axis(vi, vn+1)∧φ
β
child(v1 . . . vn+1;x2 . . . xk+1; y2 . . . yk+1))

and similarly for the other σnav relations.

—φInd(v1 . . . vn;x′1 . . . x
′
k′+1) := axis(vi, x

′
1)∧φ

β
Ind(v1 . . . vn, x

′
1;x

′
2 . . . x

′
k′+1). That is,

the indices are the indices of β applied to a given parameter that is in the ap-
propriate relation, with an extra component for the parameter.

—φItemOf(v1 . . . vn;x1 . . . xk′+1;x
′
1 . . . x

′
k+1) :=

(

newtupleβ(v1 . . . vn, x1;x
′
2 . . . x

′
k+1)∧

x′1 = x1∧φ
β
ItemOf(v1 . . . vn, x1;x2 . . . xk′+1;x

′
2 . . . x

′
k+1)

)

∨
(

x′1 = cemb∧∃w′
2 . . . w

′
k+1

φβ
ItemOf(v1 . . . vnx1;x2 . . . xk′+1;w

′
2 . . . w

′
k+1) ∧ φβ

emb(v1 . . . vnx1;x
′
2;w

′
2 . . . w

′
k+1)

)

.
That is, an index and the associated node it indexes match on their first com-
ponent, which correspond to a parameter value. The remaining components are
either given according to the indexing of β, for a new tuple, or are the pre-image
of the indexing of β under the embedding mapping, for an old tuple.

—φ<ind
(v1 . . . vn;x1 . . . xk′+1;x

′
1 . . . x

′
k′+1) := (x1 comes before x′1 in document order)∨

(x1 = x′1 ∧ φ
β
<ind

(v1 . . . vnx1;x2 . . . xk′+1;x
′
2 . . . x

′
k′+1)).

Again, the reader will want to compare this construction to the one for sequential
composition in Section 4.

Correctness: Fix indexed forest F# and nodes b1 . . . bn for the variables, and let
F#

α = [[α]]n(F#, b1 . . . bn). We define an isomorphism on nodes Hα on F#
α. Any

node in F#
α is either in F# or in [[β]]n+1(F#, b1 . . . bn+1) for exactly one bn+1 that

is a descendant of bi in F#. For a node b in F#
α ∩ F#, we let Hα be the constant

tuple bk+1. For a node b in [[β]]n+1(F#, b1 . . . bn+1), let Hα be bn+1 ·Hβ(b), where
Hβ is the mapping (assumed to exist inductively) from [[β]]n+1(F#, b1 . . . bn+1) to
[Iβ ](F#, b1 . . . bn+1). We omit the mapping Jα on indices for brevity.

We now turn to the case of α = not β. For simplicity, we show how to con-
struct a query that produces the output of β if the list component of the out-
put of β is empty, and otherwise produces the output of β unioned (⊎) with the
single-node tree construct(“yes”, (∅, [])), with the list component containing the
root node of the tree construct(“yes”, (∅, [])). This is not exactly the same as
not β := (let $v := 〈a〉β〈/a〉) $v =deep 〈a/〉, since in the latter case we have
an additional use of node construction, since the forest component will have an
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additional constructed subtree rooted with a node labeled “a”. However, the mod-
ification to give the exact definition is straightforward.

Again let I1 be the interpretation obtained inductively for β, of node arity k
and index arity k′. Then the interpretation for α will have a new constant cY of
combined sort (distinct from those in β), label constant “yes”, node arity k, index
arity one, and

—φNode(v1 . . . vn;x1 . . . xk) := φβ
Node(~v, ~x)∨(¬∃w1 . . . wk′ φβ

Ind(~v, ~w)∧
∧

i≤k xi = cY ).
That is, the nodes are the nodes of β plus an additional node if the list returned
by β is non-empty.

—φHaslabel(v1 . . . vn;x1 . . . xk; z) := (φβ
Node(~v, ~x) ∧ φβ

Haslabel(v1 . . . vn;x1 . . . xk; z)) ∨

(¬∃w1 . . . wk′ φβ
Ind(~v, ~w) ∧

∧

i≤k xi = cY ∧ z = “yes”). That is, the old nodes
are labeled as in β and the additional node, if it exists, is labeled with “yes”.

—φInd(~v;x) := ¬∃~w1 . . . wk′ φβ
Ind(~v, ~w) ∧ x = cY That is, there is exactly one index

node iff β returns an empty list, and otherwise there are no indices.

—φItemOf(~v;x; ~x
′) := ¬∃~w1 . . . wk′ φβ

Ind(~v, ~w) ∧ x = cY ∧
∧

i≤k x
′
i = cY

The rest of the structure is straightforward.

In [Anonymous 2008b] we show that composition-free AtomXQ queries have
the same expressiveness as general AtomXQ queries, and composition-free XQ
queries have the same expressiveness as general XQ queries. However composition-
free AtomXQ− and full AtomXQ− have different expressiveness in the presence of
upward and sideways axes (if only downward axes are supported, the two languages
again coincide [Koch 2006]).

6.2 Node equality and FO2

We turn now to queries that are both composition-free and without =node. We can
show that composition-free AtomXQ− maps into a small fragment of FO.

The logic NFO2, navigationally two-variable FO, is built up from atomic for-
mulas via the rules:

—if φ1 and φ2 are navigationally two-variable, then so are φ1 ∨φ2 and φ1 ∧φ2 and
∃~w φ(~w) (where ~w is any subset of the free variables).

—if φ(~w) is navigationally two-variable and if, in the navigational dependency graph
of φ, no two free variables are connected by a path, and thus every bound variable
is connected by a path to at most one free variable, then ¬φ(~w) is navigationally
two-variable.

Here the navigational dependency graph of a formula is the graph with nodes
for each variable of the formula and with edges connecting two nodes iff the corre-
sponding variables appear together in some axis predicate or equality.

Example 6.5. The FO formulas corresponding to expressions of the naviga-
tional core of XPath 1.0 (see e.g. [Benedikt and Koch 2009], i.e., expressions that
are built from path expression and conditions which are Boolean combinations of
navigational XPath expressions, are in navigational two-variable FO. For instance,
XPath expression /descendant::A[not child::B] is equivalent to the navigational two-
variable FO formula

∃x root(x) ∧ descendant(x, y) ∧ PA(y) ∧ ¬∃z child(y, z) ∧ PB(z)
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where PA and PB are unary predicates that are true for those nodes labeled A and
B, respectively. Navigational two-variable FO essentially extends beyond the FO
fragment corresponding to navigational XPath 1.0 by allowing for conjunctions of
unary formulas from that fragment.

On the other hand, a formula such as ¬child(x, y) are not in navigational two-
variable FO. 2

We now justify the term “navigationally two-variable” for this fragment, by show-
ing that it is closely related to two-variable logic. For a finite alphabet Σ, we let
σnav(Σ) be the signature with only a sort for nodes, the same axis predicates as
σnav, and where instead of the labeling function we have unary predicates Pa for
every a in Σ. A data forest whose labels all lie in Σ can be interpreted as a σnav(Σ)
structure in the obvious way. We let FO2(Σ) be two-variable logic over σnav(Σ).
By an FO2(Σ) formula φ(x1 . . . xn) in many variables, we mean a formula that is a
Boolean combination of formulas φ(xi), each of which is in FO2 above. For a σnav

formula φ and a finite alphabet Σ, we let Σ(φ) be the restriction of φ to structures
where the labels come from Σ.

We say that an FO formula φ is almost two-variable if for every finite alphabet
Σ, Σ(φ) is equivalent (modulo the transformation of a σnav structure to a σnav(Σ)
structure), to an FO2(Σ) formula. That is, when we restrict to forests whose labels
lie in Σ, φ is in FO2.

Claim 6.6. All navigationally two-variable formulas in one free variable are al-
most two-variable.

To prove this, we show a more general claim on the restrictions of navigationally
two-variable formulas to a finite alphabet. For any label alphabet Σ, a formula is
in CQ(FO2) if it is of the form ∃w1 . . .∃wm γ(w1 . . . wn) where m ≤ n and γ(~w)
is a conjunction of formulas either of the form φ(w) where φ ∈ FO2 or of form
A(w1, w2), where A is a navigational predicate. Since such a γ can be made acyclic
[Gottlob et al. 2004] a CQ(FO2) formula in at most one free variable must be in
FO2. For our signatures, in which relations (axes) are antireflexive and at most
binary, a formula is acyclic simply if the undirected graph given by the variables as
nodes and the binary atoms as edges is acyclic. We will show:

For every navigationally two-variable formula φ and every finite alphabet Σ, Σ(φ)
is equivalent to a disjunction of CQ(FO2) formulas.

The proof is by induction on the structure of navigationally two-variable formulas.
In the induction, we maintain an additional invariant that in the produced formula
∨

φi, there is an axis predicate connecting two free variables of φi to some other
variable in some φi iff there is some such predicate in φ, and for every existentially
quantified variable w1 . . . wm in the CQ(FO2) form of φi, there is a bound variable
in φ which occurs in axis predicates with a free variable of φ iff wi occurs in an
axis predicate with that free variable in φi. That is, the navigational dependency
structure among variables in

∨

φi is the same as in φ.
For atomic formulas, the claim is clear, since atomic formulas with =atomic can be

replaced by disjunctions of conjunctions of atomic formulas Pa(w). The induction
steps for positive boolean operators are also straightforward: in the conjunction
case, one distributes the conjunction over the disjuncts in each formula.

Consider Σ(¬φ(~w)) = ¬Σ(φ). By hypothesis, no wi is connected by a sequence
of axis relations with a wj . By induction we can assume Σ(φ) is a disjunction of
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CQ(FO2) formulas φi, with each φi also containing no axis predicates relating the
free variables of φ. It suffices to show that the negation of each disjunct φi is a
disjunction of conjunctions of FO2 formulas with one free variable. Fix φi and let
φi = ∃~x

∧

j γij . Each γij is either an axis predicate containing at least one variable

from ~x, a label predicate, or an FO2 formula with one free variable. Our inductive
invariant and the assumptions on φ imply that each free variable of φi is in a
different connected component of the navigational dependency graph of φi, hence
we can split φi into a conjunction of formulas that correspond to each component,
and it suffices to show that the negation of each component is in FO2. But each
component is a conjunctive query over trees with one free variable, and it is known
[Gottlob et al. 2004] that each such query can be converted into an acyclic query,
and hence into an FO2 formula φ(v). Hence ¬φ(v) is also in FO2.

This completes the proof of Claim 6.6. That is, navigationally two-variable for-
mulas have two-variable expressive power over any fixed set of labels. 2

We are now ready to give the main result of this subsection, that composition-free
AtomXQ− Boolean queries translate to navigationally two-variable interpretations.

Theorem 6.7. For every composition-free AtomXQ− Boolean query, there is
an equivalent FO interpretation where all formulas are navigationally two-variable.
For every PosXQ− composition-free Boolean query there is an equivalent inter-
pretation in which all formulas other than those for the sibling axes are ∃FO and
navigationally two-variable.

Proof. We consider the algorithm of Theorem 3.2 modified via the changes
given for Theorem 6.4 but removing the atomic step for =node. Recall that for
a query Q, QBool returns true iff the list returned by Q is nonempty. Hence it
suffices to show that all the index formulas φQ

Ind in interpretations produced from
such queries are navigationally two-variable. We divide the free variables of these
formulas into parameter variables ~v (i.e., those corresponding to parameters of Q),
and the remaining free variables, which we refer to as “output variables”. We show
inductively that φQ

Ind can be written as a disjunction of navigationally two-variable
formulas, where in each disjunct the parameter variables are in different components
of the navigational dependency graph of the disjunct. The result follows from
the first part of this, since navigationally two-variable formulas are closed under
disjunction and projection.

For the basic queries this is easy to verify. We deal with the inductive cases:

—If Q is the expression 〈a〉β〈/a〉, then the index structure is degenerate: φQ
Ind(~v; ~x)

says that each xi is equal to the same constant. Clearly this is navigationally
two-variable and imposes no relationships among the vi.

—If Q is β γ, then φQ
Ind(~v;x

′
1 . . . x

′
k′+1) = (x′1 = c′β ∧ φβ

Ind(~v;x
′
2 . . . x

′
k′+1)) ∨

(x′1 = c′γ ∧ φγ
Ind(~v;x

′
2 . . . x

′
k′+1))

and it is easy to see the result by induction.

—If Q is of the form if β then γ, then φQ
Ind(~v; ~x

′) := ∃~y′ φβ
Ind(~v; ~y

′) ∧ φγ
Ind(~v; ~x

′).
Navigationally two-variable formulas are closed under conjunction and projection,
so the first part of the theorem is immediate. For the second, notice that no free
variables other than the parameter variables are shared between the two conjuncts
– hence the second part follows.
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—If Q = not β, we have φQ
Ind(v1 . . . vn;x′1) := x′1 = cY ∧ ¬∃~w′ φβ

Ind(~v; ~w
′) for a

constant cY . Since the induction hypothesis says that the vi are in different
components of the navigational dependency graph, the resulting formula is nav-
igationally two-variable. The hypothesis on the vi is clearly preserved.

—In the case Q = for $vn+1 in $vi/axis :: ν return β, we have

φQ
Ind(~v; ~x

′) := axis(vi, x
′
1) ∧ φ

β
Ind(v1 . . . vn, x

′
1;x

′
2 . . . x

′
k′+1).

Clearly, this is navigationally two-variable by induction. The navigational de-
pendency graph of Q is formed from the navigational dependency graph G′ of
φβ

Ind by replacing vn+1 with x′1 and then adding an edge from vi to x′1. Since
x′1 = vn+1 and vn+1 was in a different component of G′ than the other vj , the
variables v1 . . . vn are still in different components.

The case for positive queries follows by combining the above argument with the
prior results about the composition-free translation.

In [Koch 2006], it is shown that AtomXQ− queries with only the downward (and
self) axes and without node-equality can be converted to composition-free queries
(Theorem 7.8). From this result and Theorem 6.7 we have:

Corollary 6.8. For every AtomXQ− Boolean query (i.e., QBool for Q ∈ AtomXQ−)
that uses only downward axes, there is an equivalent navigationally two-variable
query.

This does not hold when all axes are present [Anonymous 2008b].

6.3 Applications to Expressiveness and Complexity.

The following results on the expressiveness of Boolean queries are an immediate
consequence of the results above (in the case of AtomXQ− below, we also use the
equivalence of Core XPath and FO2 shown in [Marx 2004]).

Corollary 6.9. Let Q be an AtomXQ expression, and QBool be the Boolean
query defined by Q. Then,

—(1) QBool is expressible in the relational calculus;

—(2) If Q ∈ PosXQ and Q does not use the sibling axes, QBool is expressible by a
union of conjunctive queries (over all atomic formulas and inequalities);

—(3) If Q ∈ AtomXQ− and Q is composition-free then for every finite set of labels
Σ, there is a Core XPath query equivalent to QBool on data trees with labels in
Σ. In particular (by [Marx 2004; Etessami et al. 2002]), there are FO queries
that are not expressible in composition-free AtomXQ−.

The proofs follow because the boolean semantics of queries (see Subsection 2.2)
is given by checking whether the sequence returned is nonempty, which is just
an existential quantification of the formula φInd. The first two results could be
generalized to “relational queries” — queries on tree encodings of relational tables.
We will comment on this further in the next section. The results on translation to
FO immediately give alternative proofs of the following upper bounds:

Corollary 6.10. We have the following complexity bounds for AtomXQ and
its sublanguages:
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—All AtomXQ queries can be evaluated in data complexity AC0 on a relational
representation of the data, and in ExpSpace combined complexity.

—PosXQ queries can be evaluated in combined complexity NExpTime.

—Composition-free AtomXQ is in PSpace w.r.t. combined complexity.

Note that in all the above complexity bounds, the input is a σnav structure
representing the data tree T ; this is not the default assumption of [Koch 2006].
However, the combined complexity results follow immediately from [Koch 2006]
and the fact that there are LogSpace translations back and forth between XML
trees and σnav-structures.

Proof. It is well-known that FO queries can be evaluated in AC0 [Immerman
1999], and hence the data complexity bound in the first sentence follows from
Theorem 3.1. The combined complexity of FO queries is in PSpace, while the
translation of Theorem 3.1 is in ExpTime, hence certainly in ExpSpace. Thus the
composition of the translation with the evaluation function for FO is in ExpSpace,
and the bound on combined complexity for AtomXQ follows. ∃FO queries can be
evaluated in NP, simply by guessing witnesses to existential quantifiers and guessing
which disjuncts within a disjunction are satisfied (the sibling axes on the output can
be derived in PTime once the remaining parts of the representation are available).
Combining this with the ExpTime translation of Proposition 6.2 gives the bound
on PosXQ queries.

It is known that the combined complexity of FO queries is in PSpace. Using the
PTime (hence PSpace) algorithm of Theorem 6.4, this gives the PSpace bound
for composition-free AtomXQ.

7. FROM XQ WITH DEEP EQUALITY TO FO(CNT)

When we turn to deep equality, first-order logic no longer suffices, even when we
restrict to fixed-depth trees. Consider the query (i.e. condition) Q1 defined by:

let $v1 := 〈A〉(for $x in $v0/child :: a return 〈B/〉)〈/A〉

let $v2 := 〈A〉(for $x in $v0/child :: c return 〈B/〉)〈/A〉 $v2 =deep $v1

Q1
Bool holds iff the number of a children of $v0 is equal to the number of c children.

It is easy to show that there is no first-order interpretation equivalent to Q (cf.
e.g. [Libkin 2004]).

We will see that the absence of the ability to count is, however, the only obstacle.

Theorem 7.1. For every XQ+ query Q, there is an FO(Cnt) indexed forest
interpretation equivalent to Q, which can be constructed from Q in ExpTime.

Example 7.2. Consider Q1 above. The output forest returned by Q1 includes
several “temporary” trees. For example, whenever 〈b/〉 is called a new tree is
formed. In addition, the output forest includes a tree consisting of one node la-
beled with “yes” exactly when the cardinality of the number of a children equals the
number of b children. The sequence component returned by Q1 is either empty (if
the cardinalities do not match) or the root of the “yes” tree.

We give only the index formula in an interpretation for Q1. A forest interpreta-
tion equivalent to Q1 will include one constant IY for the (potential) single index
of the sequence, and a label constant “yes”; the interpretation will have φInd(x1) :=

39



(

(∃i ∃=ix child(v0, x)∧Haslabel(x, a)∧∃=iy child(v0, y)∧Haslabel(y, b)) → x1 = IY
)

∧
(

(¬∃j ∃=jx child(v0, x) ∧ Haslabel(x, a) ∧ ∃=jy child(v0, y) ∧ Haslabel(y, a)) →

false
)

.

We now prove Theorem 7.1 along the lines of the proof of Theorem 3.1. The
notion of FO(Cnt)-indexed forest interpretation is defined exactly as for FO. We
then claim that for every XQ+ query Q there is an FO(Cnt)-indexed forest inter-
pretation that captures the full semantics of Q.

We extend the algorithm from Theorem 3.2, inductively assuming that we have
mapped XQ+ expressions with additional free variables $v1 . . . $vn to FO(Cnt)
interpretations with additional variables v1 . . . vn. The inductive cases are as in
Theorem 3.1: we simply extend the function Compose to include the quantifiers
∃=i~x and ∃i: Compose commutes with the quantification ∃i, and

Compose(∃=ix1 . . . xs η(x1 . . . xs, y1 . . . yt), I) :=

∃=i~x1 . . . ~xs Compose(η(x1 . . . xs, y1 . . . yt), I).

The base cases are also inherited from Theorem 3.1 except for $vi =deep $vj . To
translate α of the form $vi =deep $vj , we use the (well-known) fact that isomorphism
of trees can be expressed using FO(Cnt). Nodes v1 and v2 have isomorphic subtrees
iff the following property holds:

For every descendant y1 of v1, there is a descendant y2 of v2 having the property
that for every w1 lying (non-strictly) between y1 and v1, there is w2 lying between
y2 and v2 such that: the vertical distance from v1 to w1 is the same as the vertical
distance of v2 to w2, the vertical distance from w1 to y1 is the same as the vertical
distance of w2 to y2, the label of w1 is the same as the label of w2, and the number
of left-siblings of w1 is the same as the number of left-siblings of w2.

Note that the statements that two pairs of nodes are the same vertical distance
apart can be expressed in FO(Cnt), as is the statement that two nodes have the
same number of right-siblings. Using these facts, one can express the above in
FO(Cnt).

Recall that the composition-free fragment of XQ is formed by restricting for as
in AtomXQ and adding the construct Q1 =deep Q2. Note that we do not need to
introduce negation here, since it will be definable using =deep. We now have the
analogous result to Theorem 6.4:

Theorem 7.3. For every composition-free XQ query, an equivalent FO(Cnt)
interpretation can be constructed in PTime.

The proof of this is simply to take the algorithm of Theorem 6.4, adding on the
construction for the atomic case of =deep given above, and adding also a simple
inductive case for Q1 =deep Q2, which is done similarly to the atomic case.

7.1 Applications to Expressiveness and Complexity.

As in the case of AtomXQ, we get a nice bound on the expressiveness of Boolean
queries:

Corollary 7.4. Every XQ boolean query is expressible as an FO(Cnt) query
over σnav.
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A similar result could be stated for relational queries: the relational queries
expressible in XQ over the data tree coding of relations (i.e. as flat trees whose at-
tributes match the attributes of the relations) are exactly those that are expressible
as FO(Cnt) interpretations.

We have the following consequences for complexity:

Corollary 7.5. The data complexity of XQ is in TC0. The combined com-
plexity of XQ is in ExpSpace, while the combined complexity of Composition-free
XQ is PSpace-complete.

The TC0 bound follows from Theorem 2.5 and Theorem 7.1, while the other
results follow from Theorem 7.1 and the PSpace-complete combined complexity
of FO(Cnt) [Immerman 1999]. These upper bounds differ only slightly from the
bounds of [Koch 2006]: there they establish a LogSpace data complexity bound
on a DOM representation of the data; this representation is relational, but does
not contain the transitive axes; in contrast, transitive axes are built in to our σnav

representation, and the representation that is built by our operations includes the
transitive axes in the output.

8. CONCLUSIONS AND FUTURE WORK

Our main goal was to establish embeddings of XQuery fragments into logics. Our
results in terms of expressiveness bounds are shown in Figure 3. On the left are
fragments of the top-down tree building languages, and on the right are classes of
interpretations that suffice to capture each language.

In the paper [Anonymous 2008b] we show that these relationships are tight, and
as a consequence we can deduce expressiveness equivalence of several of our lan-
guages. Many of the questions concerning translation complexity to logic remain
open, in particular whether Boolean AtomXQ queries can be translated in PTime
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to FO. This is similar to the question, initially posed by Vardi, of the existence of
a PTime translation from nested relational queries on flat structures to relational
queries, which has been an open problem in complex-valued databases for some
time [Van den Bussche 2005]. It is known from [Koch 2006] that unless PSpace =
NExpTime (which is considered unlikely), there cannot be such a PTime trans-
lation. This stands in contrast to the (at first sight surprising) fact that nested
definitions can be eliminated from FO in polynomial time [Avigad 2003]. While
definitions in first-order logic appear to correspond to composition in XQuery, it
seems that constructing complex values really adds power.

The FO and FO(Cnt) queries represent natural benchmarks for comparing the
expressiveness of tree-structured queries. How does XQ compare to these bench-
marks? In this paper, we have shown that XQ and AtomXQ can be captured
by these two classes. In the companion paper [Anonymous 2008b], we show that
the expressiveness of XQ and AtomXQ is roughly the same as FO and FO(Cnt),
up to sibling ordering and indexing issues, and restriction to queries that do not
perform deep restructuring of documents.

9. RELATED WORK AND DISCUSSION

The correspondence between relational languages and languages for structured
data-types has received considerable attention in the framework of complex-valued
query languages. Close in spirit to our translation of XQ to first-order logic are the
normal form theorems [Wong 1996] and conservativity theorems (e.g. the “flat-flat”
theorem in [Paredaens and Van Gucht 1988]) for complex-valued query languages.
These results show that the building of intermediate results of higher-order than
the input is unnecessary for expressiveness, and also show that certain higher-order
languages have the same “flat” expressiveness as relational calculus. In translating
XQ into first-order interpretations, we are performing a very similar elimination.
More generally, a standard technique in complex-valued query languages is to look
at a relational representation. In [Suciu 1997; Gyssens et al. 2001; Van den Buss-
che 1992] such encodings are used to reduce problems concerning complex-valued
languages to a relational setting. Probably closest to our work is the approach to
the conservativity theorem of [Paredaens and Van Gucht 1988] proposed in [Van
den Bussche 2001], showing that nested relational queries can be represented by
ordinary relational calculus queries on flat codings of a nested relation. The first
results in our paper can be seen as an extension of this approach to tree-structured
data.

The main distinction between the complex-valued data model and the tree data
model we deal with here is that tree-structured data is not strongly-typed to be
of fixed depth. Although non-recursive languages like XQ cannot make changes
deeply in the output tree, they can query the entire input tree, making use of the
descendant relationship. This distinction leads to the strong connection between
XQ and path-oriented tree navigation languages such as XPath; in the world of
fixed-depth data types (complex-valued or object-oriented) there is no analog. Even
when restricting to fixed depth, there are subtle differences between the main lan-
guage atomic XQ we deal with here and prior algebras: XQ with atomic equality
has node identity on trees as a primitive; in the complex-valued world, the analog
is equality in bag languages. However AtomXQ does not have the deep equality
that is natural for a bag algebra. Queries in languages such as XQ and AtomXQ
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have a dual effect of forming new objects and returning a list of subobjects within
these newly-created objects – this is seen in the two components of the output of
the XQ semantic function (Figure 2). Hence these languages would most naturally
be compared to object query languages that have both complex value construc-
tors and object creation. However, OO query languages typically have recursion
mechanisms that are much more powerful than those found in XQ .

Our interest is the correspondence between query languages and logical repre-
sentations; we track precisely how the correspondence between tree languages and
relational languages is affected as we add and subtract features from XQ: we know
of no analog to these correspondences (e.g. between composition-free XQ with-
out node-equality and two-variable logic) in the nested relational world. Although
first-order logic was used as a benchmark for the expressiveness of Boolean and flat
queries in complex valued models, there has been, to our knowledge, no prior work
using first-order or FO(Cnt) interpretations as a benchmark for completeness of
structured object query languages for arbitrary queries.

In the XML literature, the closest work to ours is the article [Koch 2006], which
examines the expressiveness of XQuery via a tight correspondence with complex-
valued query languages, rather than with relational queries. Mappings are given
between XQuery over the child axis to Monad Algebra, and conversely. When only
these axes are present and node identity is absent, the semantics of XQuery can be
dramatically simplified, since it is not necessary to distinguish between two nodes
that are structurally identical. The semantics of [Koch 2006] and the mapping
to Monad Algebra do not apply in the presence of all axes. In addition, this
work does not strictly give a correspondence in expressiveness, since the mappings
between complex values and data trees employed there do not compose to identities.
However, the mappings are sufficient to infer upper and lower bounds on complexity
and [Koch 2006] exploits this to provide an in-depth study of the complexity of
XQuery.

Somewhat surprisingly, some of the issues we deal with here in translating from
XQuery to relational logics have not been studied in the context of mapping from
XQuery to object query languages (in [Koch 2006], or elsewhere). We also think it
is important to study XML query languages via translation to relational languages
rather than through richer models. The relationship of XQuery to Relational Cal-
culus and SQL is of independent interest, due to the need to implement XQuery on
relational stores. Our results give a manner of seeing many of the XQuery complex-
ity bounds of [Koch 2006] that is more direct and self-contained than the approach
via complex-valued queries.

The expressiveness of XQuery has also been studied in the papers [Hidders et al.
2005; Hidders et al. 2005; Hidders et al. 2004]. [Hidders et al. 2005] presents an
in-depth study of the expressiveness of XQuery, building on a formalization given in
[Hidders et al. 2004]. These papers deal with a more fine-grained model of XQuery,
and study the relationship among a much richer assortment of features. While these
works are more useful in understanding the current standard (and, e.g. as a step
towards arriving at a minimal subset of XQuery for compilation), our work has a
different goal. We are interested in comparison of the expressiveness of the core
structuring constructs of XQuery and XQuery-like languages against an external
benchmark, which [Hidders et al. 2005; Hidders et al. 2004] does not do.

Our results can be seen as dealing with translation of XQuery to SQL, a topic
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which has received considerable attention in the context of relational storage for
XML [Krishnamurthy et al. 2003; 2004; Krishnamurthy et al. 2004; Fan et al.
2005]. These works consider a number of relational encodings of XML, and are
concerned not just with sound translation but efficient evaluation. In these works
the target relational language tends to be more powerful than the source language
e.g. including recursion even when translating from XQ, in order to deal with the
transitive axes, and also including built-in operations such as arithmetic. None
of the works cited above deal with translation from non-recursive XQuery over
general XML trees to relational calculus, although several deal with special cases
(e.g. queries over XML views of relational data [Fernández et al. 2002]), while others
translate into SQL-99 [Krishnamurthy et al. 2004; Fan et al. 2005].

The closest paper in this area to our work is [DeHaan et al. 2003], which is relevant
to our translation of full XQ into FO(Cnt). This work gives a translation of a large
XQuery fragment into SQL-99; the only additional feature over FO(Cnt) that is
used is SQL composition (view definitions), along with arithmetic. The semantic
model in [DeHaan et al. 2003] is different from ours, since queries return single
ordered forests rather than a list of nodes within a forest. However, it is stated
that the translation can be extended to handle node identity issues. The analysis of
complexity of translation and the translation of fragments of XQ , are not studied
in [DeHaan et al. 2003].

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Anonymous. 2008a. Details omitted due to double-blind reviewing.

Anonymous. 2008b. Details omitted due to double-blind reviewing.

Avigad, J. 2003. “Eliminating Definitions and Skolem functions in First-order Logic”. ACM

Transactions on Computational Logic 4, 3, 402–415.

Barrington, D. A. M., Immerman, N., and Straubing, H. 1990. “On Uniformity within NC1”.
Journal of Computer and System Sciences 41, 3, 274–306.

Benedikt, M. and Koch, C. 2009. “XPath Leashed”. ACM Computing Surveys. to appear.

Chamberlin, D., Robie, J., and Florescu, D. 2000. Quilt: An XML query language for hetero-
geneous data sources. In Proc. WebDB. 53–62.
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