Exercise Sheet 3 for Categories, Proofs and Games

Samson Abramsky
Oxford University Computing Laboratory

1. The notion of universal arrow is dual to that of couniversal arrow. We state it explicitly. Let $G: \mathcal{D} \longrightarrow \mathcal{C}$ be a functor, and A an object of \mathcal{C}. A universal arrow from A to G is an object D of \mathcal{D} and a morphism $f: A \longrightarrow G D$ such that, for every object D^{\prime} of \mathcal{D}, and morphism $g: A \longrightarrow G D^{\prime}$, there exists a unique morphism $h: D \longrightarrow D^{\prime}$ such that $g=G h \circ f$.

- Show carefully that a coproduct of objects A, B of \mathcal{C} is a universal arrow to the diagonal functor

$$
\Delta: \mathcal{C} \longrightarrow \mathcal{C} \times \mathcal{C}
$$

- Let $U:$ Mon \longrightarrow Set be the 'forgetful' functor which sends a monoid to its set of elements. Show that for each set X, there is a universal arrow $X \longrightarrow U X^{*}$, where X^{*} is the monoid of finite sequences of elements of X, with concatenation as the binary operation.
- (If you have not encountered rings, you should skip this part). Let Ring be the category with commutative rings with unit as objects, and ring homomorphisms as morphisms. Let Ring* be the category where objects are pairs (R, a) where R is a ring, and $a \in R$; the morphisms from (R, a) to (S, b) are the ring homomorphisms $h: R \longrightarrow S$ such that $h(a)=b$. The functor $G: \mathbf{R i n g}_{*} \longrightarrow \mathbf{R i n g}$ simply sends (R, a) to R, 'forgetting' the specified element a. Show that for each ring R, there is a universal arrow from R to G. (Hint: polynomials!).

2. Assume we have a category \mathcal{C} with a terminal object and binary products. Show that exponentials can be axiomatized in a purely equational fashion, as follows. For each pair of objects A, B, there is an object $A \Rightarrow B$ and a morphism

$$
\mathrm{Ap}_{A, B}:(A \Rightarrow B) \times A \longrightarrow B
$$

and for each morphism $f: C \times A \longrightarrow B$ there is a morphism $\Lambda(f): C \longrightarrow(A \Rightarrow B)$ such that

$$
f=\operatorname{Ap}_{A, B} \circ\left(\Lambda(f) \times \mathrm{id}_{A}\right) .
$$

Moreover, for each morphism $g: C \longrightarrow(A \Rightarrow B)$:

$$
\Lambda\left(\mathrm{Ap}_{A, B} \circ\left(g \times \mathrm{id}_{A}\right)\right)=g .
$$

Show that this is equivalent to the definition in terms of couniversal arrows given in the Notes.
3. Let X be a non-empty set. Consider the set H of all those sets of subsets Θ of $X(\Theta \subseteq$ $P(P(X))$) with the following property:

$$
U \in \Theta \wedge T \subseteq U \Longrightarrow T \in \Theta
$$

This set H, ordered by inclusion, is a poset, and hence a category. Show that H is not closed under complements (and in fact is not a Boolean algebra), but that H is Cartesian closed.

