Exercise Sheet 2 for Categories, Proofs and Games

Samson Abramsky
Oxford University Computing Laboratory

Question 1

Suppose that a category \mathcal{C} has a product $A \times B$ for each pair of objects A, B.
(a) Show that $A \times(B \times C)$ is the product of A, B and C (in the sense of general products defined in the notes). Extend your argument to prove by induction that \mathcal{C} has products for all finite (non-empty) families of objects.
(b) Show that the definition of the product implies the following: for any morphisms $f, g: C \longrightarrow A \times B$,

$$
\pi_{1} \circ f=\pi_{1} \circ g \text { and } \pi_{2} \circ f=\pi_{2} \circ g \quad \Rightarrow \quad f=g
$$

(c) Using the previous part, show that:

$$
\langle f, g\rangle \circ h=\langle f \circ h, g \circ h\rangle .
$$

(d) Defining $f \times g=\left\langle f \circ \pi_{1}, g \circ \pi_{2}\right\rangle$ show that this is functorial, i.e.

$$
(f \times g) \circ(h \times k)=(f \circ h) \times(g \circ k) \quad \mathrm{id}_{A} \times \mathrm{id}_{B}=\mathrm{id}_{A \times B}
$$

(e) Define a family of morphisms

$$
a_{A, B, C}: A \times(B \times C) \longrightarrow(A \times B) \times C
$$

and show that it is a natural isomorphism.

Question 2

Let the functors $F, G, H:$ Set \times Set \longrightarrow Set be defined by

$$
F(X, Y)=X \times Y, \quad G(X, Y)=Y \times X \quad H(X, Y)=X
$$

(a) Show that the only natural transformation $p: F \Longrightarrow H$ is the projection

$$
p_{X, Y}:(x, y) \mapsto x .
$$

(Hint: given any (X, Y) and $x \in X, y \in Y$, find an instance (X_{0}, Y_{0}) and maps $f: X_{0} \longrightarrow X, g: Y_{0} \longrightarrow Y$ which you can use via naturality to 'force' $p_{X, Y}(x, y)$ to be $\left.x\right)$.
(b) Similarly, show that the only natural transformation $s: F \Longrightarrow G$ is the symmetry

$$
s_{X, Y}:(x, y) \mapsto(y, x) .
$$

A harder question - Optional

Question 3

Consider the following commutative diagram.

(a) Show that if both 'small' squares A, B, D, E and B, C, E, F are pullbacks, so is the 'large' outer square A, C, D, F.
(b) Show that if the right-hand 'small' square and the large outer square are pullbacks, so is the left-hand 'small' square.

