
Clifford Lectures 2002 Predicative Copying and Polynomial Time 1'

&

$

%

Predicative Copying and Polynomial Time

Samson Abramsky

Clifford Lectures 2002 Predicative Copying and Polynomial Time 2'

&

$

%

Background: Implicit Computational Complexity

More specifically, logics and type theories which delineate

complexity classes.

E.g.

Light Linear Logic Girard

SLR, Space-bounded calculi Hofmann, Schwichtenberg etc.

(after Bellantoni–Cook, Leivant)

Clifford Lectures 2002 Predicative Copying and Polynomial Time 3'

&

$

%

Some salient features of our approach:

• Type-free, purely applicative systems (prefigured by LLL).

Complexity bounds not enforced by restricting the primitive

recursion scheme — there are no types!

• Simple, both in syntactic formulation, and the underlying

concepts.

• Simple notion of model.

• Simple extension to non-determinism.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 4'

&

$

%

Combinatory Logic

Application: x · y.

(We write xy1 · · · yn for (· · · (x · y1) · · ·) · yn)).

Combinators S, K:

Sxyz = xz(yz)

Kxy = x

(We can define I ≡ SKK, satisfying Ix = x).

Functional or ‘bracket’ abstraction:

[x]t such that ([x]t)u = t[u/x].

[x]x = I

[x]y = Ky (x 6= y)

[x]tu = S([x]t)([x]u)

Clifford Lectures 2002 Predicative Copying and Polynomial Time 5'

&

$

%

The Curry Combinators: B, C, K, W

Bxyz = x(yz)

Cxyz = xzy

Wxy = xyy

Principal types:

I : α→ α Axiom

B : (β → γ)→ (α→ β)→ α→ γ Cut

C : (α→ β → γ)→ β → α→ γ Exchange

K : α→ β → α Weakening

W : (α→ α→ β)→ α→ β Contraction

Curry’s analysis of substitution is close to Gentzen’s analysis of

proofs.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 6'

&

$

%

Sub-structural Logic

The BCK combinators support affine bracket abstraction:

[x]t where x occurs at most once in t.

We can define I ≡ CKK.

[x]x = I

[x]t = Kt, (x 6∈ FV (t))

[x]tu = C([x]t)u, (x ∈ FV (t) \ FV (u))

[x]tu = B t ([x]u), (x ∈ FV (u) \ FV (t))

Clifford Lectures 2002 Predicative Copying and Polynomial Time 7'

&

$

%

Higher-order defining equations (after D. Turner)

We can use bracket abstraction to define functions by higher-order

curried equations.

E.g. we can define F by

Fxyz = t

meaning F ≡ [x][y][z]t, satisfying

Fabc = t[a/x, b/y, c/z].

Example: defining S from BCKW.

Linear version of S:

S′fgxy = fx(gy)

Then we recover S by

Sfgx = W(S′fg)x

Clifford Lectures 2002 Predicative Copying and Polynomial Time 8'

&

$

%

Computational Power

In Combinatory Logic, all partial recursive functions are

numeralwise representable.

This means that we can define numeral systems representing each

number n as a term n̄ such that, for every recursive function

f : N −→ N

there is a term t satisfying:

∀n ∈ N. tn̄ = m̄ ⇐⇒ f(n) = m.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 9'

&

$

%

The GAP

By (extreme) contrast, in BCK logic:

Bxyz → x(yz)

Cxyz → xzy

Kxy → x

every reduction step strictly decreases the size of the term, so all

terms normalize in linear time!

This highlights the computational power of copying:

BCKW universal computational power

BCK linear time reduction

This is a big gap: how can we find extra structure to expose the

intermediate possibilities?

Clifford Lectures 2002 Predicative Copying and Polynomial Time 10'

&

$

%

Affine Combinatory Logic

(Combinatory logic view of ⊸, ! fragment of Affine Logic (which is

Linear Logic + Weakening))

The key idea: extend BCK logic with an additional unary

operation which we write as !.

Logically, application is Modus Ponens:

t : α→ β u : α

tu : β

Affine application, characterized by BCK, is the logic of affine

implication ⊸.

! is Necessitation:
t : α

!t : !α

t : α

2t : 2α

Clifford Lectures 2002 Predicative Copying and Polynomial Time 11'

&

$

%

The following combinators give ! the structure of an S4 modality:

F !x !y = !(xy)

D !x = x

δ !x = !!x

Principal types:

F : !(α ⊸ β) ⊸ !α ⊸ β 2(A→ B)→ 2A→ 2B

D : !α ⊸ α 2A→ A

δ : !α ⊸ !!α 2A→ 22A

The additional Linear Logic idea is that its modality signifies

copyability. We have a combinator W!:

W! x !y = x !y !y

W! : (!α ⊸ !α ⊸ β) ⊸ !α ⊸ β

Clifford Lectures 2002 Predicative Copying and Polynomial Time 12'

&

$

%

Interpretation of Standard Combinatory Logic

We can interpret standard CL into Affine CL. We interpret

standard application by

x ·s y ≡ x ·a!y

We can then define the standard combinators with respect to this

application from the combinators of Affine CL.

So again in Affine CL all partial recursive functions are

representable.

But we now have some extra structure to play with . . .

Clifford Lectures 2002 Predicative Copying and Polynomial Time 13'

&

$

%

A Variant

Replace the W! combinator by a family

{Wn | n > 0}

with defining equations

Wn x !y = x y · · · y
︸ ︷︷ ︸

n

This variant is equivalent to Affine CL as previously presented: in

particular, we can define

W! x z = W2 x (δz)

since then

W! x !y = W2 x (δ !y) = W2 x !!y = x !y !y.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 14'

&

$

%

However, what if we remove δ?

Then ! becomes a ‘copyability resource’ which gets consumed

when we apply a Wn. We can think of !t as a promissory note:

I promise to give the bearer on demand n copies of t, for any n

An occurrence of Wn is used to cash this promissory note in.

By contrast, note the recursivity or unboundedness or

impredicativity of W!:

W! x !y = x !y !y

We make two copies of !y, which themselves are copyable . . .

So we are replacing unbounded or impredicative copying by a

predicative version.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 15'

&

$

%

Predicative Combinatory Logic (PCL)

Combinators B, C, K, F, Wn (n > 0).

(N.B. We don’t need D, since we can define it using W1).

We give the reduction rules for these combinators:

Bxyz → x(yz)

Cxyz → xzy

Kxy → x

F !x !y → !(xy)

Wn x !y → x y · · · y
︸ ︷︷ ︸

n

PCL is an orthogonal term-rewriting system, hence confluent (i.e.

the Church-Rosser property holds).

Clifford Lectures 2002 Predicative Copying and Polynomial Time 16'

&

$

%

Analysis of PCL

We introduce some measures on terms:

Size (number of leaves in the term tree):

s(c) = 1 s(tu) = s(t) + s(u) s(!t) = s(t)

Depth (maximum nesting depth of !’s):

d(c) = 0 d(tu) = max(d(t), d(u)) d(!t) = 1 + d(t)

Width:

w(t) = max({n |Wn occurs in t} ∪ {1})

Weight: Firstly, define Pt(x), a polynomial in the variable x:

Pc(x) = 1 Ptu(x) = Pt(x) + Pu(x) P!t(x) = x× Pt(x)

Then define the weight: ‖t‖ = Pt(w(t)).

Clifford Lectures 2002 Predicative Copying and Polynomial Time 17'

&

$

%

Proposition 1 For all t: ‖t‖ ≤ wds, where w = w(t), s = s(t),

d = d(t).

Thus the weight is linear in the size, polynomial in the width,

and exponential in the depth.

Proposition 2 If t→ u, then ‖t‖ > ‖u‖.

Thus every term is Strongly Normalizing, with the length of all

reduction sequences bounded by ‖t‖.

Proposition 3 Reduction to normal form of PCL terms can be

simulated by a Turing machine with polynomial overhead.

[Go via the RAM model.]

Clifford Lectures 2002 Predicative Copying and Polynomial Time 18'

&

$

%

Consequences for numeralwise representability

Suppose we have a system of representations (say of binary

numerals) as terms, which is of bounded depth, i.e. for some

d0 ≥ 1, for all n,

d(n̄) ≤ d0,

and also s(n̄), w(n̄) ∈ O(|n|). Then any function numeralwise

representable in PCL with respect to this system is polynomial

time.

Indeed, suppose t n.w.-represents f , then for all n,

‖tn̄‖ ≤ wds

where d = max(d(t), d0), and s, w are O(|n|).

Clifford Lectures 2002 Predicative Copying and Polynomial Time 19'

&

$

%

High-level notations for PCL

• Affine higher-order defining equations: we can define

Fx1 . . . xn = t

where each xi occurs at most once in t.

• Conditionals. The booleans are defined as usual, tt xy = x,

ff x y = y, and then the conditional

if b then t else u

where t and u can share variables, but must be disjoint from b,

can be defined as

b([x1] . . . [xn]t)([x1] . . . [xn]u)x1 . . . xn

where x1, . . . , xn are the variables shared by t and u.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 20'

&

$

%

• !-lifting. We define [x]it, i ≥ 0, inductively on i.

[x]0t = [x]t, [x]i+1t = F !([x]it).

Then, writing !iu for ! · · ·!
︸︷︷︸

i

u,

[x]i t !iu = !i(t[u/x]).

• Copying abstraction.

φ !(x1, . . . , xn) = t

φ ≡Wnu where ux1 . . . xn = t.

This satisfies

φ !v = t[v/x1, . . . , v/xn].

Clifford Lectures 2002 Predicative Copying and Polynomial Time 21'

&

$

%

Expressiveness of PCL

The key step in showing that PCL can represent all PTIME

functions is to show how polynomial-length iterations can be

represented.

Unary numerals in PCL.

n̄ !(x1, . . . , xn)y = x1(· · · (xny) · · ·).

This is a very weak numeral system — we can’t even define

successor! Nevertheless . . .

Clifford Lectures 2002 Predicative Copying and Polynomial Time 22'

&

$

%

Given a polynomial P (X) of degree k with coefficients in N, and a

term u, we want to define a term iterP,u such that, for all n ∈ N,

iterP,u n̄ · · · n̄
︸ ︷︷ ︸

k

x = uP (n)x

where

u0x = x, ui+1x = u(uix).

This is a very weak notion of iteration — not uniform in u.

Nevertheless . . .

Clifford Lectures 2002 Predicative Copying and Polynomial Time 23'

&

$

%

For simplicity, we concentrate on the case P (X) = Xk. We define a

term tXk such that, for all n ∈ N,

tXk n̄ · · · n̄
︸ ︷︷ ︸

k

!kf x = fnk

x.

Given this term, we can define

iterXk,uu1 · · ·uk = tXku1 · · ·uk !ku.

The general shape for a polynomial P = Σk
i=0ciX

k is

tP n̄ · · · n̄
︸ ︷︷ ︸

k

f · · · f
︸ ︷︷ ︸

c0

· · · !kf · · · !kf
︸ ︷︷ ︸

ck

Clifford Lectures 2002 Predicative Copying and Polynomial Time 24'

&

$

%

We define tXk by induction on k ≥ 1.

tXuv = uv.

tXk+1u1 · · ·ukuk+1v = uk+1(tXku1 · · ·uk(θkv) !I)

where

θk = [v]k(F(([w]1[g][y]w(gy))v))

Clifford Lectures 2002 Predicative Copying and Polynomial Time 25'

&

$

%

Illustration: k = 2

tX2 n̄n̄ !!f = n̄(n̄(θ1 !!f) !I)

= n̄(n̄ !(F !([g][y]f(gy))) !I)

= n̄(φn !I)

where φ ≡ F !([g][y]f(gy)).

φn !I = ![y]fn(Iy) = ![y]fny

F · · · !(F !(. . .)(F !(. . .) !I)) · · ·

The ! percolates up the nested sequence of applications.

Finally,

n̄ !([y]fny)x = fn2

x.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 26'

&

$

%

High-level structure of the representation

Suppose we are given a polynomial time function represented by a

Turing Machine with a bounding polynomial P .

• We can program the transition function of a space-bounded

Turing Machine (which never extends the tape) by purely affine

means using conditionals and a representation of lists.

• Given a binary numeral for n, we can convert it into an initial

configuration for the Turing Machine. We then use a

P (n)-length iteration to pad the tape out with blanks, making

it large enough for the entire computation.

• We then use another P (n)-length iteration with the Turing

Machine transition function to perform the computation.

• Finally, we can extract the result from the final tape, again by

purely affine means.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 27'

&

$

%

Non-Determinism

We can extend PCl with non-deterministic choice:

t ⊓ u → t

t ⊓ u → u

The resulting system characterizes NP in the same sense that PCL

characterizes P.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 28'

&

$

%

Related Work

• Light Linear Logic (Girard). Differences: we get rid of δ, keep

F and D, modify copying. LLL gets rid of D and F, keeps

copying unchanged, and introduces a new connective with its

own version of F and a pseudo-dereliction from !.

• Soft Linear Logic (Lafont). The same essential ideas in a very

different setting — typed, proof-theoretic, graph-rewriting.

Our presentation (imho) is much simpler!

Clifford Lectures 2002 Predicative Copying and Polynomial Time 29'

&

$

%

Models

In finding models for these restricted calculi, one looks for positive

reasons for various constructs to be omitted. That is, one is

looking for key structural properties which characterize PTIME

algorithmic processes.

(Analogous to game semantics for PCF etc.)

• For LLL, this seems very subtle.

• For systems like SLR, not even attempted — realizability

models simply build the complexity constraints in as an

assumption.

• With PCL there is a very simple basic notion of model which

already explains the absence of the omitted principles.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 30'

&

$

%

As a first approximation, take

!A =
∏

i∈ω

An An = A⊗ · · · ⊗ A
︸ ︷︷ ︸

n

.

Then the Wn are just the projections πn : !A −→ An.

F : !(A ⊸ B)⊗ !A −→ !B

Given the choice by the context of a number of copies of the

output, the corresponding number of copies is chosen by the input,

and application is performed component-wise.

Moreover, ! is clearly functorial.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 31'

&

$

%

However, no map !A −→ !A⊗ !A
∏

k

Ak −→
∏

n

An ⊗
∏

m

Am

since we have to respond to the choice by the context of an n (or

an m) with a choice of k, and no such choice can work for all

subsequent choices the context may make for m (or n).

Similarly, there is no map !A −→ !!A
∏

k

Ak −→
∏

n

(
∏

m

Am)n

since we must choose a k in response to the choice by the

environment of an n, and then of an m in some tensorial factor i of

(
∏

m Am)n; and no such choice will work for all subsequent choices

for m which the context may subsequently make in other factors.

Clifford Lectures 2002 Predicative Copying and Polynomial Time 32'

&

$

%

A more refined notion of model, to reflect the idea that ‘all copies

are identical’ (and that we have the same behaviour independent of

how many copies are requested), is to take !A to be the limit of the

diagram with nodes An, and maps

An ∼= An ⊗ I ←− An+1

using weakening (i.e. the fact that the tensor unit is the terminal

object), and

π̂ : An
∼=
−→ An

for each permuation π ∈ S(n).

Standard Game models (e.g. AJM games) have these limits, and

hence provide examples of such models.

Main Aim: a Full Completeness Theorem.

