Exercise Sheet 7 for Game Semantics

Samson Abramsky
Oxford University Computing Laboratory

1 Composition examples

1. Do Exercise 1.5 from the Lecture Notes on Game Semantics (available on the course web page).
2. Prove that not; not $=i d_{\mathbb{B}}$. (Here not is as in the previous exercise).

2 Parallel composition of strategies

Recall that composition of strategies

$$
\sigma: A \longrightarrow B, \quad \tau: B \longrightarrow C
$$

is defined in terms of parallel composition and hiding:

$$
\sigma ; \tau=(\sigma \| \tau) / B
$$

where

$$
\sigma \| \tau=\left\{s \in\left(M_{A}+M_{B}+M_{C}\right)^{*} \mid s \upharpoonright A, B \in \sigma \wedge s \upharpoonright B, C \in \tau\right\}
$$

The purpose of these exercises is to study the structure of the parallel composition.

1. Give a transition diagram for $\sigma \| \tau$, similar to those given for the tensor product and linear implication. The 'states' will be of the form

$$
\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)
$$

where the π_{i} are polarities $(P$ or $O)$, and $\pi_{2}=\overline{\pi_{3}}$. The idea is that $\left(\pi_{1}, \pi_{2}\right)$ describes the situation from σ 's point of view (playing in $A \multimap B$), while $\left(\pi_{3}, \pi_{4}\right)$ describes the situation from τ 's point of view (playing in $B \multimap C$). Thus the initial state will be (P, O, P, O). You should find that 4 distinct states are accessible in all.
2. Prove the following Locality Property of parallel composition: for all $s \in \sigma \| \tau$, for all $i: 1 \leq i<|s|$,

$$
\left|\operatorname{out}\left(s_{i}\right)-\operatorname{out}\left(s_{i+1}\right)\right| \leq 1
$$

where

$$
\text { out : } M_{A}+M_{B}+M_{C} \longrightarrow\{0,1,2\}
$$

maps moves in M_{A} to 0 , moves in M_{B} to 1 , and moves in M_{C} to 2 .
3. Prove the following parity property: for all $\operatorname{smtn} \in \sigma \| \tau$,

- If m, n are in the same visible component (A or C), then the parity of $|t| B \mid$ is even
- If m, n are in different visible components, then the parity of $|t| B \mid$ is odd.

4. The map $s \mapsto s\lceil A, C$ induces a surjective map

$$
\psi: \sigma \| \tau \longrightarrow \sigma ; \tau
$$

Covering Lemma. $\quad \psi$ is injective (and hence bijective) so for each $t \in \sigma ; \tau$ there is a unique $s \in \sigma \| \tau$ such that $s \upharpoonright A, C=t$.

If $t=m_{1} m_{2} \ldots . m_{k}$, then s has the form

$$
m_{1} u_{1} m_{2} u_{2} \ldots . u_{k-1} m_{k}
$$

where $u_{i} \in M_{B}^{*}, 1 \leq i<k$.
Prove the Covering lemma.
Optional: try these if you have time

3 Verifying the categorical structure of \mathcal{G}

Do as many as possible of Exercises 1.3, 1.4, 1.7, 1.8 from Section 1 of the Lecture Notes on Game semantics.

