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Overview: Categories, Proofs and Games

1. Introduction to Category Theory.

2. Curry-Howard isomorphism and Linear logic.

3. Introduction to Game Semantics.

Inter-twining of themes

Course web page:
http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/gsem/

index.html
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Useful text for background reading:
Categories, Types and Structures by Andrea Asperti and
Giuseppe Longo.

Downloadable from:
http://www.di.ens.fr/users/longo/download.html

Relevant material:

Chapter Sections

1 1.1–1.4

2 2.1–2.3

3 3.1–3.3, 3.5

4 4.3–4.4

8 8.1–8.7
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Other Useful Reading on Category Theory

• Category Theory for Computing Science, 3rd Edition
by M. Barr and C. Wells, Les Publications de CRM, Montreal.
Contains many exercises with solutions.

• Lecture Notes on Basic Category Theory by Jaap van
Oosten. Downloadable from:
http://www.math.uu.nl/people/jvoosten/onderwijs.html
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Preliminaries on Mathematical Structures

Monoids

A monoid is a structure (M, ·, 1) where M is a set,

− · − : M ×M −→M

is a binary operation, and 1 ∈M , satisfying the following axioms:

(x · y) · z = x · (y · z) 1 · x = x = x · 1

Examples:

• Groups

• (N, +, 0)

• Strings: Σ∗, s · t = st, 1 = ε.
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Partial Orders

A partial order is a structure (P,≤) where P is a set, and ≤ is a
binary relation on P satisfying:

• x ≤ x (Reflexivity)

• x ≤ y ∧ y ≤ x ⇒ x = y (Antisymmetry)

• x ≤ y ∧ y ≤ z ⇒ x ≤ z (Transitivity).

Examples:

• (R,≤)

• (P(X),⊆)

• Strings, the sub-string relation.
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Sets and Maps: learning to think with arrows

Notation for maps (functions) between sets:

f : X −→ Y Diagrammatic notation: X
f−→ Y

X is the domain of f . Y is the codomain.

Notation for composition:

g ◦ f : X −→ Z or f ; g : X −→ Z or X
f−→ Y

g−→ Z

Identity map:
1X : X −→ X

Axioms relating these operations:

(f ; g);h = f ; (g; h) 1X ; f = f = f ; 1Y
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f : X −→ Y is injective if

f(x) = f(y) ⇒ x = y.

f : X −→ Y is surjective if

∀y ∈ Y.∃x ∈ X. f(x) = y.

f : X −→ Y is monic if

f ◦ g = f ◦ h ⇒ g = h.

f : X −→ Y is epic if

g ◦ f = h ◦ f ⇒ g = h.

Proposition

1. f injective iff f monic.

2. f surjective iff f epic.
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Monoid Homomorphisms

If M1, M2 are monoids, a map h : M1 −→M2 is a monoid
homomorphism iff:

h(x · y) = h(x) · h(y) h(1) = 1.

Partial order Homomorphisms

If P , Q are partial orders,, a map h : P −→ Q is a partial order
homomorphism (or monotone function) if:

x ≤ y ⇒ h(x) ≤ h(y).

Note that homomorphisms are closed under composition, and that
identity maps are homomorphisms.
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Categories: basic definitions

Category C:

Objects A, B, C, . . .

Morphisms/arrows: for each pair of objects A, B, a set of
morphisms C(A,B), with domain A and codomain B

Notation: f : A −→ B for f ∈ C(A,B).
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Composition of morphisms: for any triple of objects A, B, C

a map
cA,B,C : C(A, B)× C(B,C) −→ C(A,C)

Notation: cA,B,C(f, g) = f ; g = g ◦ f .

Diagrammatically: A
f−→ B

g−→ C.

Identities: for each object A, a morphism idA.

Axioms

(f ; g);h = f ; (g; h) f ; idB = f = idA; f
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Examples

• Monoids are one-object categories

• A category in which for each pair of objects A, B there is at
most one morphism from A to B is the same thing as a
preorder, i.e. a reflexive and transitive relation.

• Any kind of mathematical structure, together with structure
preserving functions, forms a category. E.g. Set (sets and
functions), Grp (groups and group homomorphisms), Mon
(monoids and monoid homomorphisms), Vectk (vector spaces
over a field k, and linear maps), Top (topological spaces and
continuous functions), Pos (partially ordered sets and
monotone functions), etc. etc.
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Duality

The opposite of a category C, written Cop, has the same objects as
C, and

Cop(A,B) = C(B,A).

If we have
A

f−→ B
g−→ C

in Cop, this means

A
f←− B

g←− C

in C, so composition g ◦ f in Cop is defined as f ◦ g in C!

This leads to a principle of duality: dualize a statement about C by
making the same statement about Cop.
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Example of Duality

A morphism f is monic in Cop iff it is epic in C; so monic and epic
are dual notions.

f : A −→ B in C iff f : B −→ A in Cop. Thus f is monic in Cop iff
for all g, h : C −→ B in Cop,

f ◦ g = f ◦ h ⇒ g = h,

iff for all g, h : B −→ C in C,

g ◦ f = h ◦ f ⇒ g = h,

iff f is epic in C.
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Many important mathematical notions can be expressed at the
general level of categories.

Isomorphism

An isomorphism in a category C is an arrow

i : A −→ B

such that there exists an arrow j : B −→ A satisfying

j ◦ i = idA i ◦ j = idB

Notation: i : A
∼=−→ B

In Set this gives bijection, in Grp, group isomorphism, in Top,
homeomorphism, in Pos, order isomorphism, etc. etc.
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Initial and terminal objects

• An object I in a category C is initial if for every object A,
there exists a unique arrow ιA : I −→ A.

• A terminal object in C is the dual notion (i.e. an initial object
in Cop).

There is a unique isomorphism between any pair of initial objects;
thus initial objects are ‘unique up to (unique) isomorphism’, and
we can (and do) speak of the initial object (if any such exists).
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Products

Let A, B be objects in a category C. An A, B–pairing is a triple
(P, p1, p2) where P is an object, p1 : P −→ A, p2 : P −→ B. A
morphism of A, B–pairings

f : (P, p1, p2) −→ (Q, q1, q2)

is a morphism f : P −→ Q in C such that

q1 ◦ f = p1, q2 ◦ f = p2.

The A, B–pairings form a category Pair(A, B).

(A×B, π1, π2) is a product of A and B if it is terminal in
Pair(A,B).

Thus products are unique up to isomorphism (if they exist).
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Unpacking the definition of product,

A
π1←− A×B

π1−→ B

is a product if for every A, B-pairing

A
f←− C

g−→ B

there exists a unique morphism

〈f, g〉 : C −→ A×B

such that the following diagram commutes:

C

	�
�
�
�
�

f
@
@
@
@
@

g

R
A �

π1
A×B

〈f, g〉

?

π2

- B
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Examples

• Set?

• Vectk?

• In a poset?
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General Products

A product for a family of objects {Ai}i∈I in a category C is an
object P and morphisms

pi : P −→ Ai (i ∈ I)

such that, for all objects B and arrows

fi : B −→ Ai (i ∈ I)

there is a unique arrow
g : B −→ P

such that, for all i ∈ I,
pi ◦ g = fi.

As before, if such a product exists, it is unique up to (unique)
isomorphism.
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General Products continued

Notation We write P =
∏

i∈I Ai for the product object, and
g = 〈fi | i ∈ I〉 for the unique morphism in the definition.

What is the product of the empty family?

Fact If a category has binary and nullary products, then it has all
finite products.
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Pullbacks

Given a pair of morphisms

A
f−→ C

g←− B

with common codomain, we define an (f, g)-pairing (or
(f, g)-cone) to be

A
p←− D

q−→ B

such that the following diagram commutes:

D
q - B

A

p

?

f
- C

g

?
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A morphism of (f, g)-cones h : (D1, p1, q1) −→ (D2, p2, q2) is a
morphism h : D1 −→ D2 such that

D1

	�
�
�
�
�

p1

@
@
@
@
@

q1

R
A �

p2
D2

h

?

q2

- B

We can thus form a category Cone(f, g). The pull-back of f along
g (or “fibred product of A and B over C”, written A×C B) is the
terminal object of Cone(f, g) (if it has one).
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Examples

• In Set the pullback is defined as a subset of the cartesian
product :

A×C B = {(a, b) ∈ A×B | f(a) = g(b)}.

Examples: the unit circle, composable morphisms ...

• In Set again, subsets (i.e. inclusion maps) pull back to subsets:

f−1(U) - U

X
?

∩

f
- Y
?

∩
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Limits and Colimits

The notions we have introduced so far are all special cases of a
general notion of limits in categories, and the dual notion of
colimits:

Limits Colimits

Monics Epics

Terminal Objects Initial Objects

Products Coproducts

Pullbacks Pushouts

An important aspect of studying any kind of mathematical
structure is to see what limits and colimits the category of such
structures has.

For lack of time, we will not develop these notions in full generality.
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Functors

Part of the ‘categorical philosophy’ is

Don’t just look at the objects; take the morphisms into account too

We can apply this to categories too! A ‘morphism of categories’ is a
functor.

A functor F : C −→ D is an assignment of:

• An object FA in D to every object A in C.

• A map FA,B : C(A, B) −→ D(FA, FB) for every pair of objects
A, B of C.
(In practice, we write Ff : FA −→ FB).

These maps must preserve composition and identities:

F (g ◦ f) = Fg ◦ Ff F idA = idFA.
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Variance

A contravariant functor F : C −→ D is a functor F : Cop −→ D.
(We sometimes refer to an ordinary functor as covariant for
emphasis).

Products

The product C × D of categories C, D is defined in the obvious way
(an object is a pair of objects . . . )

Mixed Variance

Functors ‘of several variables’ are simply functors whose domain is
a product category. Such functors can be covariant in some
variables and contravariant in others, e.g.

F : Cop ×D −→ E .
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Examples of Functors

• A functor between monoids is just a monoid homomorphism.

• A functor between preorders is just a monotone map.

• U : Mon −→ Set is the ‘forgetful’ or ‘underlying’ functor
which sends a monoid to its set of elements, ‘forgetting’ the
algebraic structure, and sends a homomorphism to the
corresponding function between sets. There are similar
forgetful functors for other categories of structured sets. Why
are these trivial-looking functors useful— we’ll see!
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Set-valued Functors

Many important constructions arise as functors F : C −→ Set.

Examples

• If G is a group, a functor F : G −→ Set is an action of G on a
set.

• If P is a poset representing time, a functor F : P −→ Set is a
notion of sets varying through time. This is related to Kripke
semantics, and to forcing arguments in set theory.

• Let C be the (finite) category

•
-
- •

Functors F : C −→ Set correspond to directed graphs.
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Example: Lists

Data-type constructors are functors. As a basic example, we
consider lists. There is a functor

List : Set −→ Set

which takes a set X to the set of all finite lists (sequences) of
elements of X. List is functorial: its action on morphisms (i.e.
functions, i.e. (functional) programs) is given by maplist :

f : X −→ Y

List(f) : List(X) −→ List(Y )

List(f)[x1, . . . , xn] = [f(x1), . . . , f(xn)]
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Products as functors

If a category C has binary products, then there is automatically a
functor

−×− : C × C −→ C

If (f, g) : (A, B) −→ (C, D) in C × C — which just means

f : A −→ C and g : B −→ D

in C, then we define

f × g : A×B −→ C ×D

by
f × g = 〈f ◦ π1, g ◦ π2〉

One can use the equational properties of pairing and projections to
show functoriality (i.e. that composition and identities are
preserved).
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Hom-functors

• For each object A of C, there is a functor

C(A,−) : C −→ Set

(the covariant Hom-functor at A), where

C(A,−)(B) = C(A, B), C(A,−)(f : B → C) : g 7→ f ◦ g.

• There is also a contravariant Hom-functor

C(−, A) : Cop −→ Set

C(−, A)(B) = C(B,A), C(−, A)(h : C → B) : g 7→ g ◦ h.

• Generalizing both of these, there is a bivariant Hom-functor

C(−,−) : Cop × C −→ Set.
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Natural transformations

‘Categories were only introduced to allow functors to be
defined; functors were only introduced to allow natural
transformations to be defined.’

Just as categories have morphisms between them, namely functors,
so functors have morphisms between them too — natural
transformations.
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Let F,G : C −→ D be functors. A natural transformation
t : F =⇒ G is a family of D-morphisms

tA : FA −→ GA

indexed by objects A of C, such that, for all f : A −→ B,

FA
Ff- FB

GA

tA

?

Gf
- GB

tB

?

If each tA is an isomorphism, we say that t is a natural
isomorphism.
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Examples

• If V is a finite dimensional vector space, then V is isomorphic
to both its first dual V ∗ and to its second dual V ∗∗. However,
while it is naturally isomorphic to its second dual, there is no
natural isomorphism to the first dual.

• Let Id be the identity functor on Set. Then there is a natural
transformation

∆ : Id =⇒ Id× Id

∆X : x 7→ (x, x).

(This is in fact the only natural transformation between these
functors).
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Natural transformations on lists

reverseX : List(X) −→ List(X) [x1, . . . , xn] 7→ [xn, . . . , x1]

unitX : List(X) −→ List(X) x 7→ [x]

flattenX : List(List(X)) −→ List(X)

[[x1
1, . . . , x

1
n1

], . . . , [xk
1 , . . . , xk

nk
]] 7→ [x1

1, . . . . . . , x
k
nk

]
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Natural isomorphisms for products

If a category C has binary products and a terminal object, then
there are natural isomorphisms

aA,B,C : A× (B × C)
∼=−→ (A×B)× C

lA : 1×A
∼=−→ A rA : A× 1

∼=−→ A

Since natural isomorphisms are a self-dual notion, the same holds if
a category has binary coproducts and an initial object.
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Universal Constructions

The categorical triad: Functoriality, Naturality, Universality.

Canonical solutions to problems.

In posets: extremal solutions. Thus sup and inf are extremal
solutions to the problems of giving an upper bound or lower bound
respectively of a set of reals.

Products in posets A product of A, B is an element P such
that

P ≤ A and P ≤ B

and for any other other solution Q such that Q ≤ A and Q ≤ B, we
have Q ≤ P . (Greatest lower bound).
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(Co)Universal Arrows

Let G : D −→ C be a functor, and C an object of C. A couniversal
arrow from G to C is an object D of D and a morphism

f : G(D) −→ C

such that, for any object D′ of D and morphism g : G(D′) −→ C

there exists a unique morphism h : D′ −→ D in D such that:

D

D′

h

6
GD

f - C

�
�
�
�
�

g

�

GD′

Gh

6
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Examples

1. Terminal objects Let 1 be the one-object one-morphism
category. A terminal object in a category C is exactly a couniversal
arrow from the unique functor C −→ 1 to the unique object in 1.

2. Products Let A, B be objects of C. A product of A and B is
exactly a couniversal arrow from the diagonal functor

∆ : C −→ C × C

to (A, B).

Note that C × C = C2, where C2 is the functor category ; 2 is the
discrete category (only identity morphisms) with two objects.

This suggests an important generalization.
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Generalization: Limits

Let I be an ‘index category’. A diagram of shape I in a category C
is just a functor F : I −→ C. We can form the functor category CI

with objects the functors from I to C, and natural transformations
as morphisms.

There is a diagonal functor

∆ : C −→ CI .

A limit for the diagram F ia a couniversal arrow from ∆ to F .

This concept of limits subsumes products (including infinite
products), pullbacks, inverse limits, etc. etc.

For example, we get pullbacks by taking

I = • −→ • ←− •
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Exponentials

In Set, given sets A, B, we can form the set of functions
BA = Set(A,B), which is again a set. This closure of Set under
forming ‘function spaces’ is one of its most important properties.

How can we axiomatize this situation? Once again, rather than
asking what the elements of a function space are, we ask rather
what can we do with it operationally?

Answer: apply functions to their arguments. That is, there is a map

evA,B : BA ×A −→ B evA,B(f, a) = f(a)

Think of the function as a ‘black box’: we can feed it inputs and
observe the outputs.
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Couniversal property of evaluation

For any g : C ×A −→ B, there is a unique map Λ(g) : C −→ BA

such that:

BA

C

Λ(g)

6
BA ×A

evA,B- B

�
�
�
�
�

g

�

C ×A

Λ(g)× idA

6

In Set, this is defined by

Λ(g)(c) = k : A −→ B where k(a) = g(c, a).

This process of transforming a function of two arguments into a
function-valued function of one argument is known as Currying
after H. B. Curry. It is an algebraic form of λ-abstraction.
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General definition of exponentials

Let C be a category with a terminal object and binary products.
For each object A of C, we can define a functor

−×A : C −→ C

We say that C has exponentials if for all objects A and B of C there
is a couniversal arrow from −×A to B, i.e. an object BA of C and
a morphism

evA,B : BA ×A −→ B

with the couniversal property: for every g : C ×A −→ B, there is a
unique morphism Λ(g) : C −→ BA such that

evA,B ◦ (Λ(g)× idA) = g.

(Same as diagram on previous slide).
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Cartesian Closed Categories

A category with a terminal object, products and exponentials is
called a Cartesian Closed Category (CCC).

This notion is fundamental in understanding functional types,
models of λ-calculus, and the structure of proofs.

Notation The notation of BA for exponential objects, and evA,B

for evaluation, is standard in the category theory literature.
However, for our purposes, the following notation will be more
convenient: A⇒ B for exponential objects, and

ApA,B : (A⇒ B)×A −→ B

for application (i.e. evaluation).
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Example: Boolean Algebras

A Boolean algebra (e.g. a powerset P(X)) is a CCC.

Products are given by conjunctions A ∧B. We define exponentials
as implications:

A⇒ B = ¬A ∨B

Evaluation is just Modus Ponens:

(A⇒ B) ∧A ≤ B

Couniversality is the ‘Deduction Theorem’:

C ∧A ≤ B ⇐⇒ C ≤ A⇒ B.


