Exercise Sheet 1 for Categories, Proofs and Games: HT 2004

Samson Abramsky
Oxford University Computing Laboratory

Question 1

Consider the following properties of an arrow f in a category \mathcal{C}.

- f is monic (i.e. a monomorphism) if for all arrows g and h (with domaims and codomains such that the following equations make sense)

$$
f \circ g=f \circ h \Longrightarrow g=h .
$$

- f is epic if

$$
g \circ f=h \circ f \Longrightarrow g=h .
$$

- f is iso if for some g, both $f \circ g$ and $g \circ f$ are identity arrows.
- f is split monic if for some $g, g \circ f$ is an identity arrow.
- f is split epic if for some $g, f \circ g$ is an identity arrow.
(a) Prove that if f and g are arrows such that $g \circ f$ is monic, then f is monic.
(b) Prove that, if f is split epic, then it is epic.
(c) Prove that, if f and $g \circ f$ are iso, then g is iso.
(d) Prove that, if f is monic and split epic, then it is iso.
(e) Show that, in the category Set, an arrow is epic if and only if it is surjective.

Question 2

Show that $i: A \longrightarrow B$ has at most one inverse $j: B \longrightarrow A$ making it an isomorphism. This justifies writing i^{-1} for the inverse of an isomorphism i.

Question 3

Identify initial and terminal objects in the categories Set, Mon, Vect ${ }_{k}$, Pos. What does it mean to be an initial/terminal object in a preorder?

Question 4

Repeat the previous exercise with respect to the notion of product.

Question 5

Show that an A, B-pairing $\left(A \times B, \pi_{1}, \pi_{2}\right)$ is a product if and only if for every A, B-pairing (C, f, g) there is a morphism

$$
\langle f, g\rangle: C \longrightarrow A \times B
$$

such that

$$
\pi_{1} \circ\langle f, g\rangle=f, \quad \pi_{2} \circ\langle f, g\rangle=g
$$

and for all $h: C \longrightarrow A \times B$:

$$
\left\langle\pi_{1} \circ h, \pi_{2} \circ h\right\rangle=h .
$$

(The main point is to show that the last equation is equivalent to asking for uniqueness explicitly).

Question 6

Explicitly dualize the notion of product (the dual notion is called coproduct). Repeat exercise 3 with respect to coproducts.

