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t. We 
onsider an alternative semanti
s for partial �xed-pointlogi
 (PFP). To de�ne the �xed point of a formula in this semanti
s, thesequen
e of stages indu
ed by the formula is 
onsidered. As soon as thissequen
e be
omes 
y
li
, the set of elements 
ontained in every stage ofthe 
y
le is taken as the �xed point. It is shown that on �nite stru
-tures, this �xed-point semanti
s and the standard semanti
s for PFP as
onsidered in �nite model theory are equivalent, although arguably theformalisation of properties might even be
ome simpler and more intu-itive. Contrary to the standard PFP semanti
s whi
h is only de�ned on�nite stru
tures the new semanti
s generalises easily to in�nite stru
turesand trans�nite indu
tions. In this generality we 
ompare - in terms ofexpressive power - partial with other known �xed-point logi
s. The mainresult of the paper is that on arbitrary stru
tures, PFP is stri
tly moreexpressive than in
ationary �xed-point logi
 (IFP). A separation of theselogi
s on �nite stru
tures would prove Ptime di�erent from Pspa
e.1 Introdu
tionLogi
s extending �rst-order logi
 by �xed-point 
onstru
ts are well studied in�nite model theory. Introdu
ed in the early eighties, it soon be
ame 
lear thatthere are tight 
onne
tions between the various forms of �xed-point logi
s andsu
h important 
omplexity 
lasses as polynomial time and spa
e. This relation-ship is made pre
ise in the results by Immerman [Imm86℄ and Vardi [Var82℄that, on �nite ordered stru
tures, least �xed-point logi
 (LFP) provides a logi-
al 
hara
terisation of polynomial time 
omputations in the sense that a 
lassof �nite ordered stru
tures is de
idable in polynomial time if, and only if, it isde�nable in LFP. Other 
omplexity 
lasses su
h as polynomial or logarithmi
spa
e 
an also be 
hara
terised in this way, using di�erent �xed-point logi
s.Sin
e the dis
overy of these results, �xed-point logi
s play a fundamental role in�nite model theory, arguably even more important than �rst-order logi
 itself.We give pre
ise de�nitions of these logi
s in Se
tion 2. See [EF99℄ for an ex-tensive study of �xed-point logi
s on �nite stru
tures. A survey that also treatsin�nite stru
tures 
an be found in [DG02℄.The best known of these logi
s is least �xed-point logi
 (LFP), whi
h ex-tends �rst-order logi
 (FO) by an operator to form least �xed-points of positiveformulae (whi
h de�ne monotone operators.) But there are other �xed-point



logi
s. Besides fragments of LFP, su
h as transitive 
losure logi
 and existentialor strati�ed �xed-point logi
, whi
h all have in 
ommon that they form �xedpoints of monotone operators, there are also �xed-point logi
s that allow theuse of non-monotone operators. One su
h logi
 is the in
ationary �xed-pointlogi
 (IFP), whi
h allows the de�nition of in
ationary �xed points of arbitraryformulae. It is the simplest logi
 allowing non-monotone operators, as it is stillequivalent to LFP (see [GS86,Kre02℄.)As mentioned above, on �nite ordered stru
tures, LFP and IFP 
apturePtime. To 
hara
terise 
omplexity 
lasses above Ptime, like Pspa
e for in-stan
e, a more liberal notion of �xed points has to be used. One su
h logi
 thatis likely to be more expressive than IFP is partial �xed-point logi
, where thereare no restri
tions on the formulae used within the �xed point operator. Thus itis no longer guaranteed that the sequen
e of stages indu
ed by su
h a formularea
hes a �xed point. However, if it does, this �xed point is taken as the seman-ti
s of the formula. Otherwise, i.e. if the sequen
e does not be
ome stationary,the result is de�ned as being empty.It has been shown by Abiteboul and Vianu [AV91a℄ that partial �xed-pointlogi
 provides a pre
ise 
hara
terisation of Pspa
e on �nite ordered stru
tures.Thus, showing that there are properties of �nite ordered stru
tures de�nable inPFP but not in IFP would yield a separation of polynomial time and spa
e. How-ever, on unordered stru
tures, neither IFP nor PFP 
an express all of Ptime.For instan
e, it is easy to see that it 
annot be de
ided in PFP whether a �-nite set is of even 
ardinality, a problem that from a 
omplexity point of viewis extremely simple. It is therefore remarkable that a separation of Ptime andPspa
e follows even from a separation of IFP and PFP on arbitrary �nite stru
-tures, not ne
essarily being ordered. This result is due to Abiteboul and Vianu[AV91b℄. See also [Daw93℄.Theorem. Ptime = Pspa
e if, and only if, IFP = PFP.There are also �xed-point logi
s 
apturing the 
omplexity 
lasses NP andExptime, namely non-deterministi
 and alternating non-in
ationary �xed-pointlogi
 (see [AVV97℄.) For these logi
s, similar theorems as above have been shown.Thus, the most important questions in 
omplexity theory, the separation of 
om-plexity 
lasses, have dire
t analogues in logi
, namely in the 
omparison of theexpressive power of various �xed-point logi
s. A profound understanding of thenature and limits of the various kinds of �xed-point operators is therefore impor-tant and ne
essary. In this line of resear
h, the main 
ontribution of this paperis to introdu
e a semanti
s for partial �xed-point logi
 that is equivalent to thestandard semanti
s on �nite stru
tures, but 
ontrary to the standard semanti
s,is also well de�ned on in�nite stru
tures. On in�nite stru
tures, we will then beable to 
ompare partial and in
ationary �xed-point logi
 and show that thereare properties de�nable in PFP whi
h are not de�nable in IFP. Thus, IFP isstri
tly 
ontained in PFP. We also argue that the alternative semanti
s for PFPallows a more intuitive formulation of queries than the standard semanti
s.2



2 PreliminariesIn this se
tion we present the basi
 de�nitions for the explorations in the laterse
tions. Let � be a signature and A := (A; �) be a � -stru
ture with universeA. Let '(R; x) be a �rst-order formula with free variables x and a free relationsymbol R not o

urring in � . The formula ' de�nes an operatorF' : P(A) �! P(A)R 7�! fa : (A; R) j= '[a℄g:A �xed point of the operator F' is any set R su
h that F'(R) = R. Clearly,as ' is arbitrary, the 
orresponding operator F' need not to have any �xedpoints at all. For instan
e, the formula '(R; x) := :8y Ry de�nes the operatorF' mapping any set R $ Ak to Ak and the set Ak itself to the empty set. ThusF' has no �xed points. However, if the 
lass of admissible formulae is restri
ted,the existen
e of �xed points 
an be guaranteed. One su
h restri
tion is to requirethat the formulae are positive in the �xed-point variable. As positiveness impliesmonotoni
ity, an operator F' de�ned by a positive formula ' always has �xedpoints, in fa
t even a least �xed point lfp(F') := TfP : F'(P ) = Pg. Thisforms the basis of the most 
ommon �xed-point logi
, the least �xed-point logi
.To obtain more general logi
s, i.e. logi
s allowing non-monotone operatorsalso, one has to 
onsider suitable semanti
s to guarantee the existen
e of mean-ingful �xed-points. The simplest su
h logi
 is the in
ationary �xed-point logi
.De�nition 2.1 (In
ationary Fixed-Point Logi
). In
ationary �xed-pointlogi
 (IFP) is de�ned as the extension of �rst-order logi
 by the following formulabuilding rule. If '(R; x) is a formula with free �rst-order variables x := x1; : : : ; xkand a free se
ond-order variable R of arity k, then := [ifpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of  are the variables o

urring in t and the free variables of ' otherthan x.Let A be a stru
ture with universe A providing an interpretation of the freevariables of ' other than x. Consider the following sequen
e of sets indu
ed by' on A. R0 := ;R�+1 := R� [ F'(R�)R� := [�<� R� for limit ordinals �:The sets R� are 
alled the stages of the indu
tion on ' and A. Clearly thesequen
e of stages is in
reasing and thus leads to a �xed point R1. For anytuple a 2 A, A j= [ifpR;x '℄(a) if, and only if, a 2 R1.3



As usual, we also allow simultaneous �xed-point formulae, i.e. formulae ofthe form  (x) := [ifp Ri : S℄(x), whereS := 8><>:R1x1  '1(R1; : : : ; Rk; x1)...Rkxk  'k(R1; : : : ; Rk; xk)is a system of formulae. Ea
h formula 'i in S indu
es an operator F'i : Pow(A)r1�� � � � Pow(A)rk ! Pow(A)ri , taking sets R1; : : : ; Rk of appropriate arity to theset fa : (A; R1; : : : ; Rk) j= 'i[a℄g, where the ri denote the arities of the relationsRi. The stages of an indu
tion on su
h a system S of formulae are now k-tuplesof sets de�ned by R0i := ;R�+1i := R�i [ F'i(R�1 ; : : : ; R�k )R�i := [�<� R�i for limit ordinals �:The formula  is true for a tuple a of elements interpreting the variables x if,and only if, a 2 R1i , where R1i denotes the i-th 
omponent of the simultaneous�xed point of the system S. Simultaneous indu
tions 
an easily be eliminatedin favour of simple indu
tions by in
reasing the arity of the involved �xed-pointvariables (See [EF99℄.)Proposition 2.2. Any formula in IFP with simultaneous indu
tions is equiva-lent to a formula without simultaneous indu
tions.Nevertheless, formulae making use of simultaneous indu
tions are often mu
hsimpler to read than the equivalent simple formulae and we will extensively usesimultaneous indu
tions in the sequel.3 Partial Fixed-Point Logi
In this se
tion we introdu
e partial �xed-point logi
, whi
h in some sense is themost general �xed-point extension of �rst-order logi
. We �rst de�ne the syntax,whi
h is the same as for IFP, ex
ept that we write pfp for the �xed-pointoperator.De�nition 3.1 (Partial Fixed-Point Logi
 - Syntax). Partial �xed-pointlogi
 (PFP) is de�ned as the extension of �rst-order logi
 by the following for-mula building rule. If '(R; x) is a formula with free �rst-order variables x :=x1; : : : ; xk and a free se
ond-order variable R of arity k, then := [pfpR;x '℄(t)is also a formula, where t is a tuple of terms of the same length as x. The freevariables of  are the variables o

urring in t and the free variables of ' otherthan x. 4



Having de�ned the syntax, we now turn to the de�nition of the semanti
s. We�rst present the standard de�nition of partial �xed-point semanti
s as 
ommonin �nite model theory.De�nition 3.2 (Finite Model Semanti
s). Let  := [pfpR;x '℄(t) be a for-mula and let A be a �nite stru
ture with universe A providing an interpretationof the free variables of ' other than x. Consider the following sequen
e of stagesindu
ed by ' on A. R0 := ;R�+1 := F'(R�)As there are no restri
tions on ', this sequen
e need not rea
h a �xed point.In this 
ase,  is equivalent on A to false. Otherwise, if the sequen
e be
omesstationary and rea
hes a �xed point R1, then for any tuple a 2 A,A j= [pfpR;x '℄(a) if, and only if, a 2 R1:Again we allow simultaneous indu
tions and as with IFP these 
an always beeliminated in favour of simple indu
tions. This semanti
s for PFP is standard in�nite model theory and the basis of the results mentioned in the introdu
tion.However, a
tually writing a formula in this logi
 is sometimes unne
essarily
ompli
ated. This is demonstrated by an example for modal partial �xed-pointlogi
. The example is taken from [DK℄ where also more on modal partial �xed-point logi
 
an be found.We brie
y re
all the de�nition of modal logi
 and its extension by partial�xed-point operators. Modal logi
s are interpreted on transition systems, also
alled Kripke stru
tures, whi
h are edge and node labelled graphs. The labels ofthe edges 
ome from a set A of a
tions, whereas the nodes are labelled by setsof propositions from a set P .Modal logi
 (ML) is built up from atomi
 propositions p 2 P using boolean
onne
tives ^, _, and : and the so-
alled next-modalities hai, [a℄ for ea
h a 2 A.Formulae ' 2 ML are evaluated at a parti
ular node in a transition system.We write K; v j= ' if ' holds at the node v in the transition system K :=(V; (Ea)a2A; (p)p2P). The semanti
s of ML-formulae is as usual with K; v j= p,for p 2 P , if v 2 pK, K; v j= hai' if there is an a-su

essor u of v su
h thatK; u j= ' and, dually, K; v j= [a℄' if for all a-su

essors u of v, K; u j= '.Now modal partial �xed-point logi
 (MPC) is de�ned analogously to PFP, i.e.formulae  := [pfp P : '(P )℄ are allowed de�ning the set of elements in thepartial �xed point of '.Consider the following problem, known as the unary tra
e- or language equiv-alen
e problem. It is de�ned as the problem of de
iding whether two given �niteautomata over an unary alphabet a

ept the same language. This is formalisedas follows. The input is a dire
ted, rooted graph. The root is labelled by w andis not rea
hable from any other node in the graph. Further, there are disjointsubgraphs rooted at su

essors of the root. In ea
h subgraph some nodes aremarked as �nal states, e.g. 
oloured by a 
olour f , whereas the other nodes are5



not 
oloured at all. Two subgraphs rooted at su

essors of the root are tra
eequivalent, if for ea
h n < !, whenever in one of the graphs there is a path oflength n from the root to a �nal state su
h a path also exists in the other.We aim at de�ning in MPC the 
lass C of stru
tures as above su
h that allsubgraphs rooted at su

essors of the root are tra
e equivalent. A simple idea toformalise this is the following. Consider the formula  de�ned as := [pfp Z : X  (f ^ :Y ) _ �XY  fZ  (w ^ �X ^ �:X) _ Z ℄In the �rst stage, X 
ontains all �nal states, i.e. those labelled by f . In thesu

essive stages, those elements are sele
ted, whi
h have a su

essor in X .Thus, the stage Xn 
ontains exa
tly those elements from whi
h there is a pathof length n � 1 to a node labelled by f . The variable Y is only used to ensurethat the nodes labelled by f are added to X only on
e at the beginning, so thatthe indu
tion is not started over and over again. Now, the root of the stru
tureis added to Z if, for some n, in one subgraph there is a path of length n from itsroot to a �nal state but not in the other. Obviously, on
e the root is added toZ, it stays in forever. Thus,  is true at the root if, and only if, the subgraphsrooted at its su

essors are not tra
e equivalent. However, if at least one of thesub-stru
tures is 
y
li
, the indu
tion on X never be
omes stationary and thus,by de�nition, the �xed point is empty. To res
ue the formula, we have to thinkabout some way to guarantee that the indu
tion pro
ess be
omes stationaryalthough the only information we are interested in, namely whether the rooteventually o

urs in Z, is independent of this.This suggest a di�erent way to de�ne partial �xed-point indu
tions. Considerthe sequen
e of indu
tion stages de�ned by  . Obviously, this sequen
e musteventually be
ome 
y
li
. Now 
onsider the set of elements that o

ur in allstages of this 
y
le and take this as the de�ned �xed point1. Applying this ideato the example above, we get that the �xed point of X be
omes empty (unlessthere are self loops), the �xed point of Y 
ontains all �nal states, and the �xedpoint of Z 
ontains the root just in 
ase there are two su

essors of it whi
hare not tra
e equivalent. Thus, : is true in K; v if, and only if, K; v 2 C. Thismotivates an alternative semanti
s for partial �xed-point logi
 based on theseideas.Besides this problem of formalising properties, the standard semanti
s forPFP has the disadvantage that it does not generalise to in�nite stru
tures. Forinstan
e, as the sequen
e of stages indu
ed by PFP-formulae is not ne
essarilyin
reasing, it makes no sense to de�ne limit stages as the union of the previ-ous stages as in IFP. Therefore, so far partial �xed-point logi
 has only been
onsidered on �nite stru
tures.The drawba
k of this is that it also restri
ts the possibilities to study PFPand its properties and to 
ompare it to other logi
s to �nite stru
tures. As1 Note that this set does not ne
essarily has to be a �xed point. Nevertheless we usethis name to keep 
onsistent with the other �xed-point logi
s.6



mentioned in the introdu
tion, the relationship between the various �xed-pointlogi
s is 
losely related to important 
omplexity theoreti
al questions and thusa profound understanding of what the logi
s 
an and 
an not do is ne
essaryand important. To a
hieve a better understanding of the logi
s, their propertieson in�nite stru
tures might prove useful for the study on �nite stru
tures also.This is the se
ond motivation for 
onsidering an alternative semanti
s for PFP,namely to give a semanti
s that generalises to in�nite stru
tures and trans�niteindu
tions.We are now ready to formally de�ne a general semanti
s for partial �xed-point logi
.De�nition 3.3 (General Semanti
s). Let  := [pfpR;x '℄(t) be a formulaand let A be a stru
ture with universe A providing an interpretation of the freevariables of ' other than x. Consider the following sequen
e of stages indu
edby ' on A. R0 := ;R�+1 := F'(R�)R� := �nal((R�)�<�) for limit ordinals �;where �nal((R�)�<�) denotes the set of elements a su
h that there is a � < �and for all � < 
 < �, a 2 R
.Obviously, the sequen
e (R�)�2Ord must eventually be
ome 
y
li
. Let �1 <�2 be minimal su
h that R�1 = R�2 . Then, for any tuple a 2 A,A j= [pfpR;x '℄(a) if, and only if, a 2 R
 for all �1 � 
 < �2.We also allow simultaneous indu
tions and again the proof that this does notin
rease the expressive power is straight forward.Theorem 3.4. Any formula in PFP under the general semanti
s with simulta-neous indu
tions is equivalent to a formula without simultaneous indu
tions.A

ording to the de�nition, the �xed point of a formula ' is de�ned as theset of elements whi
h o

ur in every stage of the �rst 
y
le in the sequen
e ofstages indu
ed by '. Note that this is not equivalent to saying that the �xedpoint 
onsists of those elements a su
h that there is a stage � and a o

urs inall stages greater than �. For instan
e, 
onsider a stru
ture A := (f0; 1; 2; 3g)and the formula de�ning an operator taking ; 7! f0; 1g, f0; 1g 7! f0; 2g andf0; 2g 7! f0; 1g. Further, it takes f0g 7! f2g and f2g to itself. Now 
onsider theindu
tion stages (R�)�2Ord indu
ed by this operator. Clearly, for all 0 < n < !,Rn = f0; 1g if n is odd and Rn = f0; 2g if n is even. Thus, the partial �xed pointas de�ned above is f0g. However, R! = f0g and for all � > !, R� = f2g. Thus,de�ning the �xed point as the set of elements whi
h are 
ontained in all stagesgreater than some � yields a di�erent set than the partial �xed point as de�nedabove.We now prove that in the restri
tion to �nite stru
tures both semanti
s, i.e.the semanti
s in De�nition 3.2 and 3.3 are equivalent.7



Notation. To distinguish between the two semanti
s, we denote PFP underthe �nite model semanti
s as PFP�n and write the operator as pfpf . We writePFPgen and pfpg whenever we speak about the general semanti
s. Further, if 'is any formula in PFP, we write �n(') to denote the formula under the �nitemodel semanti
s and gen(') for the general semanti
s.We �rst prove a te
hni
al lemma that establishes the main step for the proofof the theorem below.Lemma 3.5. Let '(R; x) be a formula in PFPgen and A be a stru
ture. Thereis a formula �xed-point'(R; x) depending on ' su
h that for any stage R� ofthe indu
tion on ' and A and all a 2 A,(A; R�) j= �xed-point'[a℄ i� there are � < 
 � � su
h that (R�)����
is a 
y
le, i.e. R� = R
, and a 2 '1:Further, if A is �nite and ' 2 PFP�n, then �n(�xed-point') � gen(�xed-point'),i.e. the result of �xed-point' under the �nite model and the general semanti
sis the same.Proof. Consider the formula �xed-point'(R; x) := [pfp Q2 : S℄(x), where S isde�ned asS := 8>>>>>><>>>>>>:Qx  '(Q; x)Q1x (Q1 = ; ^Q = R ^ Rx) _Q1xQ2x Q2x _ (Q1 6= ; ^Q = R ^[pfp Z 0 : Z  (Z = ; ^ '(R; x)) _ (Z = R ^Rx) _(Z 6= ; ^ Z 6= R ^ '(Z; x))Z 0  (Z 0 = ; ^Q1x) _ (Z 0 6= ; ^ Z 0x ^ Zx) ℄(x))In the 
ourse of the indu
tion on S, the variable Q runs through the stages of'. The �rst time where Q = R, i.e. the stage R is rea
hed, Q1 is initialisedto R. If there is another stage in the indu
tion on Q su
h that Q = R, i.e. ifthe indu
tion on ' be
omes 
y
li
 the �rst time, Q2 gets all elements whi
h are
ontained in all stages between the two o

urren
es of R. Thus, the �xed pointQ12 
ontains exa
tly the elements of the �xed point of '. �We are now ready to prove the equivalen
e of the two partial �xed-pointsemanti
s de�ned above.Theorem 3.6. On �nite stru
tures, PFP�n and PFPgen are equivalent, i.e. forevery PFP-formula under the �nite model semanti
s there is an equivalent PFP-formula under the general semanti
s and vi
e versa.Proof. The forth dire
tion follows easily by indu
tion on the stru
ture of theformula. In the main step, let  := [pfpfR;x '(R; x)℄(t) be a formula in PFP�n.It is equivalent to the formula g := [pfpg Q : Rx  'g(R; x)Qx 8x('g(R; x)$ Rx) ^ Rx: ℄(t)8



where 'g is a PFPgen-formula equivalent to '. By indu
tion, su
h a formulaalways exists. Assume �rst that a �xed point of ' is rea
hed on a stru
ture A. Inthis 
ase, both semanti
s are equivalent for trivial reasons and thus  �  g . Nowassume that the �xed point of ' does not exist. Then at no stage 8x('g(R; x)$Rx) be
omes true and thus  g de�nes the empty set.The other dire
tion is also proved by indu
tion on the stru
ture of the for-mulae. In the main step, assume that  := [pfpgR;x '(R; x)℄(t) is a formula underthe general semanti
s. By indu
tion, ' is equivalent to a formula 'f in PFP�n.Then, [pfpgR;x 'g(R; x)℄t is equivalent to f := [pfpf Q : Rx  'f (R; x)Qx �xed-point('f )(R; x) ℄tBy Lemma 3.5, the formula �xed-point('f )(R) 
an be 
hosen from PFP�n. Thus,as 'f 2 PFP�n, we get that  f is itself a formula in PFP�n. The equivalen
e of f and  is an immediate 
onsequen
e of Lemma 3.5. �The theorem allows us to transfer the results on PFP�n mentioned in theintrodu
tion, in parti
ular the theorems by Abiteboul, Vianu, Immerman, andVardi to PFPgen. Thus, we immediately get the following 
orollary.Corollary 3.7.(i) PFPgen has Pspa
e data-
omplexity and 
aptures Pspa
e on orderedstru
tures.(ii) PFPgen = IFP on �nite stru
tures if, and only if, Ptime = Pspa
e.(iii) On �nite stru
tures, every PFPgen formula is equivalent to a formula withonly one appli
ation of a �xed-point operator.Proof. The 
orollary follows immediately from the fa
t that every PFP�n formulais equivalent to one with only one �xed-point operator and that the translationof PFP�n-formulae to PFPgen-formulae as presented in the proof of Theorem 3.6does not in
rease the number of �xed-point operators. �Using a diagonalisation argument as in Se
tion 4 below, it is 
lear that forany �xed-point logi
 like LFP; IFP, or PFP, the alternation or the nesting depthhierar
hy must be stri
t on arbitrary stru
tures, i.e. allowing the nesting of �xed-point operators or the alternation of �xed-point operators and negation muststri
tly in
rease the expressive power. Thus, Part (iii) of the pre
eding 
orollaryfails on in�nite stru
tures. We 
lose the se
tion by establishing a negation normalform for PFPgen formulae. Thus, the alternation of �xed points and negation doesnot provide more expressive power than just nesting �xed-points.Theorem 3.8. Every PFPgen formula is equivalent to one where negation o
-
urs only in front of atoms.Proof. The proof follows easily using the formula de�ned in Lemma 3.5. However,we present a general proof for this that also works for IFP and shows that for9



these logi
s the 
on
ept of negated �xed points does not add anything to theexpressive power.Let  (t) := :[pfpR;x'(R; x)℄(t) be a formula in PFP. Obviously, it is equiv-alent to the formula 0(t) := 9091 [pfp Q : Pxy  y = 1 _ (y = 0 ^ [pfpR;x'℄(x))Qx  P 6= ; ^ :Px0 ℄(t);where 0; 1 are variables not o

urring in '. The theorem now follows immediatelyby indu
tion on the stru
ture of the formulae. �As dis
ussed above, this implies that nesting �xed points stri
tly in
reasesthe expressive power, i.e. nested �xed points 
an not be eliminated in favour ofa single �xed point.4 Separating partial and in
ationary �xed-point logi
In this se
tion we prove the main result of this paper, the separation of PFPgenand IFP. As we are not 
onsidering the �nite model semanti
s anymore, wesimply write PFP and pfp instead of PFPgen and pfpg .We �rst present a 
lass of stru
tures 
alled a

eptable (See [Mos74, Chapter5℄.) These stru
tures are parti
ularly well suited to be used with diagonalisationarguments.4.1 A

eptable stru
turesDe�nition 4.1. Let A be an in�nite set. A 
oding s
heme on A is a triple(N ;�; <>), for some N � A, where the stru
ture (N ;�) is isomorphi
 to (!;�)and <> is an inje
tive map of Sn<! An into A.With ea
h 
oding s
heme we asso
iate the following de
oding relations andfun
tions:(i) seq(x) whi
h is true for x if, and only if, x is the 
ode of some sequen
ex1; : : : ; xn.(ii) lh(x) = n if x is the 
ode of a sequen
e of length n and otherwise, i.e. if:seq(x), lh(x) = 0.(iii) q(x; i) = xi if x =< x1; : : : ; xl > and l � i. Otherwise q(x; i) = 0. Wewrite (x)i = a for q(x; i) = a.Here, the numbers 0; 1; : : : refer to the 
orresponding elements in N .An elementary 
oding s
heme C on a stru
ture A is a 
oding s
heme on itsuniverse where the relations N ;�, seq; lh, and q are elementary, i.e., �rst-orderde�nable.A stru
ture A admitting an elementary 
oding s
heme is 
alled a

eptable.We 
all A quasi-a

eptable if there exists an a

eptable expansion A0 of A by a�nite set of PFP-de�nable relations. 10



Observe that quasi-a

eptable stru
tures are those whi
h admit an PFP-de�nable 
oding s
heme, i.e., one where the relations <, seq, lh, and q are PFP-de�nable. See [Mos74, Chapter 5℄ for more on elementary and indu
tive 
odings
hemes.4.2 Coding and DiagonalisationWe show now how formulae 
an be en
oded by elements of a

eptable stru
-tures. For the rest of this se
tion let A be an a

eptable � -stru
ture, where� := �rel _[�
onst is the disjoint union of a �nite set �rel := fP1; : : : ; Plg of relationsymbols and a �nite set �
onst := f
1; : : : ; 
mg of 
onstant symbols. W.l.o.g. weassume that no �xed-point variable is bound twi
e in the same formula and thatthe involved �xed-point variables Ri are numbered from 1 to the number k of�xed-point operators o

urring in the formula su
h that for no i < j � k, 'i isa sub-formula of 'j , where 'i and 'j are the formulae de�ning the �xed pointindu
tions on Ri and Rj respe
tively. Further, we assume that all formulae areof the form [ifpR1;x1 '1℄(x1). We also assume that all �xed-point operators areof the form [ifpR;xRx_'(R; x)℄, i.e. the operators are synta
ti
ally made in
a-tionary. Finally, we assume that if  := [ifpR;xi1 ;:::;xik '℄ o

urs as a sub-formulaof a formula �, then the sub-formulae of ' may use atoms in whi
h R o

ursonly in the form Rxi1 ; : : : ; xik . It is 
lear that any IFP-formula 
an be broughtinto this form.The a
tual en
oding of formulae is based on a fun
tion jj'jj taking formulaeor terms in IFP[� ℄ to elements of N . The fun
tion is indu
tively de�ned asfollows. jj
ijj := < 
; i > 
i 2 �
onstjjxijj := < var; i >jjPiajj := < rel; i; < jjajj >> Pi 2 �Reljj'1 _ '2jj := < or; jj'1jj; jj'2jj >jj:'jj := < neg; jj'jj >jjRiajj := < fp-var; i; < jjajj >> for �xed-point variables Rijj [ifpRi;x '℄(a)jj := < fp-op; i; < jjajj >>;where 
;var; : : : denote arbitrary but �xed and distin
t elements of N . Here< jjajj > is an abbreviation for < jja1jj; : : : ; jjakjj > where k is the arity of a. Inthis en
oding of formulae, sub-formulae involving �xed-point variables are only
oded by the number of the involved �xed-point variable but no 
ode of theformula de�ning it is stored. The next de�nition deals with this.De�nition 4.2. Let ' be a formula in IFP[� ℄ and let the �xed-point operatorso

urring in it be [ifpR1;x1 '1℄, . . . , [ifpRn;xn 'n℄. The formulae 'i, for 1 �i � n, are 
alled the de�ning formulae of ' and ea
h individual 'i is 
alled thede�ning formula of the �xed-point variable Ri.The fun
tion 
ode taking formulae to their 
odes in N is de�ned as
ode : IFP[� ℄ �! N' 7�! < jj'1jj; : : : ; jj'k jj >;11



where '1; : : : ; 'k are the de�ning formulae of '.Below, we will use en
odings of formulae to show that there are relations ona

eptable stru
tures whi
h are PFP but not IFP-de�nable. We �rst �x somenotation that will be used in the sequel.De�nition 4.3. Let '(x) be a formula with free variables x, where x := xi1 ;. . . , xik for some k. The 
ode a of a sequen
e mat
hes ', if lh(a) � maxfij :1 � j � kg.We write a j= ', if a mat
hes ' and ' is true in A under the variableassignment � : xi 7�! ((a)i for all 1 � i � lh(x)0 otherwise.If 
 is the 
ode of ' we also write a j= 
 for a j= '.We state the following lemma whose proof is te
hni
al but not very diÆ
ult.Lemma 4.4. There is a PFP-formula formula(x) that is true for all 
 whi
hare valid 
odes of IFP-formulae.4.3 Separating In
ationary and Partial Fixed-Point Logi
In this se
tion we show that partial �xed-point logi
 is stri
tly more expressivethan in
ationary �xed-point logi
. The result uses the methods introdu
ed inthe se
tions above.De�nition 4.5. The relation SatIFP � A2 is de�ned asSatIFP := f(
; a) : 
 is the 
ode of an IFP[� ℄-formula ' and ' j= 
g:Clearly, SatIFP is not IFP-de�nable.Lemma 4.6. SatIFP is not de�nable in IFP.Proof. Suppose, SatIFP were de�nable in IFP. Then the relation R(x) :=:Sat(x;< x >) would be de�nable in IFP as well, by a formula '(x) say. Let
 be the 
ode of '. Thus, as ' de�nes R, for all x, R(x) () Sat(
;< x >)but, by de�nition of R, for all x, R(x) () :Sat(x;< x >). For x = 
 we geta 
ontradi
tion. �We show now that SatIFP is de�nable in PFP by indu
tively de�ning aternary relation R(
; i; a) � A3 su
h that (
; i; a) 2 R if, and only if, 
 is the
ode of a formula ' 2 IFP[� ℄ with de�ning formulae '1; : : : ; 'k, i is an element off1; : : : ; kg, and a is the 
ode of a variable assignment mat
hing the free variablesin ' su
h that (A; stage(
; 1); : : : ; stage(
; k)); a j= 'i;12



i.e. 'i is true under the variable assignment a if all free �xed-point variablesRj are interpreted by the sets stage(
; j) de�ned as stage(
; j) := fa : (
; j; a) 2R; where a is the 
ode of ag.This relation will be built up by a partial �xed-point indu
tion su
h that thefollowing invarian
e property is preserved:Invarian
e Property 4.7.� For all 
; i; a, if (
; i; a) 2 R then 
 is the 
ode of a formula ' 2 IFP[� ℄, withde�ning formulae '1; : : : ; 'k, i is an element of f1; : : : ; kg, and a is the 
odeof a variable assignment mat
hing the free variables in ' su
h that(A; stage(
; 1); : : : ; stage(
; k)); a j= 'i;i.e. 'i is true under the variable assignment a where all free �xed-pointvariables Rj are interpreted by the sets stage(
; j).� At ea
h stage � of the indu
tion on R, and all i and 
 as above, the setstage(
; i) o

urs as a stage of the indu
tion on 'i where all free �xed-pointvariables Rj of 'i are interpreted by stage(
; j).Before presenting a formula de�ning R we introdu
e some auxiliary formulae�rst-order and fpr. The formula �rst-order(R; 
; i; a) assumes that the invari-an
e property in 4.7 is satis�ed by R. In this 
ase, it de�nes the set of all (
; i; a)su
h that a j= 'i, under the assumption that all free �xed-point variables Rj areinterpreted by stage(
; j) and for all sub-formulae of 'i of the form [ifpRj ;xj 'j ℄the �xed point de�ned by this formula is stage(
; j). Obviously, these assump-tions are too optimisti
 for all i, as the se
ond assumption will generally be trueonly for some, but not for all i. This formula will be used in a formula de�ningthe relation R des
ribed above and there it will be guaranteed that �rst-orderwill only be \
alled" for values of i for whi
h both assumptions are satis�ed.In the following, we treat variables t; t1; : : : as boolean variables, i.e. the onlyvalues they 
an take are 0 and 1, and we use expressions like t = t1 _ t2 with theobvious semanti
s. We also use notation like \
b='
1 _ '
2" whi
h means that 
is the 
ode of a formula ' := '1_'2 and 
1; 
2 are the 
odes of the sub-formulae.�rst-order(
; i; a) :=[pfpQ;
;a;t \
b=9xj'
0" ^ ((9a0Q
0a01 ^ 8i ((a)i = (a0)i _ i = j) ^ t = 1) _(8a0 (8i ((a)i = (a0)i _ i = j)! Q
0a00) ^ t0 = 0)) _\
b='
1 _ '
2" ^ (9t19t2(Q
1at1 ^Q
2at2 ^ t = t1 _ t2) _\
b=:'
0" ^ (9t0Q
0at0 ^ t = :t0) _\
b=Pixi1 : : : xik" ^ (t$ Pi(a)i1 : : : (a)ik ) _\
b=Rix" ^ (t$ R
ia) _\
b=[ifpRi;x 'i℄" ^ (t$ R
ia)℄(
i; a; 1)The 
orre
tness of the 
onstru
tion is proved in the following lemma.Lemma 4.8. Let R be a ternary relation satisfying the invarian
e property in4.7. Then for all 
; i; a, su
h that 
 is the 
ode of a formula ' with de�ning13



sub-formulae '1; : : : ; 'k and i 2 f1; : : : ; kg,(A; R) j= �rst-order(
; i; a) if, and only if, a j= 'i;where all free �xed-point variables Rj and all sub-formulae of the form [ifpRj ;xj'j ℄are interpreted by the sets stage(R; j).Proof. The lemma is proved by indu
tion on the stru
ture of '. As this is a stan-dard argument, we do not give the full proof here but refer to [Mos74, Chapter5℄ for details. We demonstrate the idea behind the formula by proving the 
asefor existential quanti�
ation. Suppose 
 is the 
ode of a formula 9xj'
0 and 
0is the 
ode of '
0 . Then \
b=9xj '
0" is satis�ed and the formula 
he
ks whetherthere is (the 
ode a0 of) a variable assignment satisfying '
0 , i.e. (
0; a0; 1) 2 Q,su
h that a and a0 agree on all variables ex
ept xj . By indu
tion, if there is su
han a0, then a0 j= '0 and thus a j= '. In this 
ase t is required to be 1. Otherwise,i.e. if there is no su
h a0, a 6j= ' and thus t = 0.Note also how the truth of sub-formulae involving �xed points is dire
tlyread from the relation R. �We also need a formula fpr(R; 
; i) that is true for 
 and i if stage(
; i) is the�xed point of the indu
tion on 'i where all free �xed-point variables Rj of 'iare interpreted by stage(
; j).fpr(R; 
; i) := 8a(�rst-order(R; 
; i; a)! R(
; i; a)):Clearly, under the same assumptions as in Lemma 4.8, (A; R) j= fpr(
; i) if,and only if, stage(
; i) is the �xed-point of 'i. We are now ready to de�ne themain formula.
ompute(
; a) :=[pfpR;
;i;a (9l 2 f1; : : : ; lh(
)g 8l < j � k fpr(R; 
; j) ^ :fpr(R; 
; l)^((i = l ^ �rst-order(
; i; a)) _ (i < l ^R
iat)) ^ formula(
)) _(8l 2 f1; : : : ; lh(
)g fpr(R; 
; j)) ^ R
ia℄(
; 1; a):The formula formula(
) has been de�ned in Lemma 4.4 above. Re
all the wayformulae ' are 
oded by 
 :=< jj'1jj; : : : ; jj'k jj >. The formula 
ompute �rstde�nes the unique l su
h that the �xed points of all formulae 'j with j > l arealready 
omputed in R but the indu
tion on 'l has not yet rea
hed its �xedpoint. For this l, the formula �rst-order(
; l; a) is evaluated, i.e the next stageof the indu
tion on 'j is 
omputed. Further, all triples (
; j; a) su
h that j < lare kept in R, i.e. the 
urrent stages of the indu
tion on 'j with j < l are leftuntou
hed. On the other hand, all triples (
; j; a) for j > l are removed from R,i.e. the �xed-point indu
tion on the formulae 'j , whi
h might depend on Rl, areset ba
k to the empty set.Thus, in the end there will be no su
h l as all �xed points are already 
om-puted. In this 
ase the relation R is left untou
hed and thus the �xed point of
ompute has been rea
hed. This proves the following lemma.14



Lemma 4.9. SatIFP is de�nable in PFP.The proof of the following theorem and its 
orollary is now immediate.Theorem 4.10. PFP is more expressive than IFP on a

eptable stru
tures.Corollary 4.11. PFP is more expressive than IFP on all stru
tures in whi
han a

eptable stru
ture is PFP-interpretable.Among the stru
tures in whi
h an a

eptable stru
ture is PFP-interpretableare (!;<) and (IR; <;+) and all expansions of it, e.g. the ordered �eld of reals.Examples of stru
tures not interpretable in an a

eptable stru
ture are stru
turesover the empty signature or a signature 
ontaining 
onstant symbols only, butalso the real line (IR; <).Referen
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