Partial Fixed-Point Logic on Infinite Structures

Stephan Kreutzer

LuFG Mathematische Grundlagen der Informatik
RWTH Aachen
kreutzer@informatik.rwth-aachen.de

Abstract. We consider an alternative semantics for partial fixed-point
logic (PFP). To define the fixed point of a formula in this semantics, the
sequence of stages induced by the formula is considered. As soon as this
sequence becomes cyclic, the set of elements contained in every stage of
the cycle is taken as the fixed point. It is shown that on finite struc-
tures, this fixed-point semantics and the standard semantics for PFP as
considered in finite model theory are equivalent, although arguably the
formalisation of properties might even become simpler and more intu-
itive. Contrary to the standard PFP semantics which is only defined on
finite structures the new semantics generalises easily to infinite structures
and transfinite inductions. In this generality we compare - in terms of
expressive power - partial with other known fixed-point logics. The main
result of the paper is that on arbitrary structures, PFP is strictly more
expressive than inflationary fixed-point logic (IFP). A separation of these
logics on finite structures would prove PTIME different from PSPACE.

1 Introduction

Logics extending first-order logic by fixed-point constructs are well studied in
finite model theory. Introduced in the early eighties, it soon became clear that
there are tight connections between the various forms of fixed-point logics and
such important complexity classes as polynomial time and space. This relation-
ship is made precise in the results by Immerman [Imm86] and Vardi [Var82]
that, on finite ordered structures, least fized-point logic (LFP) provides a logi-
cal characterisation of polynomial time computations in the sense that a class
of finite ordered structures is decidable in polynomial time if, and only if, it is
definable in LFP. Other complexity classes such as polynomial or logarithmic
space can also be characterised in this way, using different fixed-point logics.
Since the discovery of these results, fixed-point logics play a fundamental role in
finite model theory, arguably even more important than first-order logic itself.
We give precise definitions of these logics in Section 2. See [EF99] for an ex-
tensive study of fixed-point logics on finite structures. A survey that also treats
infinite structures can be found in [DGO02].

The best known of these logics is least fixed-point logic (LFP), which ex-
tends first-order logic (FO) by an operator to form least fixed-points of positive
formulae (which define monotone operators.) But there are other fixed-point

logics. Besides fragments of LFP, such as transitive closure logic and existential
or stratified fixed-point logic, which all have in common that they form fixed
points of monotone operators, there are also fixed-point logics that allow the
use of non-monotone operators. One such logic is the inflationary fized-point
logic (IFP), which allows the definition of inflationary fixed points of arbitrary
formulae. It is the simplest logic allowing non-monotone operators, as it is still
equivalent to LFP (see [GS86,Kre(2].)

As mentioned above, on finite ordered structures, LFP and IFP capture
PTiME. To characterise complexity classes above PTIME, like PSPACE for in-
stance, a more liberal notion of fixed points has to be used. One such logic that
is likely to be more expressive than IFP is partial fized-point logic, where there
are no restrictions on the formulae used within the fixed point operator. Thus it
is no longer guaranteed that the sequence of stages induced by such a formula
reaches a fixed point. However, if it does, this fixed point is taken as the seman-
tics of the formula. Otherwise, i.e. if the sequence does not become stationary,
the result is defined as being empty.

It has been shown by Abiteboul and Vianu [AV91a] that partial fixed-point
logic provides a precise characterisation of PSPACE on finite ordered structures.
Thus, showing that there are properties of finite ordered structures definable in
PFP but not in IFP would yield a separation of polynomial time and space. How-
ever, on unordered structures, neither IFP nor PFP can express all of PTIME.
For instance, it is easy to see that it cannot be decided in PFP whether a fi-
nite set is of even cardinality, a problem that from a complexity point of view
is extremely simple. It is therefore remarkable that a separation of PTIME and
PspPACE follows even from a separation of IFP and PFP on arbitrary finite struc-
tures, not, necessarily being ordered. This result is due to Abiteboul and Vianu
[AVI1b]. See also [Daw93].

Theorem. PTIME = PSPACE if, and only if, IFP = PFP.

There are also fixed-point logics capturing the complexity classes NP and
EXPTIME, namely non-deterministic and alternating non-inflationary fized-point
logic (see [AVV97].) For these logics, similar theorems as above have been shown.
Thus, the most important questions in complexity theory, the separation of com-
plexity classes, have direct analogues in logic, namely in the comparison of the
expressive power of various fixed-point logics. A profound understanding of the
nature and limits of the various kinds of fixed-point operators is therefore impor-
tant and necessary. In this line of research, the main contribution of this paper
is to introduce a semantics for partial fixed-point logic that is equivalent to the
standard semantics on finite structures, but contrary to the standard semantics,
is also well defined on infinite structures. On infinite structures, we will then be
able to compare partial and inflationary fixed-point logic and show that there
are properties definable in PFP which are not definable in IFP. Thus, IFP is
strictly contained in PFP. We also argue that the alternative semantics for PFP
allows a more intuitive formulation of queries than the standard semantics.

2 Preliminaries

In this section we present the basic definitions for the explorations in the later
sections. Let 7 be a signature and A := (A, 7) be a 7T-structure with universe
A. Let ¢(R,T) be a first-order formula with free variables T and a free relation
symbol R not occurring in 7. The formula ¢ defines an operator

F,:P(A) — P(A)
R +—{a: (A, R) E ylal}.

A fixed point of the operator F, is any set R such that Fi,(R) = R. Clearly,
as ¢ is arbitrary, the corresponding operator F, need not to have any fixed
points at all. For instance, the formula ¢(R,Z) := —Vy Ry defines the operator
F, mapping any set R G A* to A* and the set A" itself to the empty set. Thus
F, has no fixed points. However, if the class of admissible formulae is restricted,
the existence of fixed points can be guaranteed. One such restriction is to require
that the formulae are positive in the fixed-point variable. As positiveness implies
monotonicity, an operator F,, defined by a positive formula ¢ always has fixed
points, in fact even a least fixed point Ufp(F,) := ({P : F,(P) = P}. This
forms the basis of the most common fixed-point logic, the least fixed-point logic.

To obtain more general logics, i.e. logics allowing non-monotone operators
also, one has to consider suitable semantics to guarantee the existence of mean-
ingful fixed-points. The simplest such logic is the inflationary fized-point logic.

Definition 2.1 (Inflationary Fixed-Point Logic). Inflationary fized-point
logic (IFP) is defined as the extension of first-order logic by the following formula
building rule. If (R, %) is a formula with free first-order variables T := 1, ..., xj
and a free second-order variable R of arity k, then

= [ipr,T] (t)

is also a formula, where ? is a tuple of terms of the same length as . The free
variables of 1) are the variables occurring in and the free variables of ¢ other
than T.

Let 2 be a structure with universe A providing an interpretation of the free
variables of ¢ other than Z. Consider the following sequence of sets induced by
@ on .

RY =
Rt .= R*U F,(R")
R .= U R” for limit ordinals A.
B<A
The sets R® are called the stages of the induction on ¢ and 2. Clearly the
sequence of stages is increasing and thus leads to a fixed point R*. For any
tuple @ € A,
A = [ifpr 7 (@) if, and only if, @ € R™.

As usual, we also allow simultaneous fixed-point formulae, i.e. formulae of
the form ¢(Z) := [ifp R; : S|(T), where

RiT1 < o1(R1,..., Ry, T1)
S = :

is a system of formulae. Each formula ; in S induces an operator F,, : Pow(A4)" x
<+« X Pow(A)™ — Pow(A)", taking sets Ri,..., Ry of appropriate arity to the

set {a: (A, R1,...,Ry) = pi[a]}, where the r; denote the arities of the relations

R;. The stages of an induction on such a system S of formulae are now k-tuples

of sets defined by

RY:=
R = RO U F,,(RY,...,RY)

R} = U Rf for limit ordinals A.
B<A

The formula 1) is true for a tuple @ of elements interpreting the variables T if,
and only if, @ € R$°, where R° denotes the i-th component of the simultaneous
fixed point of the system S. Simultaneous inductions can easily be eliminated
in favour of simple inductions by increasing the arity of the involved fixed-point
variables (See [EF99].)

Proposition 2.2. Any formula in IFP with simultaneous inductions is equiva-
lent to a formula without simultaneous inductions.

Nevertheless, formulae making use of simultaneous inductions are often much
simpler to read than the equivalent simple formulae and we will extensively use
simultaneous inductions in the sequel.

3 Partial Fixed-Point Logic

In this section we introduce partial fized-point logic, which in some sense is the
most general fixed-point extension of first-order logic. We first define the syntax,
which is the same as for IFP, except that we write pfp for the fixed-point
operator.

Definition 3.1 (Partial Fixed-Point Logic - Syntax). Partial fixed-point
logic (PFP) is defined as the extension of first-order logic by the following for-
mula building rule. If ¢(R,T) is a formula with free first-order variables T :=
x1,...,2, and a free second-order variable R of arity k, then

Y := [pfpg 7 ¢| ()

is also a formula, where t is a tuple of terms of the same length as T. The free
variables of 1) are the variables occurring in t and the free variables of ¢ other
than T.

Having defined the syntax, we now turn to the definition of the semantics. We
first present the standard definition of partial fixed-point semantics as common
in finite model theory.

Definition 3.2 (Finite Model Semantics). Let ¢ := [pfpg 7 ¢|(t) be a for-
mula and let 2 be a finite structure with universe A providing an interpretation
of the free variables of ¢ other than T. Consider the following sequence of stages
induced by ¢ on A.

RY:=¢
R = F,(R")

As there are no restrictions on p, this sequence need not reach a fixed point.
In this case, v is equivalent on 2 to false. Otherwise, if the sequence becomes
stationary and reaches a fived point R, then for any tuple a € A,

2 = [pfprz¢)(@) if, and only if, @ € R™.

Again we allow simultaneous inductions and as with IFP these can always be
eliminated in favour of simple inductions. This semantics for PFP is standard in
finite model theory and the basis of the results mentioned in the introduction.
However, actually writing a formula in this logic is sometimes unnecessarily
complicated. This is demonstrated by an example for modal partial fixed-point
logic. The example is taken from [DK] where also more on modal partial fixed-
point logic can be found.

We briefly recall the definition of modal logic and its extension by partial
fixed-point operators. Modal logics are interpreted on transition systems, also
called Kripke structures, which are edge and node labelled graphs. The labels of
the edges come from a set A of actions, whereas the nodes are labelled by sets
of propositions from a set P.

Modal logic (ML) is built up from atomic propositions p € P using boolean
connectives A, V, and — and the so-called next-modalities (a), [a] for each a € A.
Formulae ¢ € ML are evaluated at a particular node in a transition system.
We write K,v = ¢ if ¢ holds at the node v in the transition system K :=
(V,(Ea)aca; (0)pep). The semantics of ML-formulae is as usual with IC,v |= p,
for p € P, if v € pX, K,v = (a)y if there is an a-successor u of v such that
K,u |E ¢ and, dually, K,v = [a]p if for all a-successors u of v, K,u E ¢.
Now modal partial fixed-point logic (MPC) is defined analogously to PFP, i.e.
formulae ¢ := [pfp P : ¢(P)] are allowed defining the set of elements in the
partial fixed point of ¢.

Consider the following problem, known as the unary trace- or language equiv-
alence problem. It is defined as the problem of deciding whether two given finite
automata over an unary alphabet accept the same language. This is formalised
as follows. The input is a directed, rooted graph. The root is labelled by w and
is not reachable from any other node in the graph. Further, there are disjoint
subgraphs rooted at successors of the root. In each subgraph some nodes are
marked as final states, e.g. coloured by a colour f, whereas the other nodes are

not coloured at all. Two subgraphs rooted at successors of the root are trace
equivalent, if for each n < w, whenever in one of the graphs there is a path of
length n from the root to a final state such a path also exists in the other.

We aim at defining in MPC the class C of structures as above such that all
subgraphs rooted at successors of the root are trace equivalent. A simple idea to
formalise this is the following. Consider the formula 1 defined as

X« (fA-Y)VOX

Yp=[pfp Z:Y « f]
Z — (wAOX AO-X)V Z

In the first stage, X contains all final states, i.e. those labelled by f. In the
successive stages, those elements are selected, which have a successor in X.
Thus, the stage X" contains exactly those elements from which there is a path
of length n — 1 to a node labelled by f. The variable Y is only used to ensure
that the nodes labelled by f are added to X only once at the beginning, so that
the induction is not started over and over again. Now, the root of the structure
is added to Z if, for some n, in one subgraph there is a path of length n from its
root to a final state but not in the other. Obviously, once the root is added to
7, it stays in forever. Thus, 1) is true at the root if, and only if, the subgraphs
rooted at its successors are not trace equivalent. However, if at least one of the
sub-structures is cyclic, the induction on X never becomes stationary and thus,
by definition, the fixed point is empty. To rescue the formula, we have to think
about some way to guarantee that the induction process becomes stationary
although the only information we are interested in, namely whether the root
eventually occurs in Z, is independent of this.

This suggest a different way to define partial fixed-point inductions. Consider
the sequence of induction stages defined by . Obviously, this sequence must
eventually become cyclic. Now consider the set of elements that occur in all
stages of this cycle and take this as the defined fixed point!. Applying this idea
to the example above, we get that the fixed point of X becomes empty (unless
there are self loops), the fixed point of V' contains all final states, and the fixed
point of Z contains the root just in case there are two successors of it which
are not trace equivalent. Thus, =) is true in K, v if, and only if, K,v € C. This
motivates an alternative semantics for partial fixed-point logic based on these
ideas.

Besides this problem of formalising properties, the standard semantics for
PFP has the disadvantage that it does not generalise to infinite structures. For
instance, as the sequence of stages induced by PFP-formulae is not necessarily
increasing, it makes no sense to define limit stages as the union of the previ-
ous stages as in IFP. Therefore, so far partial fixed-point logic has only been
considered on finite structures.

The drawback of this is that it also restricts the possibilities to study PFP
and its properties and to compare it to other logics to finite structures. As

! Note that this set does not necessarily has to be a fixed point. Nevertheless we use
this name to keep consistent with the other fixed-point logics.

mentioned in the introduction, the relationship between the various fixed-point
logics is closely related to important complexity theoretical questions and thus
a profound understanding of what the logics can and can not do is necessary
and important. To achieve a better understanding of the logics, their properties
on infinite structures might prove useful for the study on finite structures also.
This is the second motivation for considering an alternative semantics for PFP,
namely to give a semantics that generalises to infinite structures and transfinite
inductions.

We are now ready to formally define a general semantics for partial fixed-
point logic.

Definition 3.3 (General Semantics). Let ¢ := [pfpg; ¢|(f) be a formula
and let A be a structure with universe A providing an interpretation of the free
variables of ¢ other than T. Consider the following sequence of stages induced
by ¢ on .

R :=(
R*T! = F,(R")
R* := final((R®)a<y) for limit ordinals X,

where final((R*)a<x) denotes the set of elements @ such that there is a B < A
and for oll B <y < A, @€ R".

Obuviously, the sequence (R®)ycora must eventually become cyclic. Let 81 <
Ba be minimal such that R®' = R>. Then, for any tuple a € A,

2 = [pfprz¢l(@) if, and only if, @ € R” for all 1 <y < fa.

We also allow simultaneous inductions and again the proof that this does not
increase the expressive power is straight forward.

Theorem 3.4. Any formula in PFP under the general semantics with simulta-
neous inductions is equivalent to a formula without simultaneous inductions.

According to the definition, the fixed point of a formula ¢ is defined as the
set of elements which occur in every stage of the first cycle in the sequence of
stages induced by . Note that this is not equivalent to saying that the fixed
point consists of those elements @ such that there is a stage f and @ occurs in
all stages greater than 3. For instance, consider a structure 2 := ({0,1,2,3})
and the formula defining an operator taking § — {0,1}, {0,1} — {0,2} and
{0,2} — {0,1}. Further, it takes {0} — {2} and {2} to itself. Now consider the
induction stages (R*)secora induced by this operator. Clearly, for all 0 < n < w,
R" = {0,1} if n is odd and R"™ = {0, 2} if n is even. Thus, the partial fixed point
as defined above is {0}. However, R¥ = {0} and for all @ > w, R* = {2}. Thus,
defining the fixed point as the set of elements which are contained in all stages
greater than some £ yields a different set than the partial fixed point as defined
above.

We now prove that in the restriction to finite structures both semantics, i.e.
the semantics in Definition 3.2 and 3.3 are equivalent.

Notation. To distinguish between the two semantics, we denote PFP under
the finite model semantics as PFPg, and write the operator as pfpf. We write
PFPgen and pfp? whenever we speak about the general semantics. Further, if ¢
is any formula in PFP, we write fin(p) to denote the formula under the finite
model semantics and gen(p) for the general semantics.

We first prove a technical lemma that establishes the main step for the proof
of the theorem below.

Lemma 3.5. Let ¢(R,Z) be a formula in PFPge, and A be a structure. There
is a formula fixed-point ,(R,T) depending on ¢ such that for any stage R* of
the induction on ¢ and A and all @ € A,

there are 3 < v < « such that (Rg)ggggry

oy L I .
(2, B?) [fixed-point, a] if is a cycle, i.e. R® = R, and a € ¢™

Further, if 2 is finite and ¢ € PFPgy, then fin(fixed-point,,) = gen(fixed-point,,),
i.e. the result of fixed-point, under the finite model and the general semantics
is the same.

Proof. Consider the formula fized-point,(R,Z) := [pfp Q2 : S|(T), where S is
defined as

QT « »(Q,7)
QliE(—(Ql—@ Q=R /\Rf)\/@lf
Q2T < Q2T V (Q1 #@/\Q R A
Z +— (Z=0ANp(R,T))V(Z=RART)V
[pfp 7' : (Z#ONZ # RAp(Z,T)) 1(@))
—(Z'=0AQT)V (Z' £0NZ'T A ZT)

S =

In the course of the induction on S, the variable () runs through the stages of
. The first time where Q = R, i.e. the stage R is reached, @); is initialised
to R. If there is another stage in the induction on @ such that Q = R, i.e. if
the induction on ¢ becomes cyclic the first time, ()2 gets all elements which are
contained in all stages between the two occurrences of R. Thus, the fixed point
Q3° contains exactly the elements of the fixed point of ¢. O

We are now ready to prove the equivalence of the two partial fixed-point
semantics defined above.

Theorem 3.6. On finite structures, PFPg, and PFPge, are equivalent, i.e. for
every PFP-formula under the finite model semantics there is an equivalent PFP-
formula under the general semantics and vice versa.

Proof. The forth direction follows easily by induction on the structure of the
formula. In the main step, let ¢ := [pfpéjcp(R,E)](f) be a formula in PFPg,.
It is equivalent to the formula

o _RT + ¢9(R,T) -
v? = [pfp? Q: Q7 + VT(¢?(R,T) ¢ RT) A gz 10

where ¢? is a PFPgen-formula equivalent to ¢. By induction, such a formula
always exists. Assume first that a fixed point of ¢ is reached on a structure 2. In
this case, both semantics are equivalent for trivial reasons and thus ¢ = 9. Now
assume that the fixed point of ¢ does not exist. Then at no stage VZ(¢? (R, T) ¢
RT) becomes true and thus ¢9 defines the empty set.

The other direction is also proved by induction on the structure of the for-
mulae. In the main step, assume that ¢ := [pfp%, 5 »(R, 7)|(?) is a formula under
the general semantics. By induction, ¢ is equivalent to a formula ¢/ in PFPg,.
Then, [pfp%j ©9(R,T)]t is equivalent to

RT + o/ (R, 7)

ol = [pfpf Q: QT + ﬁxed—point(wf)(Rj) I

By Lemma 3.5, the formula ﬁzed-pointw;) (R) can be chosen from PFPg,,. Thus,

as ¢/ € PFPg,, we get that ¢/ is itself a formula in PFPg,. The equivalence of
Y/ and 1) is an immediate consequence of Lemma 3.5. g

The theorem allows us to transfer the results on PFPg, mentioned in the
introduction, in particular the theorems by Abiteboul, Vianu, Immerman, and
Vardi to PFPge,. Thus, we immediately get the following corollary.

Corollary 3.7.

(i) PFPgen has PSPACE data-complexity and captures PSPACE on ordered
structures.
(i) PFPgen = IFP on finite structures if, and only if, PTIME = PSPACE.
(iit) On finite structures, every PFP e, formula is equivalent to a formula with
only one application of a fized-point operator.

Proof. The corollary follows immediately from the fact that every PFPg, formula
is equivalent to one with only one fixed-point operator and that the translation
of PFPg,-formulae to PFP,e,y-formulae as presented in the proof of Theorem 3.6
does not increase the number of fixed-point operators. d

Using a diagonalisation argument as in Section 4 below, it is clear that for
any fixed-point logic like LFP,IFP, or PFP, the alternation or the nesting depth
hierarchy must be strict on arbitrary structures, i.e. allowing the nesting of fixed-
point operators or the alternation of fixed-point operators and negation must
strictly increase the expressive power. Thus, Part (ii7) of the preceding corollary
fails on infinite structures. We close the section by establishing a negation normal
form for PFPe,, formulae. Thus, the alternation of fixed points and negation does
not provide more expressive power than just nesting fixed-points.

Theorem 3.8. Every PFPge, formula is equivalent to one where negation oc-
curs only in front of atoms.

Proof. The proof follows easily using the formula defined in Lemma 3.5. However,
we present a general proof for this that also works for IFP and shows that for

these logics the concept of negated fixed points does not add anything to the
expressive power.

Let () := =[pfpg ¢ (R, T)](t) be a formula in PFP. Obviously, it is equiv-
alent to the formula

' (®) := 3031 [pfp Q : }Z;Ey : %;1@\;\(313258 A [PEpg z¢](T)) 1),

where 0, 1 are variables not occurring in ¢. The theorem now follows immediately
by induction on the structure of the formulae. d

As discussed above, this implies that nesting fixed points strictly increases
the expressive power, i.e. nested fixed points can not be eliminated in favour of
a single fixed point.

4 Separating partial and inflationary fixed-point logic

In this section we prove the main result of this paper, the separation of PFPge,
and TFP. As we are not considering the finite model semantics anymore, we
simply write PFP and pfp instead of PFPg, and pfp?.

We first present a class of structures called acceptable (See [Mos74, Chapter
5].) These structures are particularly well suited to be used with diagonalisation
arguments.

4.1 Acceptable structures

Definition 4.1. Let A be an infinite set. A coding scheme on A is a triple
(N, <, <>), for some N C A, where the structure (N, <) is isomorphic to (w, <)
and <> is an injective map of |J,,., A" into A.

With each coding scheme we associate the following decoding relations and
functions:

(i) seq(x) which is true for x if, and only if, x is the code of some sequence
Llye--3Ln-
(ii) h(xz) = n if = is the code of a sequence of length n and otherwise, i.e. if
=seq(z), Ih(z) = 0.
(iii) q(z,i) = z; if v =< x1,...,2; > and | > i. Otherwise q(z,i) = 0. We
write (z); = a for q(z,i) = a.

Here, the numbers 0,1, ... refer to the corresponding elements in N .

An elementary coding scheme C on a structure 2 is a coding scheme on its
universe where the relations N', <, seq,lh, and q are elementary, i.e., first-order
definable.

A structure 2 admitting an elementary coding scheme is called acceptable.
We call A quasi-acceptable if there exists an acceptable expansion A of A by a
finite set of PFP-definable relations.

10

Observe that quasi-acceptable structures are those which admit an PFP-
definable coding scheme, i.e., one where the relations <, seq, lh, and ¢ are PFP-
definable. See [Mos74, Chapter 5] for more on elementary and inductive coding
schemes.

4.2 Coding and Diagonalisation

We show now how formulae can be encoded by elements of acceptable struc-
tures. For the rest of this section let 2 be an acceptable 7T-structure, where
T 1= TrelUTeonst 1S the disjoint union of a finite set 7y := { P, .. ., P} of relation

3 3

symbols and a finite set Teonst := {¢1,...,¢m} of constant symbols. W.l.o.g. we
assume that no fixed-point variable is bound twice in the same formula and that
the involved fixed-point variables R; are numbered from 1 to the number k of
fixed-point operators occurring in the formula such that for noi < j < k, ¢; is
a sub-formula of ¢;, where ¢; and ¢; are the formulae defining the fixed point
inductions on R; and R; respectively. Further, we assume that all formulae are
of the form [ifpg, 7 ¢1](T1). We also assume that all fixed-point operators are
of the form [ifpg z RT V (R, T)], i.e. the operators are syntactically made infla-
tionary. Finally, we assume that if ¢ := [ifpg ,, .] occurs as a sub-formula
of a formula yx, then the sub-formulae of ¢ may use atoms in which R occurs
only in the form Rxz;,,...,z;, . It is clear that any IFP-formula can be brought
into this form.

The actual encoding of formulae is based on a function ||p|| taking formulae
or terms in IFP[7] to elements of A'. The function is inductively defined as

follows.

HCZH =<ci> Ci € Tconst
[lz:] = < var,i >
leﬁﬂ = <reli, < HEH >> P; € 1Re
llpr Vpall = <o, [lga]], [l@a]| >
=l = < mneg,|lp|| >
|| R;al| := < fp-var, i, < ||a|]| >> for fixed-point variables R;
| [ifpg, z pl(@)] := < fp-op,i, < |[a]| >>,
where ¢, var, ... denote arbitrary but fixed and distinct elements of A/. Here
< ||a]| > is an abbreviation for < ||a1]|,...,||lax|| > where k is the arity of @. In

this encoding of formulae, sub-formulae involving fixed-point variables are only
coded by the number of the involved fixed-point variable but no code of the
formula defining it is stored. The next definition deals with this.

Definition 4.2. Let ¢ be a formula in IFP[1] and let the fized-point operators
occurring in it be [ifpg, 5, w1], ..., [ifPg, &, @n]- The formulae ¢;, for 1 <
i <n, are called the defining formulae of ¢ and each individual p; is called the
defining formula of the fixed-point variable R;.

The function code taking formulae to their codes in N is defined as

code : TFP[r] — N
o = <@l llerll >,

11

where p1,...,pr are the defining formulae of ¢.

Below, we will use encodings of formulae to show that there are relations on
acceptable structures which are PFP but not IFP-definable. We first fix some
notation that will be used in the sequel.

Definition 4.3. Let ¢(T) be a formula with free variables T, where T := xz;,,
..., &, for some k. The code a of a sequence matches ¢, if lh(a) > max{i; :
1<j <k}

We write a |= ¢, if a matches ¢ and ¢ is true in A under the variable
assignment
3 - (a); for all1 < i <lh(z)
Ty
' 0 otherwise.

If c is the code of ¢ we also write a |= ¢ for a = .
We state the following lemma whose proof is technical but not very difficult.

Lemma 4.4. There is a PFP-formula formula(z) that is true for all ¢ which
are valid codes of IFP-formulae.

4.3 Separating Inflationary and Partial Fixed-Point Logic

In this section we show that partial fixed-point logic is strictly more expressive
than inflationary fixed-point logic. The result uses the methods introduced in
the sections above.

Definition 4.5. The relation SATrp C A? is defined as
SATipp := {(c,a) : ¢ is the code of an IFP[r]-formula ¢ and ¢ |= c}.
Clearly, SATipp is not IFP-definable.
Lemma 4.6. SATpp is not definable in IFP.

Proof. Suppose, SAT;pp were definable in IFP. Then the relation R(z) :=
=Sat(z, < x >) would be definable in IFP as well, by a formula ¢(z) say. Let
¢ be the code of ¢. Thus, as ¢ defines R, for all z, R(z) < Sat(c,< z >)
but, by definition of R, for all z, R(z) <= -Sat(xz,< x >). For = ¢ we get
a contradiction. d

We show now that SATipp is definable in PFP by inductively defining a
ternary relation R(c,i,a) C A% such that (c,i,a) € R if, and only if, c is the
code of a formula ¢ € IFP[r] with defining formulae ¢1,. .., ¢, 7 is an element of
{1,...,k}, and a is the code of a variable assignment matching the free variables
in ¢ such that

(%, stage(c, 1), ..., stage(c, k), a |= @i,

12

i.e. @; is true under the variable assignment a if all free fixed-point variables
R; are interpreted by the sets stage(c, j) defined as stage(c,j) := {@: (¢, j,a) €
R, where a is the code of a}.

This relation will be built up by a partial fixed-point induction such that the
following invariance property is preserved:

Invariance Property 4.7.

e For all c,i,a, if (c,i,a) € R then c is the code of a formula ¢ € IFP[7], with
defining formulae @1, ..., 1, i is an element of {1,...,k}, and a is the code
of a variable assignment matching the free variables in ¢ such that

(A, stage(e, 1),. .., stage(e, k), a = i,

i.e. @; 1is true under the variable assignment a where all free fixed-point
variables R; are interpreted by the sets stage(c,j).

e At each stage o of the induction on R, and all i and ¢ as above, the set
stage(c, 1) occurs as a stage of the induction on ¢; where all free fized-point
variables R; of ¢; are interpreted by stage(c, j).

Before presenting a formula defining R we introduce some auxiliary formulae
first-order and fpr. The formula first-order(R,c,i,a) assumes that the invari-
ance property in 4.7 is satisfied by R. In this case, it defines the set of all (¢, 7, a)
such that a |= ¢;, under the assumption that all free fixed-point variables R; are
interpreted by stage(c, j) and for all sub-formulae of ¢; of the form [ifpy, 7. ¢;]
the fixed point defined by this formula is stage(c, j). Obviously, these assump-
tions are too optimistic for all 7, as the second assumption will generally be true
only for some, but not for all ¢. This formula will be used in a formula defining
the relation R described above and there it will be guaranteed that first-order
will only be “called” for values of i for which both assumptions are satisfied.
In the following, we treat variables t,¢;,... as boolean variables, i.e. the only
values they can take are 0 and 1, and we use expressions like ¢t = ¢; V¢ with the
obvious semantics. We also use notation like “c=¢,, V ¢.,” which means that ¢
is the code of a formula ¢ := 1 Vs and ¢1, ¢o are the codes of the sub-formulae.

first-order(c,i,a) :=
PPg .0t “c=3Tj00” A((Fa' Q'L AV ((a); = (a'); Vi=j)At=1)V
(Va' (Vi ((a); = (a'); Vi=j) = Qcd'0) At =0)) vV
“Cgkpcl \Y 9062” A (3t13t2(@61(lt1 A QCQ(LtQ At = tl \% tg) \%
“e==pu” A (A Qcat Nt =—t') v
“Cgpi$i1 LTy 7N (t ~ Pi(a)il ce (a)lk) \Y
“c=R;T” N (t <> Rcia) V
“c=[ifpg, 7z vi|” A (t <> Rcia)
](cia a, 1)

The correctness of the construction is proved in the following lemma.

Lemma 4.8. Let R be a ternary relation satisfying the invariance property in
4.7. Then for all c,i,a, such that ¢ is the code of a formula ¢ with defining

13

sub-formulae ¢1,...,¢0r and i € {1,...,k},
(A, R) = first-order(c,i,a) if, and only if, a = i,

where all free fized-point variables R; and all sub-formulae of the form [ipr], 7 ®;]
are interpreted by the sets stage(R, 7).

Proof. The lemma is proved by induction on the structure of ¢. As this is a stan-
dard argument, we do not give the full proof here but refer to [Mos74, Chapter
5] for details. We demonstrate the idea behind the formula by proving the case
for existential quantification. Suppose c is the code of a formula 3z;¢. and ¢
is the code of .. Then “c=3x; ¢ ” is satisfied and the formula checks whether
there is (the code a' of) a variable assignment satisfying ., i.e. (¢',a’,1) € Q,
such that a and a' agree on all variables except ;. By induction, if there is such
an a', then o' = ¢’ and thus a = @. In this case ¢ is required to be 1. Otherwise,
i.e. if there is no such a', a [~ ¢ and thus ¢t = 0.

Note also how the truth of sub-formulae involving fixed points is directly

read from the relation R. O

We also need a formula fpr(R, ¢, i) that is true for ¢ and i if stage(c,4) is the
fixed point of the induction on ¢; where all free fixed-point variables R; of ¢;
are interpreted by stage(c, 7).

for(R, c,i) :=Va(first-order(R, c,i,a) = R(c,i,a)).

Clearly, under the same assumptions as in Lemma 4.8, (2, R) = fpr(c,i) if,
and only if, stage(c,i) is the fixed-point of ;. We are now ready to define the
main formula.

compute(c,a) :=
(PP rca (3 € (L., Ih(}VI < j <k for(R,c,5) A=fpr(R, e,))A
((i =LA first-order(c,i,a)) V (i <1 A Rciat)) A formula(c)) V
(Vi e {1,...,lh(c)} for(R,¢,j)) A Rcia
(e, 1,a).

The formula formula(c) has been defined in Lemma 4.4 above. Recall the way
formulae ¢ are coded by ¢ :=< ||p1]],.--,||lpr|] >. The formula compute first
defines the unique [such that the fixed points of all formulae ¢; with j > [are
already computed in R but the induction on ¢; has not yet reached its fixed
point. For this I, the formula first-order(c,l,a) is evaluated, i.e the next stage
of the induction on ¢; is computed. Further, all triples (c, j,a) such that j <
are kept in R, i.e. the current stages of the induction on ¢; with j <[are left
untouched. On the other hand, all triples (¢, j,a) for j > | are removed from R,
i.e. the fixed-point induction on the formulae ¢;, which might depend on R;, are
set back to the empty set.

Thus, in the end there will be no such [as all fixed points are already com-
puted. In this case the relation R is left untouched and thus the fixed point of
compute has been reached. This proves the following lemma.

14

Lemma 4.9. SATpp is definable in PFP.
The proof of the following theorem and its corollary is now immediate.
Theorem 4.10. PFP is more expressive than IFP on acceptable structures.

Corollary 4.11. PFP is more expressive than IFP on all structures in which
an acceptable structure is PFP-interpretable.

Among the structures in which an acceptable structure is PFP-interpretable
are (w, <) and (IR, <,+) and all expansions of it, e.g. the ordered field of reals.
Examples of structures not interpretable in an acceptable structure are structures
over the empty signature or a signature containing constant symbols only, but
also the real line (IR, <).

References

[AV91a] S. Abiteboul and V. Vianu. Datalog extensions for database queries and
updates. Journal of Computer and System Sciences, 43:62—-124, 1991.

[AVI1b] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proc.
of the 238rd ACM Symp. on the Theory of Computing, 1991.

[AVV9T7] S. Abiteboul, M. Vardi, and V. Vianu. Fixpoint logics, relational machines,
and computational complexity. Journal of the ACM, 44(1):30-56, 1997. An
extended abstract appeared in the Proc. 7th IEEE Symp. on Structure in
Complexity Theory, 1992.

[Daw93] A. Dawar. Feasible Computation Through Model Theory. PhD thesis, Uni-
versity of Pennsylvania, 1993.

[DGO02] A. Dawar and Y. Gurevich. Fixed-point logics. Bulletin of Symbolic Logic,
8(1):65-88, 2002.

[DK] A. Dawar and S. Kreutzer. Partial and Alternating Fixed Points in Modal
Logic. Unpublished.

[EF99] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition,
1999.

[GS86] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals
of Pure and Applied Logic, 32:265—-280, 1986.

[Imm86] N. Immerman. Relational queries computable in polynomial time. Informa-
tion and Control, 68:86-104, 1986. Extended abstract in Proc. 14th ACML
Symp. on Theory of Computing, pages 147-152, 1982.

[Kre02] S. Kreutzer. Expressive equivalence of least and inflationary fixed-point logic.
Proc. of the 17th Symp. on Logic in Computer Science (LICS), 2002.

[Mos74] Y.N. Moschovakis. Elementary Induction on Abstract Structures. North Hol-
land, 1974. ISBN 0 7204 2280 9.

[Var82] M. Vardi. The complexity of relational query languages. In Proceedings of the
14th ACM Symposium on the Theory of Computing, pages 137-146, 1982.

15

