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Abstract. The paper focuses on the  problem of rule extraction from neural 
networks, with the aim of transforming the knowledge captured in a trained 
neural network into a familiar form for human user. The ultimate purpose for us 
is to develop human friendly shells for neural network based systems. In the 
first part of the paper it is presented an approach on extracting traditional crisp 
rules out of the neural networks, while the last part of the paper presents how to 
transform the neural network into a set of fuzzy rules using an interactive fuzzy 
operator. The rules are extracted from ordinary neural networks, which have not 
a structure that facilitate the rule extraction. The neural network trained with the 
well known Iris data set was considered as benchmark problem.  

1   Introduction 

Artificial neural networks represent an excellent tool that have been used to develop a 
wide range of real-world applications, especially in case when traditional solving 
methods fail. They exhibit advantages such as ideal learning ability from data, 
classification capabilities and generalization for situations not contained in training 
data set, computationally fastness once trained due to parallel processing, noise 
tolerance. There were these advantages that made neural networks to be successfully 
applied to various real-word problems, including: speech recognition, medical 
diagnosis, image computing, process control and modeling [11], [8], fault diagnosis (a 
recent survey on using different neural network based techniques in fault diagnosis 
can be found in [9]). The major shortcoming of neural networks is represented by 
their low degree of human comprehensibility [13]. Many authors have focused on 
solving this shortcoming of neural networks, by compiling the knowledge captured in 
the topology and weight matrix of a neural network, into a symbolic form; some of 
them into sets of ordinary if - then rules [7], [13], [14], [15], others into formulas from 
propositional logic or from non-monotonic logics [10], or into sets of fuzzy rules [1], 
[2], [3], [5], [6]. More transparency is offered by fuzzy  neural networks [4], [5], [12], 
which represent a paradigm that combines the comprehensibility and capabilities of 
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fuzzy reasoning to handle uncertainty and the capabilities of neural networks to learn 
from examples.  

The paper has the following organization. Section 2 briefly presents an inverting of 
a neural network, more exactly given the output of the network, how to calculate the 
input of the network which produces the given output. This input calculation for a 
given network output is required in the rule extraction method presented in section 3. 
The inversion method presented in section 2 is a computationally fast inversion 
method, that optimize the searching for the network inputs which produce the desired 
network output. Section 3 proposes a method of traditional if-then rule extraction 
from neural networks, which have not a special structure that facilitates the rule 
extraction. Many other rule extraction methods reported in the literature rely on and 
need some special architectures for neural networks in order to be efficiently applied. 
Our method is based on interval propagation across the network, in a similar way as 
VIA method proceeds [13]. The rule extraction method is applied on the neural 
network trained with Iris data set. The main problem encountered when apply this 
method is the big number of rules required to satisfactory describe the network 
functioning. That’s why we tried to express the network behavior in a more concise 
way. Section 4 uses the same neural network as in section 3, and a fuzzy rule set is 
extracted, by introducing an interactive fuzzy operator [1], [5]. Conclusions of the 
paper are summarized in the last section. 

2   Iterative Relation for Neural Network Inversion 

An inversion method, which calculates the input of a neural network for a given 
output, was presented in [11]. An improved and a more computationally efficient 
version of this method was presented in detail in our previous papers [7], [8]. 

Given a three layered neural network, with q the number of the network inputs, h 
the number of hidden nodes, and r the number of network outputs. Within the q inputs 
of the network, f inputs are considered to be fixed inputs (past inputs and outputs of 
the process in case when neural network is used for process modeling), and we have 
to determine, by a searching procedure, the remaining p inputs (p+f=q). Given the 
output vector y, we have to find the input vector u which produces the output y. By u 
it is denoted the vector of the p unfixed inputs of the network, and by uf the vector of 
the f fixed inputs of the network.  

We have the following relations: 

y' = f
 – 1 (y) - θ

y 

W
yx

 x = y' 

 

(1)

where f is the nonlinear activation function of the network nodes, x the output vector 

of the hidden nodes, W
yx

is the weight matrix between hidden layer and output layer, 

θ
y
 is the bias vector of the output layer. If W

yx
is a squared matrix, then it is possible 

to calculate the input u as follows:  

x = (W
yx

 )
 - 1 y' 

x' = f 
- 1 (x) - θx 
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W
xu

 u = x'- W
f

xu
 uf 

(2)

where W
xu

is the weight matrix between unfixed inputs and hidden layer, Wf

xu
is the 

weight matrix between fixed inputs and hidden layer, θx
 is the bias vector of the 

hidden layer. When the hidden and the output layers have exactly the same number of 
nodes (h=r), the inversion of the network consists of solving two linear equation 

systems ((1) and (2)). In the following, consider d the vector d = W
f

xu
u

f
. 

 
 

Fig. 1. The three-layered neural network 

 
The general case of most neural models of real-world processes is represented by 

neural networks with h > r. In this case, it is possible to write the matrix W
yx

 and the 
linear system (1), by Jordan-Gauss elimination, in the following form: 
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(3)

Partitioning the weight matrix W
xu

 and the vectors x, θx 
and d, as given below: 

 

where
''x

'x
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x' = [x1, x2, ......, xr]
t  and 

 

x'' = [xr+1, ...., xh]
t 
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we have the relations: 

)duW(fx

)duW(fx
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xxux''
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The input u, which produces the desired output y, is the solution of the equation: 
 

''*' xCyx −=
equivalent with: 

 

)duW(f)duW(Cfy
''''''''' xxuxxxux* θ++=θ++−

Expanding [8] the nonlinear function f, through a Taylor series around the point uk, 
and solving, the following iterative relations is obtained: 
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In the previous relation, f(*) and f'(*) are vectors of corresponding orders, where the 
function f and its derivative f' is applied on each component of the argument vector. 
The operator o multiplies each element of a matrix row with the corresponding 
element of the vector.  

The matrix which must be inverted in relation (4) is a  r x p  matrix. If the number 
of unfixed network inputs is different than the number of network outputs, the inverse 
from the equation (4) must be replaced with the suitable pseudo-inverse.  

3   Rule Extraction by Interval Propagation 

In this section, we present a method for rule extraction from neural networks with 
continuous inputs and outputs. We named this method, presented also briefly in one 
of our previous paper [7], the method of interval propagation. The rules extracted by 
this method are crisp if – then rules, in the following form: 

 

if   )bx(aand)bxa( 222111 ≤≤≤≤   ....     )bx(aand mmm ≤≤   
then    jjj dyc ≤≤  
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where x1, x2, … , xm are the inputs of the network and yj is the j output of the network, 
j = 1, 2, … , n.  

A similar method which tries to extract rules in the same form, out of a trained 
neural network, is the VIA method, developed by Thrun in [13]. VIA method refines 
the intervals of all units in the network, layer by layer, by techniques of linear 
programming, such as Simplex algorithm, propagating the constraints forward and 
backward through the network. The problem is that, VIA method may fail sometimes 
to decide if a rule is compatible or not with the network. Also the intervals obtained 
by VIA method are not always optimal. Our method continues the background ideas 
of VIA method and eliminates the drawbacks of this method. 

Given P a layer in the network, and S the next layer. Every node in layer S 

calculates the value ∑
∈

θ+=
Pk

ikiki )xw(fx , where xk is the output (activation value) 

of node k in layer P, xi the output of node i in the layer S, wik the weight of the link 

between node k in layer P and node i in layer S, θi the bias of node i, and f the transfer 
function of the units in the network. The following relations can be written: 

 

(∀ ) k ∈  P      xk ∈  [ak;bk] 

 (∀ ) i ∈  S       ∑
∈

′ θ+=
Pk

ikiki xwx  

xi = f(xi′) 

 

For every node i ∈ S, we note with wil
+, l ∈ Pi

+, the positive weights, and with 

wil
-, l ∈ Pi

-, the negative weights. ( PPP ii =∪ −+ ). The interval of variation  for xi´, 

[ai′;bi′], (∀ )i ∈  S, is determined in the following way: 
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and the variation interval for the activation value xi of node i in layer S is [ai;bi], 

where: ai = f(ai′) and bi = f(bi′). In this way, the intervals are propagated, layer by 

layer, from the input layer to the output layer. So, given the variation intervals for 
inputs, the intervals of variation for outputs are determined. This is the forward phase. 
Some of the inputs may be unconstrained, and in this case the intervals are propagated 
forward across the network layers, assigning the interval of maximum variation ([0; 
1]) for unconstrained inputs. 

The backward phase appears when it is given the interval of variation for output 
and eventually for some inputs, and it must be determined the interval for 
unconstrained inputs. Suppose x1, x2, … , xk are the constrained inputs after 
renumbering, and xk+1, … , xm the unconstrained inputs, and we want to determine 
rules when ...and)bxa( 111 ≤≤ )jdjyj(cand)kbkxk(a ≤≤≤≤ . 

First, it is checked the compatibility of the following rule:  
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if    )bx(aand)bxa( 222111 ≤≤≤≤   .... )bx(aand kkk ≤≤  

                                       then    jdjyjc ≤≤  
 

with the network, assigning the maximum interval ([0; 1]) for unconstrained inputs. 
By forward propagation, the variation interval [cj′; dj′] for output is determined. If 

]jd;jc[]'jd;'j[c ⊂ , then the rule given above is a general rule, and it does not have 

sense to look for the variation intervals of remained inputs. If the intersection 
]jd;jc[]'jd;'j[c ∩ is empty set, then the rule is incompatible with the network. 

Otherwise, be ]jd;jc[]'jd;'j[cy*
j

∩∈ .  

By inverting the neural network as given in section 2, it is determined the input 

x*=(x1*, x2*, …  xm*) of the network which produce the output *
jy . The idea is to find 

the maximal intervals around the values xl, l=k+1, …, m, so that the corresponding 
rule to be compatible with the network. For example, beginning with input xl, the 
right margin bl of the variation interval is set up to: 

2

*
lx1*

lxlb
−

+=

If the rule with ]lb;*
ix[lx ∈ is compatible with the network, then the interval is 

enlarged, otherwise is shrinking, with a technique of dividing intervals into two 
halves, until the right margin b

l
 and a

l
 are determined with a given error. The 

procedure continues until all the variation intervals for all unconstrained inputs are 
determined. The hyper-cubs determined at the input depend on the start position – x*, 
and on the order of the determination of the variation intervals for unconstrained 
inputs.  

Using the method of inverting a neural network described in section 2, the 
backward phase in VIA method can be reduced, with a very simple calculus, to a  
forward propagation of the input intervals. 

3.1   Case Study 

The goal of well-known iris problem is to recognise the type of an iris plant to which 
a given instance belongs. The data set is composed of 150 records, equally distributed 
between three classes: setosa, versicolor, and virginica. Two classes are not linearly 
separable from each other, while the third is linearly separable from the others. The 
data set is characterised by four attributes: petal length, petal width, sepal length, and 
sepal width, hence the neural network has four input neurons. 

The three possible classes are coded as: 0.1, 0.5 and, respectively, 0.9, such that the 
application requires a single output neuron. The activation function for network 
neurons was sigmoid atansig function - fatansig.  

We trained a neural network with three hidden neurons, shown in figure 2. The 
input/hidden weights matrix after supervised learning is: 
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The hidden/output weights matrix is: [ ]7428.47893.06372.2][ −−−=β= T
jk

TB , 

while the biases for hidden neurons are: [ ]4464.30046.06773.3][ −=τ= T
jk

TT . 

 

 

Fig. 2. The three layered neural network for Iris problem 

A general form of a rule extracted from trained neural network, with the method 
presented in the previous section is:  

 

If     sepal lenght ∈  [sl1;sl2] and sepal width ∈  [sw1;sw2] and 
                               petal lenght ∈  [pl1;pl2] and petal width ∈  [pw1;pw2] 

                     then    y ∈  [0;0.2] ( for setosa) 
 
For versicolor and verginica, the extracted rules have in the consequence the 

interval [0.4; 0.6], and respectively [0.8; 1.0].  
We made studies on the balance between the number of extracted rules 

(comprehensibility) and the percentage of network functioning covering. First, we 
tried to extract a number of rules comparable with the total number of training 
instances. After extracting the more general 150 rules, 94% from the network 
functioning were covered. On the other hand, with just 25 general rules, it is possible 
to describe 42% of network functioning.  

The extracted rule set proved also good generalization ability, comparable with that 
of the original network. But, generally, the generalization ability depends on the 
network training. If the network is properly trained, so that to provide good 
generalization ability, then the extracted set of rules will have also good 
generalization ability. 

For a better approximation (more than 99%), and covering of almost entire part of 
the network functioning, the obtained number of extracted rules was very much 
increased. A big number of rules had to be wasted at the decision boundary between 
classes, especially at the non-linear border between the two not linearly separable 
classes.  

In fact, this is one of the main drawbacks of approximation techniques by 
traditional crisp rules, the big number of required rules even for approximating the 
principal and the most general part of the network functioning (except the 

 Sepal length

Sepal width 

Petal length

Petal width 

 

 class
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neighboring regions to the decision boundaries). In order to obtain a more compact 
way to describe the network, in the following section we extracted a set of fuzzy 
rules, which compiles in a more concise way the knowledge embedded in the neural 
network weights during training.  

4   Fuzzy Rule Extraction from Neural Networks 

The main disadvantage of most approximation techniques of neural networks by 
fuzzy rules is the exponential increase of required number of rules for a good 
approximation. In order to obtain a precise approximation, it must be increased the 
number of linguistic terms for each input/output variable and consequently the 
number of fuzzy rules [6]. This causes the lose of the significance of the linguistic 
terms, as well as of the extracted fuzzy rule set. Of course the number of extracted 
usual fuzzy rules is not as big as when we extract traditional crisp rules from the 
neural network, but it still remains high. 

In the following part of this section, we introduced a fuzzy interactive operator, in 
order to express in a very few rules what the neural network learned during training. 
The meaning of the term “interactive” is given by the inputs correlation embedded in 
the behavior of the fuzzy operator. Based on the theoretical results presented in [1], it 
is possible to build a fuzzy rule based system which calculates the same function as a 
neural network. In this manner, the concept of f-duality [1], applied on a three layered 
feed-forward neural network trained to represent a set of data values, can be used to 
develop a new class of fuzzy connectives [5]. 

Let us consider the operation + in R and the sigmoid function atansig, (used 
commonly as activation function for neural network nodes): 

2

1
)atan(

1
)( +

π
= xxfatansig  , continuous (and bijective) application from R  to (0;1). 

The fatansig-dual operator of + is o, defined on (0;1) as follows: 

aob=








−π−π

−+π+π
π ))5.0(cos())5.0(cos(

))1(sin(
atan

2

1

ba

ba  

 

Indeed, it can be proved easily that fatansig(x1+x2)= fatansig(x1) o fatansig(x2). The operator 
previously defined will be called the interactiveatan-OR operator (for short iatan-OR). 

Since f-duality is a general concept, then it could produce other interactive 
operators (e.g. i-OR [1], itanh-OR [5]), which can be used in knowledge acquisition as 
well as for motivating the neural inferences. 

Based on the properties of iatan-OR [5] and the equivalence theorem proved in [1], it 
is possible to write the following set of fuzzy rules equivalent with a feed-forward 
neural network: 

Rjk:     IF   j

n

1i
ijiwx τ+∑

=
 is Ajk    THEN    zk=βjk 

The fuzzy expressing "xi is Ai

jk" must be interpreted as follows: 
"xi is greater than approximately r/wij-τj" (if wij>0), or  
"xi is lower than approximately -(r/wij-τj)" (if wij<0),  

where r is a positive real number obtained from an α-cut (for example 0.9). 
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The extracted fuzzy rule set equivalent to the neural network trained with Iris data 
in section 3, obtained by the mechanism given above, is: 

 

R1. IF sepal-length is greater than approximately 2.160 
  i

atan
-OR  

  sepal-width is greater than approximately 0.720 
  i

atan
-OR  

  petal-length is greater than approximately 1.465 
  i

atan
-OR  

  petal-width is greater than approximately 1.419 
 THEN y = -3.6773. 

R2. IF sepal-length is greater than approximately 1.282 
  i

atan
-OR  

  sepal-width is grater than approximately 1.201 
  i

atan
-OR  

  petal-length is not greater than approximately 1.874 
  i

atan
-OR  

  petal-width is greater than approximately 1.438 
 THEN y = 0.0046. 

R3. IF sepal-length is greater than approximately 1.023 
  i

atan
-OR  

  sepal-width is not greater than approximately 0.366 
  i

atan
-OR  

  petal-length is greater than approximately 0.690 
  i

atan
-OR  

  petal-width is not greater than approximately 1.948 
 THEN y = 3.4464. 

 

The process of classification for a given input is determined by an aggregation 
computation using the interactive operator. The instance is matched against the rule 
premises, each rule being fired to a certain degree vj. The global output is the 
weighted sum of these degrees: y = -3.6773v1 + 0.00462v2 + 3.4464v3. 

The class chosen for a given instance is that with the closest numerical value to y. 
The three fuzzy rules given above present in a more compact way what the neural 

network learned by training. Because of the nature of the introduced interactive 
operator, this set of fuzzy rules is less comprehensible than the rules extracted in 
section 3, but it expresses in just 3 rules the knowledge captured within the neural 
network by training. The interactive operator enables us to reformulate fuzzy rules 
into a more compact way, but also still comprehensible. 

5   Conclusions 

The problem addressed in this paper is how to interpret the knowledge embedded in a 
trained neural network into a comprehensible as well as compact (concise) way for 
human user, using traditional and fuzzy rules. The methods presented in the paper are 
useful in neural based expert systems, and helps to explain the decisions of the neural 
network in a more familiar form for human expert. The result is an increased 
confidence of human user in the actions performed by a neural network. The methods 
can be used to develop human friendly shells for neural network based applications. 
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