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The Curry-Howard Correspondence, and beyond

Formulas Types Objects Games

Proofs Terms Morphisms Strategies

Further Reading: Proofs and Types by Girard, Lafont and Taylor,
Basic Simple Type Theory by Hindley, both published by
Cambridge University press.
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Formal Proofs

Proof of A from assumptions A1, . . . , An:

A1, . . . , An ` A

We use Γ, ∆ to range over finite sets of formulas, writing Γ ` A etc.

We shall focus on the fragment of propositional logic based on
conjunction A ∧B and implication A ⊃ B.



Introduction to the Curry-Howard Correspondence and Linear Logic 3

Natural Deduction system for ∧, ⊃

Identity

Γ, A ` A
Id

Conjunction

Γ ` A Γ ` B
Γ ` A ∧B

∧-intro Γ ` A ∧B
Γ ` A

∧-elim-1 Γ ` A ∧B
Γ ` B

∧-elim-2

Implication

Γ, A ` B

Γ ` A ⊃ B
⊃-intro Γ ` A ⊃ B Γ ` A

Γ ` B
⊃-elim
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Structural Proof Theory

The idea is to study the ‘space of formal proofs’ as a mathematical
structure in its own right, rather than to focus only on

Provability ←→ Truth

(i.e. the usual notions of ‘soundness and completeness’).

Why? One motivation comes from trying to understand and use
the computational content of proofs. To make this precise, we
look at the ‘Curry-Howard correspondence’.
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Terms

λ-calculus: a pure calculus of functions.

Variables x, y, z, . . .

Terms
t ::= x | tu︸︷︷︸

application

| λx. t︸︷︷︸
abstraction

Examples

λx. x + 1 successor function

λx. x identity function

λf. λx. fx application

λf. λx. f(fx) double application

λf. λg. λx. g(f(x)) composition g ◦ f
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Conversion and Reduction

The basic equation governing this calculus is β-conversion:

(λx. t)u = t[u/x]

E.g.
(λf. λx. f(fx))(λx. x + 1)0 = · · · 2.

By orienting this equation, we get a ‘dynamics’ - β-reduction

(λx. t)u→ t[u/x]
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From type-free to typed

‘Pure’ λ-calculus is very unconstrained.

For example, it allows terms like ω ≡ λx. xx — self-application.

Hence Ω ≡ ωω, which diverges:

Ω→ Ω→ · · ·

Also, Y ≡ λf. (λx. f(xx))(λx. f(xx)) — recursion.

Yt→ (λx. t(xx))(λx. t(xx))→ t((λx. t(xx))(λx. t(xx))) = t(Yt).

Historically, Curry extracted Y from an analysis of Russell’s
Paradox.
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Simply-Typed λ-calculus

Base types
B ::= ι | . . .

General Types

T ::= B | T → T | T × T

Examples
ι→ ι→ ι first-order function type

(ι→ ι)→ ι second-order function type

In general, any simple type built purely from base types and
function types can be written as

T1 → T2 → · · ·Tk → B

where the Ti are again of this form.
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Rank and Order

We can define the rank of a type:

ρ(B) = 0

ρ(T × U) = max(ρ(T ), ρ(U))

ρ(T → U) = max(ρ(T ) + 1, ρ(U))

ρ(T ) = 1 means that T is ‘first-order’.
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Typed terms

Typing judgement:

x1 : T1, . . . xk : Tk ` t : T

the term t has type T under the assumption (or: in the
context) that the variable x1 has type T1, . . . , xk has type Tk.
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The System of Simply-Typed λ-calculus

Variable

Γ, x : t ` x : T

Product

Γ ` t : T Γ ` u : U
Γ ` 〈t, u〉 : T × U

Γ ` v : T × U
Γ ` π1v : T

Γ ` v : T × U
Γ ` π2v : U

Function

Γ, x : U ` t : T

Γ ` λx. t : U → T
Γ ` t : U → T Γ ` u : U

Γ ` tu : T
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Reduction rules

Computation rules (β-reductions):

(λx. t)u → t[u/x]

π1〈t, u〉 → t

π2〈t, u〉 → u

Also, η-laws (extensionality principles):

t = λx. tx x not free in t, at function types

v = 〈π1v, π2v〉 at product types
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Compare the Simple Type system to the Natural Deduction system
for ∧, ⊃.

If we equate

∧ ≡ ×
⊃ ≡ →

they are the same!

This is the Curry-Howard correspondence (sometimes:
‘Curry-Howard isomorphism’).

It works on three levels:

Formulas Types

Proofs Terms

Proof transformations Term reductions
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Constructive reading of formulas

The ‘Brouwer-Heyting-Kolmogorov interpretation’.

• A proof of an implication A ⊃ B is a construction which
transforms any proof of A into a proof of B.

• A proof of A ∧B is a pair consisting of a proof of A and a
proof of B.

Thse readings motivate identifying A ∧B with A×B, and A ⊃ B

with A→ B.

Moreover, these ideas have strong connections to computing. The
λ-calculus is a ‘pure’ version of functional programming languages
such as Haskell and SML. So we get a reading of

Proofs as Programs
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Three Theorems on Simple Types

• Proofs about proofs or terms — meta-mathematics.

• Exploring the structure of formal systems — their behaviour
under ‘dynamics’, i.e. reduction.

• Main proof technique: induction on syntax.
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Induction on Syntax

Since proofs have been formalized as ‘concrete objects’, i.e. trees,
we can assign numerical measures such as height or size to them,
and use mathematical induction on these quantities.

Height of a term:

height(x) = 1

height(λx. t) = height(t) + 1

height(tu) = max(height(t), height(u)) + 1

Draw pictures!
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Reduction revisited

β-reduction:
(λx. u)v → u[v/x]

A redex of a term t is a subexpression of the form of the
left-hand-side of the above rule, to which β-reduction can be
applied. A term is in normal form of it contains no redexes. We
write t � u if u can be obtained from t by a number of applications
of β-reduction. Thus � is a reflexive and transitive relation.

Substitution:

x[t/x] = t y[t/x] = y (x 6= y)

(λz. u)[t/x] = λz. (u[t/x]) (∗)

(uv)[t/x] = (u[t/x])(v[t/x])
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Three Theorems

1. The Church-Rosser Theorem If t � u and t � v then for
some w, u � w and v � w.

(Proved in Lambda Calculus course).

2. The Subject Reduction Theorem ‘Typing is invariant
under reduction’. If Γ ` t : T and t � u, then Γ ` u : T .

3. Weak Normalization If t is typable in Simple Types, then t

has a normal form (necessarily unique by Church-Rosser).
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Key Lemma for Subject Reduction

Lemma The following ‘Cut Rule’ is admissible in Simple Types;
i.e. whenever we can prove the premises of the rule, we can also
prove the conclusion.

Γ, x : U ` t : T Γ ` u : U

Γ ` t[u/x] : T

The proof is by induction on the derivation of Γ, x : U ` t : T .
(Equivalently, by induction on height(t)).
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Normalization in simple types is non-elementary

Define e(m, n) by e(m, 0) = m, e(m, n + 1) = 2e(m,n). Thus e(m,n)
is an exponential ‘stack’ of n 2’s with an m at the top:

e(m, n) = 22··
·2

m

We can prove that a term of degree d and height h has a normal
form of height bounded by e(h, d). (Details in next Exercise Sheet).
However, there is no elementary bound (i.e. an exponential stack
of fixed height).
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The connection to Categories

Let C be a category. We shall interpret Formulas (or Types) as
Objects of C.

A morphism f : A −→ B will then correspond to a proof of B

from assumption A, i.e. a proof of A ` B. Note that the bare
structure of a category only supports proofs from a single
assumption.

Now suppose C has finite products. A proof of

A1, . . . , Ak ` A

will correspond to a morphism

f : A1 × · · · ×Ak −→ A.
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Axiom

Γ, A ` A
Id

π2 : Γ×A −→ A

Conjunction

Γ ` A Γ ` B
Γ ` A ∧B

∧-intro
f : Γ −→ A g : Γ −→ B

〈f, g〉 : Γ −→ A×B

Γ ` A ∧B
Γ ` A

∧-elim-1
f : Γ −→ A×B

π1 ◦ f : Γ −→ A

Γ ` A ∧B
Γ ` B

∧-elim-2
f : Γ −→ A×B

π2 ◦ f : Γ −→ B
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Implication

Now let C be cartesian closed.

Γ, A ` B

Γ ` A ⊃ B
⊃-intro

f : Γ×A −→ B

Λ(f) : Γ −→ (A⇒ B)

Γ ` A ⊃ B Γ ` A
Γ ` B

⊃-elim
f : Γ −→ (A⇒ B) g : Γ −→ A

ApA,B ◦ 〈f, g〉 : Γ −→ B

Moreover, the β- and η-equations are all then derivable from the
equations of cartesian closed categories.

So cartesian closed categories are models of ∧, ⊃-logic, at the level
of proofs and proof transformations, and of simply typed
λ-calculus, at the level of terms and equations between terms.
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Linearity

Implicit in our treatment of assumptions

A1, . . . , An ` A

is that we can use them as many times as we want (including not
at all).

To make these more visible, we now represent the assumptions as a
list (possibly with repetitions) rather than a set, and use explicit
structural rules to control copying and deletion of assumptions.
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Thus we replace the identity by

A ` A
Id

and introduce the structural rules

Γ, A,B, ∆ ` C

Γ, B, A, ∆ ` C
Exchange

Γ, A,A ` B

Γ, A ` B
Contraction Γ ` B

Γ, A ` B
Weakening
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In terms of the product structure we use using for the categorical
intepretation of lists of assumptions, these structural rules have
clear meanings.

Γ, A,B, ∆ ` C

Γ, B, A, ∆ ` C
Exchange

f : Γ×A×B ×∆ −→ C

f ◦ (idΓ × sA,B × id∆) : Γ×B ×A×∆ −→ C

Γ, A,A ` B

Γ, A ` B
Contraction

f : Γ×A×A −→ B

f ◦ (idΓ ×∆A) : Γ×A −→ B

Γ ` B
Γ, A ` B

Weakening
f : Γ −→ B

f ◦ π1 : Γ×A −→ B
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What happens if we drop the Contraction and Weakening rules
(but keep the Exchange rule)?

It turns out we can still make good sense of the resulting proofs,
terms and categories, but now in the setting of a different,
‘resource-sensitive’ logic:

Linear Logic

Formulas: A⊗B, A ( B.

Sequents are still written Γ ` A but Γ is now a multiset.
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Linear Logic: Proofs

Axiom

A ` A

Tensor
Γ ` A ∆ ` B

Γ, ∆ ` A⊗B

Γ, A, B ` C

Γ, A⊗B ` C

Linear Implication

Γ, A ` B

Γ ` A ( B
Γ ` A ( B ∆ ` A

Γ, ∆ ` B

Cut Rule
Γ ` A A, ∆ ` B

Γ, ∆ ` B
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Note the following:

• The use of disjoint (i.e. non-overlapping) contexts.

• In the presence of Contraction and Weakening, the rules given
for ⊗ and ( are equivalent to those previously given for ∧ and
⊃.

• The system given was chosen to emphasize the parallels with
the system for ∧, ⊃. However, to obtain a system in which
‘Cut-elimination’ holds, one should replace the ‘elimination
rule’ given for Linear implication by the following ‘(-left’ rule:

Γ ` A B, ∆ ` C

Γ, A ( B,∆ ` C
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Linear Logic: terms

Judgements will look much the same as previously, but term
formation is now highly constrained by the form of the typing
judgements. In particular,

x1 : A1, . . . , xk : Ak ` t : A

will now imply that each xi occurs exactly once (free) in t.
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Linear Logic: Term Assignment for Proofs

Axiom
x : A ` x : A

Tensor

Γ ` t : A ∆ ` u : B
Γ, ∆ ` t⊗ u : A⊗B

Γ, x : A, y : B ` v : C

Γ, z : A⊗B ` let z be x⊗ y in v : C

Linear Implication

Γ, x : A ` t : B

Γ ` λx. t : A ( B
Γ ` t : A ( B ∆ ` u : A

Γ, ∆ ` tu : B

Cut Rule
Γ ` t : A x : A,∆ ` u : B

Γ, ∆ ` u[t/x] : B
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Reductions

(λx. t)u → t[u/x]

let t⊗ u be x⊗ y in v → v[t/x, u/y]
...

Term assignment for (-left

Γ ` t : A x : B, ∆ ` u : C

Γ, f : A ( B, ∆ ` u[ft/x] : C
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Monoidal Categories

A monoidal category is a structure (C,⊗, I, a, l, r) where

• C is a category

• ⊗ : C × C −→ C is a functor

• a, l, r are natural isomorphisms

aA,B,C : A⊗ (B ⊗ C)
∼=−→ (A⊗B)⊗ C

lA : I ⊗A
∼=−→ A rA : A⊗ I

∼=−→ A

such that the following equations hold for all A, B, C, D:

aA,I,B; rA ⊗ idB = idA ⊗ lB

idA ⊗ aB,C,D; aA,B⊗C,D; aA,B,C ⊗ idD = aA,B,C⊗D; aA⊗B,C,D.
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The Pentagon

A⊗ (B ⊗ (C ⊗D))
a- (A⊗B)⊗ (C ⊗D)

a- ((A⊗B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D)

id ⊗ a

? a - (A⊗ (B ⊗ C))⊗D

a⊗ id

?

A⊗ (I ⊗B)
a- (A⊗ I)⊗B

	�
�
�
�
�

r ⊗ id

A⊗B

id ⊗ l

?
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Examples

• Both products and coproducts give rise to monoidal structures
— which are the common denominator between them. (But in
addition, products have diagonals and projections).

• (N,≤, +, 0) is a monoidal category.

• Rel, the category of sets and relations, with cartesian product
(which is not the categorical product).

• Vect with the tensor product.
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Symmetric Monoidal Categories

A symmetric monoidal category is a monoidal category
(C,⊗, I, a, l, r) with an additional natural isomorphism

sA,B : A⊗B
∼=−→ B ⊗A

such that the following equations hold for all A, B, C:

sA,B ; sB,A = idA⊗B sA,I ; lA = rA

aA,B,C ; sA⊗B,C ; aC,A,B = idA ⊗ sB,C ; aA,C,B; sA,C ⊗ idB .
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Symmetric Monoidal Closed categories

A symmetric monoidal closed category is a symmetric monoidal
category (C,⊗, I, a, l, r, s) such that, for each object A, the is a
couniversal arrow to the functor

−⊗A : C −→ C

This means that for all A and B there is an object A ( B and a
morphism

ApA,B : (A ( B)⊗A −→ B

Moreover, for every morphism f : C ⊗A −→ B, there is a unique
morphism Λ(f) : C −→ (A ( B) such that

ApA,B ◦ (Λ(f)⊗ idA) = f.
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Examples

• Vectk. Here ⊗ is the tensor product of vector spaces, and
A ( B is the vector space of linear maps.

• Rel, the category with objects sets and morphisms relations.
Here we take ⊗ to be cartesian product (which is not the
categorical product in Rel).

• A cartesian closed category is a special case of a symmetric
monoidal closed category, where ⊗ is taken to be the product.
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Linear Logic: Categories

Just as cartesian closed categories correspond to Simply-typed
λ-calculus/(∧, ⊃)–logic, so symmetric monoidal closed
categories correspond to Linear λ-calculus/(⊗, ()–logic.

Let (C,⊗, . . .) be a symmetric monoidal closed category.

The interpretation of a Linear inference

A1, . . . , Ak ` A

will be a morphism

f : A1 ⊗ · · · ⊗Ak −→ A.
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To be precise in our interpretation, we will treat contexts as lists of
formulas, and explicitly interpret the Exchange rule:

Γ, A, B, ∆ ` C

Γ, B,A, ∆ ` C

f : Γ⊗A⊗B ⊗∆ −→ C

f ◦ (idΓ ⊗ sA,B ⊗ id∆) : Γ⊗B ⊗A⊗∆ −→ C
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Categorical interpretation of Linear proofs (I)

Axiom

A ` A idA : A −→ A

Tensor

Γ ` A ∆ ` B
Γ, ∆ ` A⊗B

f : Γ −→ A g : ∆ −→ B

f ⊗ g : Γ⊗∆ −→ A⊗B

Γ, A, B ` C

Γ, A⊗B ` C

f : (Γ⊗A)⊗B −→ C

f ◦ aA,B,C : Γ⊗ (A⊗B) −→ C
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Categorical interpretation of Linear proofs (II)

Linear Implication

Γ, A ` B

Γ ` A ( B

f : Γ⊗A −→ B

Λ(f) : Γ −→ (A ( B)

Γ ` A ( B ∆ ` A
Γ, ∆ ` B

f : Γ −→ (A ( B) g : ∆ −→ A

Ap ◦ (f ⊗ g) : Γ⊗∆ −→ B

Cut Rule

Γ ` A A, ∆ ` B

Γ, ∆ ` B

f : Γ −→ A g : A⊗∆ −→ B

g ◦ (f ⊗ id∆) : Γ⊗∆ −→ B
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Linear Logic: beyond the multiplicatives

Linear Logic has three ‘levels’ of connectives:

• The multiplicatives, e.g. ⊗, (

• The additives: additive conjunction & and disjunction ⊕

• the exponentials, allowing controlled access to copying and
discarding
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Additive Conjunction

Γ ` A Γ ` B
Γ ` A&B

Γ, A ` C

Γ, A&B ` C

Γ, B ` C

Γ, A&B ` C

The additive conjunction can be interpreted in any symmetric
monoidal closed category with products (e.g. our category of
games).

Note that, since by linearity an argument of type A&B can only be
used once, each use of a left rule for & makes a once-and-for-all
choice of a projection.
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Term assignment for additive conjunction

Γ ` t : A Γ ` u : B
Γ ` 〈t, u〉 : A&B

Γ, x : A ` t : C

Γ, z : A&B ` let z = 〈x,−〉 in t : C

Γ, B ` C

Γ, z : A&B ` let z = 〈−, y〉 in t : C

Reduction rules

let 〈t, u〉 = 〈x,−〉 in v → v[t/x]

let 〈t, u〉 = 〈−, y〉 in v → v[u/y]
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Exponential

!A: a kind of modality (cf. 2A)

Rules:

Γ, A ` B

Γ, !A ` B
Γ ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B
!Γ ` A
!Γ `!A
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Interpreting standard Natural Deduction

We can use the exponential to recover the ‘expressive power’ of the
usual logical connectives ∧, ⊃. If we interpret

A ⊃ B , !A ( B

A ∧B , A&B

and an inference
Γ ` A

in standard Natural Deduction for ∧, ⊃-logic as

!Γ ` A

in Linear Logic, then each proof rule of Natural Deduction for ∧, ⊃
can be interpreted in Linear Logic (and exactly the same formulas
of ∧, ⊃-logic are provable).
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Note in particular that the interpretation

A ⊃ B , !A ( B

decomposes the fundamental notion of implication into finer
notions — like ‘splitting the atom of logic’ !


