
Introduction to Game Semantics 1

Introduction to Game Semantics

Samson Abramsky



Introduction to Game Semantics 2

Notation

X∗ : the set of finite sequences (words, strings) over X

f : X −→ Y

f∗ : X∗ −→ Y ∗

|s|: length of s. si i’th element of s.

Given a set S of sequences, we write Seven, Sodd for the subsets of
even- and odd-length sequences respectively.

We write X + Y for the disjoint union of sets X, Y .

If Y ⊆ X and s ∈ X∗, we write s � Y for the sequence obtained by
deleting all elements not in Y from s. In practice, we use this
notation in the context where X = Y + Z, and by abuse of notation
we take s � Y ∈ Y ∗, i.e. we elide the use of injection functions.



Introduction to Game Semantics 3

We write s v t if s is a prefix of t, i.e. t = su for some u.

Pref(S) is the set of prefixes of elements of S ⊆ X∗. S is
prefix-closed if S = Pref(S).



Introduction to Game Semantics 4

Games

A game specifies the set of possible runs (or ‘plays’). It can be
thought of as a tree

◦
a1

������
��� a2

��@@@
@@@@

•
b1

������
���

•
b1

������
���

b2��
b3

��@@@
@@@@

◦ ◦ ◦ ◦

• nodes ◦ are Opponent positions

• nodes • are Player positions

• arcs are labelled with moves



Introduction to Game Semantics 5

Formal definition of games

Formally, we define a game G to be a structure (MG, λG, PG),
where

• MG is the set of moves of the game;

• λG : MG −→ {P,O} is a labelling function designating each
move as by Player or Opponent;

• PG ⊆nepref Malt
G , i.e. PG is a non-empty, prefix-closed subset of

Malt
G , the set of alternating sequences of moves in MG.



Introduction to Game Semantics 6

More formally, Malt
G is the set of all s ∈M∗

G such that

∀i : 1 ≤ i ≤ |s| even(i) =⇒ λG(si) = P

∧ odd(i) =⇒ λG(si) = O

s = a1 a2 · · · a2k+1 a2k+2 · · ·
λG ↓ ↓ ↓ ↓

O P O P

.



Introduction to Game Semantics 7

Example

The game

({a1, a2, b1, b2, b3}, λ, {ε, a1, a1b1, a2, a2b2, a2b3})

λ : a1, a2 7→ O, b1, b2, b3 7→ P

represents the tree

◦
a1

������
��� a2

��@@@
@@@@

•
b1

������
���

•
b2

������
��� b3

��@@@
@@@@

◦ ◦ ◦



Introduction to Game Semantics 8

Strategies

Formally, we define a (deterministic) strategy σ on a game G to be
a non-empty subset σ ⊆ P even

G of the game tree, satisfying:

(s1) ε ∈ σ

(s2) sab ∈ σ =⇒ s ∈ σ

(s3) sab, sac ∈ σ =⇒ b = c.



Introduction to Game Semantics 9

To understand this definition, think of

s = a1b1 · · · akbk ∈ σ

as a record of repeated interactions with the Environment following
σ. It can be read as follows:

If the Environment initially does a1,
then respond with b1;

If the Environment then does a2,
then respond with b2;

...
If the Environment finally does ak,

then respond with bk.

The first two conditions on σ say that it is a sub-tree of PG of
even-length paths. The third is a determinacy condition.



Introduction to Game Semantics 10

Strategies generalize functions

This can be seen as generalizing the notion of graph of a relation,
i.e. of a set of ordered pairs, which can be read as a set of
stimulus-response instructions. The generalization is that ordinary
relations describe a single stimulus-response event only (giving
rules for what the response to any given stimulus may be), whereas
strategies describe repeated interactions between the System and
the Environment. We can regard sab ∈ σ as saying: ‘when given
the stimulus a in the context s, respond with b’. Note that, with
this reading, the condition (s3) generalizes the usual
single-valuedness condition for (the graphs of) partial functions.
Thus a useful slogan is:

“Strategies are (partial) functions extended in time.”



Introduction to Game Semantics 11

Example

Let B be the game

({∗, tt, ff}, {∗ 7→ O, tt 7→ P,ff 7→ P}, {ε, ∗, ∗tt, ∗ff})

◦
∗��
•

tt

������
��� ff

��@@@
@@@@

◦ ◦
This game can be seen as representing the data type of booleans.
The opening move ∗ is a request by Opponent for the data, which
can be answered by either tt or ff by Player.



Introduction to Game Semantics 12

Strategies on B

{ε} Pref{∗tt} Pref{∗ff}

The first of these is the undefined strategy (‘⊥’), the second and
third correspond to the boolean values tt and ff. Taken with the
inclusion ordering, this “space of strategies” corresponds to the
usual flat domain of booleans:

tt

????
????

ff

����
���

⊥



Introduction to Game Semantics 13

Constructions on games

We will now describe some fundamental constructions on games.

Tensor Product

Given games A, B, we describe the tensor product A⊗B.

MA⊗B = MA + MB

λA⊗B = [λA, λB ]

PA⊗B = {s ∈Malt
A⊗B | s�MA ∈ PA ∧ s�MB ∈ PB}

We can think of A⊗B as allowing play to proceed in both the
subgames A and B in an interleaved fashion. It is a form of ‘disjoint
(i.e. non-communicating or interacting) parallel composition’.



Introduction to Game Semantics 14

Switching Condition for Tensor Product

A first hint of the additional subtleties introduced by the explicit
representation of both System and Environment is given by the
following result.

Proposition 1 (Switching condition)
In any play s ∈ PA⊗B, if successive moves si, si+1 are in different
subgames (i.e. one is in A and the other in B), then λA⊗B(si) = P ,
λA⊗B(si+1) = O.

In other words, only Opponent can switch from one subgame to
another; Player must always respond in the same subgame that
Opponent just moved in.



Introduction to Game Semantics 15

State transition diagram for Tensor Product

��
(O, O)

O

�����
���
���
���
��

O

��:::
::::

::::
::::

(P,O)
@A
GF

P

55kkkkkkkkkkkkkkkk

(O,P )
BC
ED

P

iiSSSSSSSSSSSSSSSSS

We see immediately from this that the switching condition holds;
and also that the state (P, P ) can never be reached (i.e. for no
s ∈ PA⊗B is psq = (P, P )).



Introduction to Game Semantics 16

Linear Implication

Given games A, B, we define the game A ( B as follows:

MA(B = MA + MB

λA⊗B = [λA, λB] where λA(m) =

 P when λA(m) = O

O when λA(m) = P

PA(B = {s ∈Malt
A(B | s � MA ∈ PA ∧ s � MB ∈ PB}

This definition is almost the same as that of A⊗B. The crucial
difference is the inversion of the labelling function on the moves of
A, corresponding to the idea that on the left of the arrow the rôles
of Player and Opponent are interchanged.



Introduction to Game Semantics 17

If we think of ‘function boxes’, this is clear enough:

Input Output

// System //
On the output side, the System is the producer and the
Environment is the consumer; these rôles are reversed on the input
side.

Note that Malt
A(B , and hence PA(B, are in general quite different

to Malt
A⊗B , PA⊗B respectively. In particular, the first move in

PA(B must always be in B, since the first move must be by
Opponent, and all opening moves in A are labelled P by λA.



Introduction to Game Semantics 18

Switching Condition for Linear Implication

We obtain the following switching condition for A ( B:

If two consecutive moves are in different components, the
first was by Opponent and the second by Player; so only
Player can switch components.



Introduction to Game Semantics 19

This is supported by the following state-transition diagram:

��
(P, O)

O��
(P, P )

P

�����
���
���
���
��

P

��99
999

999
999

999

(O,P )
@A
GF

O

55kkkkkkkkkkkkkkkkk

(P, O)
BC
ED

O

iiSSSSSSSSSSSSSSSS



Introduction to Game Semantics 20

The Copy-Cat Strategy

How to beat an International Grand-Master at chess by the power
of Logic.

Kasparov Short

B

W

W

B

·

OOOOOOOOOOOOO
nnnnnnnnnnnnn



Introduction to Game Semantics 21

Does Copy-Cat still work here?

Kasparov Short Short

B

W

W

B

W

B

·

OOOOOOOOOOOOO
nnnnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Introduction to Game Semantics 22

And here?

Kasparov Kasparov Short

B

W

B

W

W

B

·

YYYYYYYYYYYYYYYYYYYYYYYYYYYYY
OOOOOOOOOOOOO

nnnnnnnnnnnnn



Introduction to Game Semantics 23

General definition of Copy-Cat strategy

A ( A

Time

1 a1 O

2 a1 P

3 a2 O

4 a2 P
...

...
...

idA = {s ∈ P even
A1(A2

| ∀t even-length prefix of s : t�A1 = t�A2}

We indicate such a strategy briefly by A
'& %$

( A



Introduction to Game Semantics 24

Application (Modus Ponens)

ApA,B : (A ( B)⊗A ( B

This is the conjunction of two copy-cat strategies

(A
'& %$

( B)
GF ED

⊗ A ( B

Note that A and B each occur once positively and once negatively
in this formula; we simply connect up the positive and negative
occurrences by ‘copy-cats’.

ApA,B = {s ∈ P even
(A1(B1)⊗A2 ( B2

| ∀t even-length prefix of s :

t�A1 = t�A2 ∧ t�B1 = t�B2}



Introduction to Game Semantics 25

The Ap strategy as a protocol for (linear) function application.

( A ( B ) ⊗ A ( B

O ro

P ro

O ri

P ri

O id

P id

O od

P od

ro — request output

ri — request input

id — input data

od — output data



Introduction to Game Semantics 26

The Category of Games G

• Objects: Games

• Morphisms: σ : A −→ B are strategies σ on A ( B.

• Composition: interaction between strategies.

σ : A→ B τ : B → C

σ; τ : A→ C



Introduction to Game Semantics 27

Composition as Interaction: The idea

A
σ
( B B

τ
( C

c1

b1

b1

b2

b2

...
...

bk

bk

a1



Introduction to Game Semantics 28

Continuing in this way, we obtain a uniquely determined sequence.

c1b1b2 · · · bk · · ·

If the sequence ends in a visible action in A or C, this is the
response by the strategy σ; τ to the initial move c1, with the
internal dialogue between σ and τ in B being hidden from the
Environment. Note that σ and τ may continue their internal
dialogue in B forever. This is “infinite chattering” in CSP
terminology, and “divergence by an infinite τ -computation” in CCS
terminology.

As this discussion clearly shows composition in G is interaction
between strategies.



Introduction to Game Semantics 29

Formal Definition of Composition

‘Parallel Composition + Hiding’

σ : A→ B τ : B → C

σ; τ : A→ C

σ; τ = (σ ‖ τ)/B = {s�A, C | s ∈ σ ‖ τ}

σ ‖ τ = {s ∈ (MA + MB + MC)∗ | s�A, B ∈ σ ∧ s�B, C ∈ τ}.

(Note that we extend our abuse of notation for restriction here; by
s�A, B we mean the restriction of s to MA + MB as a “subset” of
MA + MB + MC , and similarly for s�A, C and s�B, C.)



Introduction to Game Semantics 30

An alternative definition of Composition

We give a more direct, ‘computational’ definition.

σ; τ = {s; t | s ∈ σ ∧ t ∈ τ ∧ s�B = t�B}.

This defines Cut ‘pointwise’ via an operation on single plays. This
latter operation is defined by mutual recursion of four operations
covering the following situations:

1. sT t O is to move in A.

2. sU t O is to move in C.

3. s 
 t σ to move.

4. s � t τ to move.



Introduction to Game Semantics 31

asT t = a(s 
 t)

ε T t = ε

sU ct = c(s � t)

sU ε = ε

as 
 t = a(sT t) (a ∈MA)

bs 
 bt = s � t (b ∈MB)

s � ct = c(sU t) (b ∈MC)

bs � bt = s 
 t (a ∈MB)

We can then define
s; t = sU t.



Introduction to Game Semantics 32

Proposition 2 G is a category.

In particular, idA : A −→ A is the copy-cat strategy described
previously.



Introduction to Game Semantics 33

Tensor structure of G

We have already defined the tensor product A⊗B on objects. Now
we extend it to morphisms:

σ : A→ B τ : A′ → B′

σ ⊗ τ : A⊗A′ → B ⊗B′

σ ⊗ τ = {s ∈ P even
A⊗A′(B⊗B′ | s � A, B ∈ σ ∧ s � A′, B′ ∈ τ}.

This can be seen as disjoint (i.e. non-communicating) parallel
composition of σ and τ .



Introduction to Game Semantics 34

‘Canonical isomorphisms’ for monoidal structure

These arise as conjunctions of copy-cat strategies.

assocA,B,C : (A⊗B)⊗ C
∼−→ A⊗ (B ⊗ C)

(A
�� ��
⊗ B)

?> =<
⊗ C

ON ML
( A ⊗ (B ⊗ C)

symmA,B : A⊗B
∼−→ B ⊗A

A
GF ED
⊗ B

'& %$
( B ⊗ A



Introduction to Game Semantics 35

unitlA : (I ⊗A) ∼−→ A

(I ⊗ A)
'& %$

( A

unitrA : (A⊗ I) ∼−→ A

(A
'& %$
⊗ I) ( A



Introduction to Game Semantics 36

Linear Implication

The application (or evaluation) morphisms

ApA,B : (A ( B)⊗A −→ B

have already been defined. For currying, given

σ : A⊗B ( C

define
Λ(σ) : A −→ (B ( C)

by
Λ(σ) = {α∗(s) | s ∈ σ}

where α : (MA + MB) + MC
∼−→MA + (MB + MC) is the canonical

isomorphism in Set.



Introduction to Game Semantics 37

Winning Strategies

We would like to find a condition on strategies generalizing totality
of functions. The obvious candidate is to require that at each stage
of play, a strategy σ on A has some response to every possible move
by opponent.

(tot) s ∈ σ, sa ∈ PA ⇒ ∃b : sab ∈ σ

Call a strategy total if it satisfies this condition. However, totality
as so defined does not suffice ; in particular, it is not closed under
composition.



Introduction to Game Semantics 38

Exercise Find games A,B, C and strategies σ : A→ B and
τ : B → C, such that

• σ and τ are total

• σ; τ is not total.

(Hint: use infinite chattering in B.)



Introduction to Game Semantics 39

Given a game A, define P∞A , the infinite plays over A, by

P∞A = {s ∈Mω
A | Pref(s) ⊆ PA}

(By Pref(s) we mean the set of finite prefixes.) Thus the infinite
plays correspond exactly to the infinite branches of the game tree.

Now a set W ⊆ P∞A can be interpreted as designating those infinite
plays which are “wins” for Player. We say that σ is a winning
strategy with respect to W (notation: σ |= W ), if:

• σ is total

• {s ∈ P∞A | Pref(s) ⊆ σ} ⊆W .

Thus σ is winning if at each finite stage when it is Player’s turn to
move it has a well defined response, and moreover every infinite
play following σ is a win for Player.



Introduction to Game Semantics 40

We introduce an expanded of refined notion of game as a pair
(A, WA), where A is a game as before, and WA ⊆ P∞A is the
designated set of winning infinite plays for Player. A winnining
strategy for (A, WA) is a strategy for A which is winning with
respect to WA.

We now extend the definitions of ⊗ and ( to act on the winning
set specifications:

(A,WA)⊗ (B,WB) = (A⊗B,WA⊗B)

(A,WA) ( (B, WB) = (A ( B, WA(B)

where

WA⊗B = {s ∈ P∞A⊗B | s � A ∈ PA ∪WA ∧ s � B ∈ PB ∪WB}
WA(B = {s ∈ P∞A(B | s � A ∈ PA ∪WA ⇒ s � B ∈WB}



Introduction to Game Semantics 41

In order to check that these definitions work well, we must show
that the constructions on strategies we have introduced in order to
model the proof rules of Linear Logic are well-defined with respect
to winning strategies.

Exercise Show that, for any (A,WA), the copy-cat strategy idA is
a winning strategy.



Introduction to Game Semantics 42

Now we consider the crucial case of the Cut rule.

Suppose then that σ : (A, WA) ( (B, WB) and
τ : (B,WB) ( (C, WC). We want to prove that σ; τ is total, i.e.
that there can be no infinite chattering in B.
Suppose for a contradiction that there is an infinite play

t = sb0b1 · · · ∈ σ‖τ

with all moves after the finite prefix s in B. Then t � A,B is an
infinite play in A ( B following σ, while t � B,C is an infinite play
in B ( C following τ . Since σ is winning and t � A is finite, we
must have t � B ∈WB . But then since τ is winning we must have
t � C ∈WC , which is impossible since t � C is finite.



Introduction to Game Semantics 43

The additive conjunction

Given A, B define A & B by

MA&B = MA + MB

λA&B = [λA, λB ]

PA&B = {inl∗(s) | s ∈ PA} ∪ {inr∗(t) | t ∈ PB}.

A&B is the product of A and B in G. We can define projections

A
fst←− A&B

snd−→ B

(Partial copy-cats) and pairing

σ : C −→ A τ : C −→ B

〈σ, τ〉 : C −→ A & B

(Disjoint union)



Introduction to Game Semantics 44

Exercise Verify the equations

〈σ, τ〉; fst = σ

〈σ, τ〉; snd = τ

〈υ; fst, υ; snd〉 = υ

for υ : C −→ A&B.



Introduction to Game Semantics 45

Interpreting the Linear exponential ! in G

The resource sensitivity of games means that copying does not
come for free; but it can be modelled explictly.

We begin with a simpler construction: the ‘Tensor product of
countably many copies of A’, which we write as ⊗ωA:

• M⊗ωA = N×MA, i.e. the disjoint union of countably many
copies of MA.

• λ⊗ωA(n, a) = λA(a).

• P⊗ωA is the set of all alternating sequences of moves in M⊗ωA

such that for all n, s�n ∈ PA.

(Switching conditions?)
Thus ⊗ωA places no restriction on the order in which the copies
are used.



Introduction to Game Semantics 46

Copying is comonoidal

The reason that we are not content with ⊗ωA is that the various
copies have distinct ‘identities’ via their indices i ∈ N.

In any category with products, the diagonal — which expresses
copyability — has an algebraic structure; it is a cocommutative
comonoid — the dual of a commutative monoid.

That is, we have, for any object C:

(1) Coassociativity

C × (C × C)
aC,C,C - (C × C)× C

C × C

idC×∆

6

� ∆
C

∆ - C × C

∆×idC

6



Introduction to Game Semantics 47

(2) Counit

>× C �
>×idC

C × C
idC×>- C ×>

C

∆

6

r−1
-

�
l−1

(3) Cocommutativity

C
∆- C × C

C × C

s

?

∆
-



Introduction to Game Semantics 48

Comonoids in monoidal categories

The notion of cocommutative comonoid (in future: coalgebra for
short) makes sense in any symmetric monoidal category.

Let (C,⊗, I, a, l, r, s) be a symmetric monoidal category. A
comonoid in C is a triple (C, δ, ε) where C is an object, and
δ : C −→ C ⊗ C and ε : C −→ I are morphisms satisfying the
commutative diagrams for Coassociativity, Counit, and
Cocommutativity.

(N.B. coalgebraic structures are important in current mathematics,
e.g. Hopf algebras, Quantum groups etc.)



Introduction to Game Semantics 49

Cofree coalgebras in G

Let A = (MA, λA, PA) be a game. Define !A as follows.

• M!A = N×MA, i.e. the disjoint union of countably many
copies of MA.

• λ!A(n, a) = λA(a).

• P!A is the set of all alternating sequences of moves in M!A such
that

1. for all n, s�n ∈ PA.

2. The first move (if any) in the (n + 1)-th copy of A in s is
made after the first move in the n-th, for all n.



Introduction to Game Semantics 50

Here, if s ∈M∗
!A, s�n is defined by

ε�n = ε

((m,a)s)�n = a(s�n), m = n

= s�n, m 6= n.

Thus a play in !A must start in the 0’th copy; at some point, we
may ‘open’ a new copy, which must be the 1st; and so on. At each
stage, if n copies have been opened so far, the next copy to be
opened must be the (n + 1)-th.



Introduction to Game Semantics 51

Relation of !A to ⊗ωA

For each permutation (i.e. bijective map) π : N −→ N, we can
define a strategy σπ : ⊗ωA −→ ⊗ωA which for every n ∈ N plays
copy-cat between the n’th copy of its codomain, and the π(n)’th
copy of its domain. This strategy is an isomorphism in the category
G.

Proposition 3 • There is a strategy η :!A −→ ⊗ωA such that,
for every permutation π on N, η;σπ = η.

• Moreover, for every game C and strategy τ : C −→ ⊗ωA such
that τ ; σπ = τ for every permutation π on N, there is a unique
strategy θ : C −→!A such that τ = θ; η.

(‘(!A, η) equalises S(ω)’.)



Introduction to Game Semantics 52

The Copy-cat in the Hilbert Hotel

Comonoidal structure of !A:

We can define strategies c : !A −→ !A⊗ !A, and w : !A −→ I.

These will be used to interpret the Contraction and Weakening
rules of Linear Logic:

Γ, !A, !A ` B

Γ, !A ` B

Γ ` B

Γ, !A ` B



Introduction to Game Semantics 53

!A is a comonoid

E.g. Cocommutativity:

!A
c- !A⊗ !A

!A⊗ !A

s

?

c
-



Introduction to Game Semantics 54

! is a ‘comonad’

The definition of ! can be extended to a functor ! : G −→ G.

We can also define, for each game A, strategies

dA : !A −→ A, δA : !A −→!!A.

(For the latter, it is helpful to recall that N× N is in bijective
correspondence with N).

We can use dA to give an interpretation of the Dereliction rule of
Linear Logic:

Γ, A ` B

Γ, !A ` B
.



Introduction to Game Semantics 55

We can define for each A and B a strategy

mA,B : !A⊗!B −→!(A⊗B).

Question Is mA,B an isomorphism? Give an intuitive
explanation of the difference between !A⊗!B and !(A⊗B).

We can use these constructions δA and mA,B to give an
interpretation of the remaining rule for ! in Linear Logic, the
Promotion rule:

!Γ ` A

!Γ `!A



Introduction to Game Semantics 56

Exponential isomorphisms

!(A &B) ∼= !A⊗ !B

!> ∼= I



Introduction to Game Semantics 57

A Cartesian Closed Category of Games

Corresponding the the syntactic translation of ⊃, ∧ logic into
Linear Logic using ⊗, (, & , !, we can build a cartesian closed
category of games using the comonadic structure of !.

We build a category K!(G) (the ‘co-Kleisli category’) as follows:

Objects: same as in G.

Morphisms: K!(A, B) = G(!A, B).

Composition:
!A σ−→ B !B τ−→ C

!A δA−→ !!A !σ−→ !B τ−→ C

Products: A×B = A & B

Exponentials: A⇒ B = !A ( B.



Introduction to Game Semantics 58

Cartesian Closure

K!(A×B,C) = G(!(A & B), C)
∼= G(!A⊗ !B,C)
∼= G(!A, !B ( C)

= K!(A,B ⇒ C).



Introduction to Game Semantics 59

History-free strategies

A strategy σ on A is history-free if it satisfies

• sab, tac ∈ σ ⇒ b = c.

• sab, t ∈ σ, ta ∈ PA ⇒ tab ∈ σ.

Note that the first property says that what a history-free strategy
does in a given position is determined only by the immediately
preceding move by the Opponent, not by the previous history;
while the second says that whether the strategy is defined or not
similarly depends only on the immediately preceding move.



Introduction to Game Semantics 60

Each history-free strategy is determined by a partial function from
Opponent moves to Player moves in a natural way. Given such a
partial function f : MA ⇀ MB , define

σf = {ε} ∪ {sab | s ∈ σf ∧ f(a) = b}.

Conversely, given a history strategy σ, we can define

f(a) = b ≡ sab ∈ σ.

Then f is the least partial function such that

σ = σf .



Introduction to Game Semantics 61

History-free strategies suffice for Multiplicatives

• We can prove that idA, assocA,B,C , symmA,B , ApA,B are all
history-free by exhibiting partial functions which induce them.

• We can prove that if σ and τ are history-free, so are σ; τ , σ ⊗ τ

and Λ(σ) by exhibiting suitable operations on partial
functions—and verifying that they work. For example, if f is a
partial function inducing the strategy σ, and g is a partial
function inducing the strategy τ , we can define a partial
function Comp(f, g) and verify that this induces the strategy
σ; τ .

• It follows that the sub-category Ghf of games and history-free
strategies is a model of Multiplicative Linear Logic.



Introduction to Game Semantics 62

Composing History-Free Strategies

Say we have σf : A→ B, τg : B → C. We want to find h such that
σf ; τg = (σ; τ)h.



Introduction to Game Semantics 63

-�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
AA ?

?

?

?

??

??

M+
C

M−
C

M−
B

M+
B

M+
B

M−
B

M−
A

M+
A

gf



Introduction to Game Semantics 64

We must give a formula for computing h according to these ideas.
Firstly, we define functions

mk : M+
A + M−

C ⇀ M−
A + M+

C

by
mk = π? ◦ ((f + g) ◦ µ)k ◦ (f + g) ◦ π.

The idea is that mk is the function which, when defined, feeds an
input from M+

A or M−
C exactly k times around the channels of the

internal feedback loop and then exits from M−
A or M+

C .



Introduction to Game Semantics 65

The retraction

π : MA + MC �MA + MB + MB + MC : π?

is defined by

π? = [inl, 0, 0, inr] π = [in1, in4]

and the “message exchange” function
µ : M−

A + M+
B + M−

B + M+
C ⇀ M+

A + M−
B + M+

B + M−
C is defined by

µ = 0 + [inr, inl] + 0

Here, 0 is the everywhere undefined partial function.



Introduction to Game Semantics 66

The Execution Formula

Finally, we define h by the Execution Formula:

h =
⋃
k∈ω

mk

It is a well-defined partial function because it is the union of a
family of partial functions with pairwise disjoint domains of
definition.



Introduction to Game Semantics 67

• History-free strategies do not suffice for the additives.

• We can interpret the exponentials with history-free strategies,
but this necessitates some further complications.



Introduction to Game Semantics 68

Some achievements and applications of Game Semantics

Applications to Logic.

If we take the Curry-Howard isomorphism seriously, we should
study the ‘space of proofs’ of a logical system as a mathematical
object in its own right.

The usual syntactic presentation of logical systems tends to hide
the real ‘intrinsic’ structure. (Cf. in Geometry, representation by
coordinates vs. coordinate-free intrinsic or synthetic approaches.)

We are looking for a syntax-free representation of proofs, and
a characterization of the space of proofs.

Traditional idea in logic of Soundness and Completeness is with
respect to provability

Γ ` A ⇐⇒ Γ |= A.



Introduction to Game Semantics 69

We are interested rather in the following notion. Given a category
C interpreting a logical system L, consider formulas A, B. The
corresponding objects of C are JAK, JBK. The hom-set C(JAK, JBK)
will be used to interpret proofs of A ` B. We say that C is fully
complete for L if every morphism

f : JAK −→ JBK

is the denotation of some proof of A ` B in L; and fully and
faithfully complete if moreover the correspondence with proofs
in normal form is 1− 1.



Introduction to Game Semantics 70

This notion of Full Completeness was first delineated, and a first
such result proved, for a category of games and history-free
strategies with respect to Multiplicative Linear Logic in

‘Games and Full Completeness for Multiplicative Linear Logic’, A.
and R. Jagadeesan, JSL 1994.

There have been many subsequent papers on this theme, some
using game semantics, others different models, applied to a range of
logical systems.



Introduction to Game Semantics 71

Programming Language Semantics

The results on logic are closely linked with applications to
Programming Language Semantics.

• Programming Languages can be formalized as typed λ-calculi.

• Game semantics can be used to give meaning to these calculi:
the types of the programming language are modelled as
games, and programs as strategies.

• Corresponding to Full Completeness for logics, we have Full
Abstraction for Programming Languages.



Introduction to Game Semantics 72

Fully Abstract Models for Programming Languages

A classic problem was ‘Full Abstraction for PCF’ (simply-typed
λ-calculus plus arithmetic and recursion).

The first syntax-independent descriptions of fully abstract models
for PCF were achieved (in 1993) using game semantics. See

‘Full Abtraction for PCF’ by A., R. Jagadeesan and P. Malacaria
‘On Full Abstraction for PCF’ by M. Hyland and L. Ong.



Introduction to Game Semantics 73

Since then, the approach has been extended to many
computational features, including: local state, reference types,
control operators, non-determinism, probabilities, . . .

Moreover, this has been done in a systematic way: the presence
of computational features has been shown to correlate very
precisely to the relaxation of various structural constraints on
strategies (e.g. history-freeness). And there are factorization
theorems which relate the different universes of strategies.

For an overview, see:

‘Game Semantics’ by A. and G. McCusker.



Introduction to Game Semantics 74

Algorithmic Game Semantics

Since Game Semantics is concrete — a strategy can be represented
as a set of strings over an ‘alphabet’ of moves, i.e. a formal
language — it can be represented algorithmically, e.g. strategies
can be represented by automata. This means that semantic
properties of programs can be analyzed algorithmically: giving a
basis for software model-checking and program analysis.

Moreover, and crucially, the compositional nature of Game
semantics means that this analysis can be done in a modular and
compositional fashion — we can look at procedures, modules,
objects and analyze their possible interactions with environments
they might be embedded in.

See:

‘Algorithmic Game Semantics: A Tutorial Introduction’


