Exercise Sheet 6 for Categories, Proofs and Games

Samson Abramsky
Oxford University Computing Laboratory

Given games A, B define $A \& B$ by

$$
\begin{aligned}
& M_{A \& B}=M_{A}+M_{B} \\
& \lambda_{A \& B}=\left[\lambda_{A}, \lambda_{B}\right] \\
& P_{A \& B}=\left\{\operatorname{inl}^{*}(s) \mid s \in P_{A}\right\} \cup\left\{\operatorname{inr}^{*}(t) \mid t \in P_{B}\right\} .
\end{aligned}
$$

(Draw a picture of the game tree of $A \& B$; it is formed by gluing together the trees for A and B at the root. There is no overlap because we take the disjoint union of the alphabets.)

Also, define $A \otimes B$ (the 'left biassed tensor') which differs from $A \otimes B$ only in that the positions are restricted to those in which the first move is made in A. And define $A \circ_{s} B$ (the 'strict linear function type') which differs from $A \multimap B$ only in that the positions are constrained so that the second move must be made in A.

1. Let A, B be games. Define a game isomorphism to be a function

$$
\psi: P_{A} \longrightarrow P_{B}
$$

such that:

- ψ is a bijection
- ψ is length-preserving: $|\psi(s)|=|s|$
- ψ is prefix-preserving: $s \sqsubseteq t \Rightarrow \psi(s) \sqsubseteq \psi(t)$.

A strict game isomorphism is a function

$$
\phi: M_{A} \longrightarrow M_{B}
$$

such that:

- ϕ is a bijection
- $\lambda_{A}=\lambda_{B} \circ \phi$
- For all $s \in M_{A}^{*}: s \in P_{A} \Longleftrightarrow \phi^{*}(s) \in P_{B}$.

We say that A and B are isomorphic if there is an isomorphism between them, and strictly isomorphic if there is a strict isomorphism between them.

- Show that if ϕ is a strict game isomorphism, then ϕ^{*} is a game isomorphism.
- Show that two games may be isomorphic without being strictly isomorphic.
- Show that each of the following pairs of games is isomorphic. In each case, determine whether they are strictly isomorphic.
(a) $A \cong A \otimes I$
(b) $A \otimes B \cong B \otimes A$
(c) $A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$
(d) $I \multimap A \cong A$
(e) $A \multimap I \cong I$
(f) $(A \otimes B) \multimap C \cong A \multimap(B \multimap C)$
(g) $A \multimap(B \& C) \cong(A \multimap B) \&(A \multimap C)$
(h) $A \otimes B \cong(A \otimes B) \&(B \otimes A)$
(i) $(A \otimes B) \otimes C \cong A \otimes(B \otimes C)$
(j) $(A \otimes B) \multimap_{s} C \cong A \multimap_{s}(B \multimap C)$
(k) $(A \multimap B) \multimap_{s} C \cong B \multimap_{s}(C \otimes A)$
- Do we have $A \cong A \otimes A$? $A \cong A \& A$?

2. Define a strategy for the game $(\mathbb{B} \otimes \mathbb{B}) \multimap \mathbb{B}$ which implements the operation of conjunction ('and') on truth-values. Is there more than one reasonable way of doing this? Discuss.
3. Now consider the 'second-order' type

$$
(\mathbb{B} \multimap \mathbb{B}) \multimap \mathbb{B}
$$

Define a strategy which returns true if its 'argument' (a strategy of type $\mathbb{B} \multimap \mathbb{B}$) returns an answer without inspecting its input; and false if its argument does inspect its input. Is there a mathematical function (mapping Boolean functions to Booleans) which this strategy represents? Discuss.

