
'$ »
¼

'$ ±°
²¯

I N F O R M A T I K

 ª

® ©

Subsumption of concepts in DL
FL0 for (cyclic) terminologies

with respect to descriptive
semantics is PSPACE-complete.

Yevgeny Kazakov and Hans de Nivelle

MPI–I–2003–2–003 April 2003

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
FÜR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbrücken Germany

Author’s Address

Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
Phone: +49 681 9325-215, +49 681 9325-223
Fax: +49 681 9325-299
Email: ykazakov,nivelle@mpi-sb.mpg.de

Acknowledgements

The authors would like to thank Franz Baader for reading the draft of the
paper and giving important remarks.

Abstract

We prove the PSPACE-completeness of the subsumption problem for
(cyclic) terminologies with respect to descriptive semantics in a simple De-
scription Logic FL0, which allows for conjunctions and universal value re-
strictions only, thus solving the problem which was open for more than ten
years.

Keywords

Description Logic, Automata Theory

1 Introduction

FL0 is a Description Logic where concepts can be constructed by using conjunctions and
universal value restrictions only. The concept subsumption problem in FL0 for (cyclic)
terminologies was investigated in [Baa90], [Baa96] and [Neb91] for the three kinds of se-
mantics: the least fixpoint (lfp), the greatest fixpoint (gfp) and the descriptive semantics.
These papers provide a PSPACE decision procedure for the subsumption problem with
respect to all three kinds of semantics. In addition, in [Baa90] and [Baa96] it was shown
that this problem is PSPACE-hard both for gfp- and lfp-semantics. For the descriptive
semantics, however, the highest known lower bound was found to be co-NP [Neb91], which
provides a complete characterization for acyclic terminologies. So, the question about the
exact complexity of the subsumption problem for the descriptive semantics with respect
to (cyclic) terminologies has been open.

In this paper we prove the PSPACE-hardness of this problem (and thus, eliminate the
remaining complexity gap) by reduction from the universality problem for automata on
infinite words with prefix acceptance condition.

2 Description Logic FL0

FL0 is a simple Description Logic, which allows for conjunctions and universal value re-
strictions of concepts only. Formally, given a signature Σ = (A,R) consisting of concept
names A and role names R, the set of (generalized) concepts CΣ of DL FL0 is defined by
the grammar:

CΣ ::= A | C1 u C2 | ∀R.C

were A ∈ A are usually called atomic concepts; C1, C2, C are arbitrary generalized concepts
of FL0 and R ∈ R.

A terminology (or TBox for short) is a finite set of concept definitions of the form

A
·
= C, where A is an atomic concept called defined concept and C is a generalized concept.
The semantics for FL0 is defined by means of interpretations I = (∆I , ·I), were ∆I is

a set called the domain of I and ·I assigns to every concept name A ∈ A a set AI ⊆ ∆I

and to every role name R ∈ R a relation RI ⊆ ∆I × ∆I . The interpretation I can be
extended to generalized concepts of FL0 by defining:

(C1 u C2)
I := CI

1 ∩ CI
2 ; (∀R.C)I := {d ∈ ∆I | ∀ e ∈ ∆I , (d, e) ∈ RI implies e ∈ CI}

An interpretation I is a model of TBox T iff AI = CI for all definitions A
·
= B of T . Given

a terminology T we say that a concept A is subsumed by a concept B w.r.t. descriptive
semantics (notation: A vT B) iff AI ⊆ BI for all models I of T . The associated decision
problem for T , A and B is called the concept subsumption problem.

Since we are interested in proving the hardness result for the concept subsumption
problem, we may consider restricted forms of terminologies. Thus, in the rest of the paper
we assume that TBox contains only definitions of the form:

A
·
= ∀R1.B1 u . . . u ∀Rl.Bl, (1)

1

were A, Bi are atomic concepts (1 ≤ i ≤ l) and l ≥ 1. We also assume that exactly one
definition is given for every atomic concept.

With every terminology T of the form (1) we associate a non-deterministic semi-
automaton AT = (Σ, Q, δ) consisting of the finite alphabet of letters Σ, the finite set of
states Q and the transition relation δ ⊆ Q × Σ × Q. We proceed similarly as in [Baa96],
[Neb91]:

• the alphabet Σ of AT is the set of role names of T ;

• the set of states Q is the set of concept names in T and

• the transition relation δ = {(A,R,B) | A
·
= . . . u ∀R.B u . . .∈T }.

Note that this construction gives a one-to-one correspondence between terminologies of
the form (1) and semi-automata without blocking states: for every state q ∈ Q there exist
some a ∈ Σ and q′ ∈ Q such that (q, a, q′) ∈ δ.

A run of a semi-automaton A over an (in)finite word w = a1 ·a2 · · · ai(· · ·)∈Σ∗(ω) is
an (in)finite sequence of states r : q0, q1, . . . , qi, (. . .)∈Q∗(ω) such that (qi−1, ai, qi) ∈ δ for
any i ≥ 1. With every two states q1, q2 ∈ Q of a semi-automaton A = (Σ, Q, δ) one can
associate the regular language LA(q1, q2) := {w ∈ Σ∗ | there exists a run q1, . . . , q2 over w}.

Now we give the automata-theoretic characterization of the concept subsumption prob-
lem. Theorem 29 in [Baa96] provides the characterization for the general terminologies,
however we may give a simplified variant for the restricted form of terminologies.

Theorem 1 (Characterization of concept subsumption) Let T be a terminology of
the form (1) and AT = (Σ, Q, δ) be the corresponding semi-automaton. Then A0 vT B0

iff for every word w ∈ Σω and for every run
rB : B0, B1, . . . , Bi, . . . in AT over w there exists a run
rA : A0, A1, . . . , Ai, . . . in AT over w and an integer k ≥ 0 such that Ak = Bk.

Proof. We prove the theorem by inspecting the tableau algorithm for checking concept
subsumption. We try to refute A0 vT B0 in some model I of T with the domain N.
Every node of the tableau will describe necessary conditions of the form n : A, n : ¬B or
(n,m) : R for A,B ∈ A and R ∈ R, which shell be imposed on a model I. The semantical
meanings of these restrictions are n ∈ AI , n /∈ BI and (n,m) ∈ RI respectively. We start
with the node {0 : A0, 0 : ¬B0} and apply expansion rules. Every definition

A
·
= ∀R1.B1 u . . . u ∀Rl.Bl

of T enforces two sorts of rules:

(∀iA)
n : A, (n,m) : Ri

m : Bi

; (∃A)
n : ¬A

. . . | (n, n + 1) : Ri, (n + 1) : ¬Bi | . . .

A rule is applied to a node by forming a child of this node containing all formulas of parent
and the conclusion of the rule; (∃A)-rule assumes branching over i ≤ i ≤ l. The rules
are applied fairly: the application of a rule cannot be postponed forever. Some branches

2

of the tableau can lead to the inconsistent node containing a clash {n : A, n : ¬A}.
In this case the branch is closed, otherwise it is open. The tableau is closed iff all its
branches are closed. The presented tableau procedure is sound and complete for the concept
subsumption problem:

Proposition 2 The tableau for A0, B0 and T is closed iff A0 vT B0.

Proof. The proof of this proposition can be found in the Appendix A. ¤

Now, to prove the theorem, observe that for every branch τ of the tableau:

1. There is exactly one negative expression of the form n : ¬Bn for every n ≥ 0;

2. There is exactly one positive expression of the form (m,n) : Rn for every n ≥ 1, and
only for m = n − 1.

3. The sequence rτ
B0

: B0, . . . , Bi, . . . is a run over the word wτ = R1 ·R2 · · ·Ri · · · in
AT . Additionally, every run r : B′

0, . . . , B
′
i, . . . corresponds to some branch of the

tableau.

4. For every positive expression m : A′ in the branch τ either m = 0 and A′ = A0 or
m > 0 and (A′′, Rm, A′) ∈ δ for some A′′ ∈ τ , where Rm is the m-th letter of wτ .

Claims 1–4 can be proved by induction on n. Now, to conclude the result of the theorem:
A0 vT B0

iff (by soundness and completeness of the tableau procedure)
every branch τ of the tableau is closed

iff (by 3. and by the definition of the closed branch)
for every run rτ

B0
: B0, . . . , Bi, . . . over w ∈ Σω there is some A′(k) = Bk(k) ∈ τ

iff (by 4.)
for every run rB0

: B0, . . . , Bi, . . . over w ∈ Σω

there exists a run rA0
: A0, . . . , Ak = Bk, Bk+1, . . . over w

iff
for every run rB0

: B0, . . . , Bi, . . . over w ∈ Σω

there exists a run rA0
: A0, . . . , Ai, . . . over w and k ≥ 0 such that Ak = Bk. ¤

2.1 The reduction.

Now we consider an instance of the concept subsumption problem which suffices to prove
PSPACE-hardness. Take a semi-automaton A = (Σ, Q, δ) and two states q1, q2 ∈ Q.
We construct a new semi-automaton A′ from A by adding a new state q′ and making it
reachable from q2 and itself by any transition: A′ = (Σ, Q′, δ′), where Q′ = Q ∪ q′ and
δ′ = δ ∪ {(q2, a, q′), (q′, a, q′) | a ∈ Σ}.

3

A A′

q1

A

q2 q′

B

��

w′ w

Figure 1: The reduction

If A′ does not have blocking states then we can consider
the terminology T ′ corresponding to A′, so q1 corresponds to
some concept A of T ′ and q′ corresponds to some concept B
of T ′. By Theorem 1, B subsumes A iff for every run from
q′ over some word w ∈ Σω there exists a run in A′ from q1

over w such that both runs share at least one state. Since
every run from q′ can contain the state q′ only and for every
w ∈ Σω such a run always exists, we obtain: “B subsumes
A iff for every w ∈ Σω there exists a run over w from q1

containing q′.” Note that in the last sentence we can replace
q′ by q2. Thus concept subsumption problem is not easier than the problem:

“given a semi-automaton A = (Σ, Q, δ) and two states q1, q2 ∈ Q such
that all states in Q \ {q2} are not blocking, check whether any word
w ∈ Σω has a finite prefix w′ ∈ LA(q1, q2).”

In the next section we reformulate this problem in terms of automata on infinite words as
the universality problem and prove that it is PSPACE-hard.

3 Automata on infinite words and the universality

problem

Many kinds of finite automata on infinite words (ω-automata) have been investigated in
the literature (for a survey see [Tho90]). There is a classification of automata according
to acceptance conditions. Büchi automata, for instance, accept an infinite word if there
exists a run over this word in which some accepting state is encountered infinitely often.

Although many algorithms for automata are described in the literature, the correspond-
ing complexity issues are usually not well-studied. The (non)universality problem: “given
an automaton A check if it does (not) accept all words” is known to be PSPACE-complete
for non-deterministic Büchi automata as well as for non-deterministic finite automata on
finite words. We introduce a prefix acceptance condition for ω-automata and show that
the universality problem is also PSPACE-hard for this automata. One of the implications
of this result is the PSPACE-hardness of the subsumption problem for the descriptive
semantics.

A non-deterministic finite automaton (NFA) is a tuple A = (Σ, Q, δ,Q0, F), which is a
semi-automaton (Σ, Q, δ) extended with a set of initial states Q0 ⊆ Q and a set of accepting
states F ⊆ Q. The size of the automaton A = (Σ, Q, δ,Q0, F) is |A| = |Q| + |δ|. We
distinguish several kinds of non-deterministic finite automata according to the acceptance
condition:

1. An automaton on finite words NFA∗ is an NFA = (Σ, Q, δ,Q0, F) which accepts a
finite word w ∈ Σ∗ iff there exists a run r : q1, . . . , qn over w with q1 ∈ Q0, qn ∈ F .

4

2. A Büchi automaton NFAω
b is an NFA = (Σ, Q, δ,Q0, F) on infinite words. It accepts

w ∈ Σω iff there exists a run r : q1, . . . , qi, . . . over w which repeats some state from
F infinitely often.

3. We introduce the ω-automaton with the prefix acceptance condition NFAω
p as a

NFA = (Σ, Q, δ,Q0, F) which accepts w ∈ Σω iff there exist a finite prefix w′ of
w and a run r : q1, . . . , qn over w′ with q1 ∈ Q0 and qn ∈ F . In other words, NFAω

p

accepts an infinite word if it accepts a finite prefix of this word as NFA∗.

In section 2.1 we have shown that a certain problem for semi-automata A = (Σ, Q, δ)
can be seen as an instance of the concept-subsumption problem and thus should be not
harder. After we have introduced the automata with the prefix acceptance condition, we
can reformulate this problem as: “given NFAω

p = (Σ, Q, δ, {q1}, {q2}) without blocking
states in Q \ {q2}, check whether all words w ∈ Σω are accepted.” Such a problem appears
in the literature as a (non)universality problem for finite automata [Var95]. The NFA∗

(NFAω
b , NFAω

p) is universal iff it accepts any word w ∈ Σ∗ (w ∈ Σω). The associated
decision problem is called the universality problem. This problem is known to be PSPACE-
complete for NFA∗ and NFAω

b (cf. [Var95]). It is not surprising that we can obtain the
similar result for the NFAω

p .

Theorem 3 The universality problem for NFAω
p is in PSPACE.

Proof. The proof is by the reduction to the universality problem for Büchi automata.
Given NFAω

p A = (Σ, Q, δ,Q0, F) we proceed similarly as in the section 2.1: Consider the
Büchi automaton A′ = (Σ, Q′, δ′, Q0, {q

′}), where q′ is a new state, Q′ = Q ∪ {q′} and
δ′ = δ ∪ {(q, a, q′) , (q′, a, q′) | q ∈ F, a ∈ Σ}. A accepts w ∈ Σω iff A′ does, so A is
universal iff A′ is universal. ¤

Theorem 4 The universality problem for NFAω
p is PSPACE-hard.

Proof. The proof is given by the reduction from polynomial-space Turing machines. The
idea is quite standard for proving such results [??]. For every Turing machine and input
we construct the automaton which accepts every word except the legal computation of the
Turing machine: given some candidate word it “guesses” the position of the possible error
and accepts the word if it is the error indeed. So the constructed automaton is universal
iff the Turing machine does not accept the input. The details of the proof can be found in
the Appendix B. ¤

Corollary 5 The universality problem for NFAω
p is PSPACE-complete.

We have proved the PSPACE-hardness of the universality problem for NFAω
p A =

(Σ, Q, δ,Q0, F), however we need to prove the hardness for the instance when we have only
one initial, one accepting state and do not have blocking states among the non-accepting
states. The next proposition shows that we can assume these restrictions without loss of
generality.

5

Proposition 6 For any NFAω
p A = (Σ, Q, δ,Q0, F) one can construct an NFAω

p A′ =
(Σ, Q′, δ′, {q′0}, {f

′}) without blocking states in Q′ \ {f ′} in linear size of |A| which accepts
exactly the same words as A.

Proof. We consider two cases:

1. Q0 ∩ F 6= ∅. Then A trivially accepts all words and we can take say
A′ := {Σ, {q}, ∅, {q}, {q}} for some state q.

2. Q0 ∩ F = ∅. It suffices to construct A′ which accepts exactly the same finite words
as A by the NFA∗-acceptance condition. We simply take A′ = (Σ, Q′, δ′, {q′0}, {f

′})
with the new states q′0 and f ′, and define Q′ = Q ∪ {q′0, f ′},

δ′ = δ ∪ {(q′0, a, q) | ∃q0 ∈ Q0 : (q0, a, q) ∈ δ}

∪ {(q, a, f ′) | ∃f ∈ F : (q, a, f) ∈ δ}

∪ {(q′0, a, f ′) | ∃q0 ∈ Q0,∃f ∈ F : (q, a, f) ∈ δ}.
If some state q′ ∈ Q′ \ {f ′} is blocking then we can remove it together with the
involved transitions since no run from q′0 to f ′ can contain q′. ¤

Corollary 7 The concept subsumption problem for DL FL0 with cyclic terminologies
w.r.t. descriptive semantics is PSPACE-complete.

Appendix A.

In this appendix we give a proof of Proposition 2.

Proposition 2 The tableau for A0, B0 and T is closed iff A0 vT B0.

Proof. To prove the soundness (⇒) note that any model I of T in which AI
0 6⊆ BI

0 can
guide an open branch of the tableau.

The completeness part (⇐) is more involved. Assume that S is a set of expressions on
the open branch of the tableau. Consider the closure c(S) of S under the rules:

(ciA)
m : ¬Bi, (n,m) : Ri

n : ¬A
, A

·
= . . . u ∀Ri.Bi u · · · ∈ T .

Formally, c(S) = ∪i≥0S
i, were Si is obtained from S by adding a finite number of conclu-

sions of the rules (ciA) with n,m ≤ i. Note that if S did not contain a clash then so is
c(S): Otherwise clash first appears in some Si, i > 0. Then consider the first application
of the rule (ciA) which produces a clash {n : A, n : ¬A} in Si. Since n : A ∈ S and S
is closed under the rules (∀iA), the clash {m : Bi, m : ¬Bi} should have occurred in Si

before the (presumably first) clash {n : A, n : ¬A} has appeared. A contradiction.
Since S is a set of formulas of the open branch, we have proved that c(S) does not

contain a clash.
The set c(S) defines a model I = (N, ·I) were:

6

• (n,m) ∈ RI iff (n,m) : R ∈ c(S) (iff (n,m) : R ∈ S), R ∈ R;

• n ∈ AI iff n : ¬A /∈ c(S), A ∈ A.

I is indeed a model of T in which AI
0 6⊆ BI

0 :

1. 0 ∈ AI
0 since 0 : A0 ∈ S ⊆ c(S), thus 0 : ¬A0 /∈ c(S) (c(S) is clash-free);

2. 0 /∈ BI
0 since 0 : ¬B0 ∈ S ⊆ c(S);

3. AI ⊆ (∀R1.B1 u . . . u ∀Rl.Bl)
I because c(S) is closed under the rules (∀iA);

4. AI ⊇ (∀R1.B1 u . . . u ∀Rl.Bl)
I : n /∈ AI iff n : ¬A ∈ c(S) iff n : ¬A ∈ S or n : ¬A

is obtained by some (ciA). In the first case the inclusion holds by the rule (∃A); In
the last case there are some (n,m) : Ri ∈ c(S), m : ¬Bi, which make the right-hand
side not to contain n.

Note that we have also proved that the concept subsumption A0 vT B0 has the linear
model property, i.e. we may consider only tree-models I of T with branching degree 1.
¤

Appendix B.

In this appendix we give a proof of Theorem 4.

Theorem 4 The universality problem for NFAω
p is PSPACE-hard.

Proof. We prove the theorem by the reduction from polynomial-space Turing machines
using the definition:

PSPACE = { L | L is a language decided by a deterministic
Turing machine in polynomial space }

The details of involved definitions can be found, for instance, in [Sip97], however in order
to be self-contained, we give the ones that are needed.

A Turing machine is a tuple M = (Q, Σ, Γ, δ, q0, qaccept, qreject), were Q is the finite set
of states, Σ is the finite input alphabet, Γ is the finite tape alphabet containing the special
blank symbol xy (Σ ⊆ Γ \ {xy}), δ : Q × Γ → Q × Γ × {L,R} is the transition function,
q0 ∈ Q is the initial state, qaccept ∈ Q is the accepting state and qreject ∈ Q (qreject 6= qaccept)
is the rejecting state.

A configuration of the Turing machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject) is a string of
the form: c = a1a2 . . . ai−1qai . . . ak, were each aj ∈ Γ, q ∈ Q. One could think of the
configuration c as the description of the Turing machine in the state q with the head at
the i-th cell of the tape with the content a1 · · · ak.

The transition function δ can be extended to configurations in the following way: Let
a, b ∈ Γ, u, v ∈ Γ∗ and [c] denote the cut of the configuration c by removing the rightmost

7

blank symbols xy from c. Then

δ̂(uaqibv) :=

{

uqjacv if δ(qi, b) = (qj, c, L);
uacqjv if δ(qi, b) = (qj, c, R);

δ̂(qibv) :=

{

qjcv if δ(qi, b) = (qj, c, L);
cqjv if δ(qi, b) = (qj, c, R);

δ̂(uqi) := [δ̂(uqixy)];
A computation of the Turing machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject) from x ∈ Σ∗ is

a sequence of configurations c0, c1, . . . , ci, . . . such that c0 = q0x and ci+1 = δ̂(ci). If the
computation ends with a configuration cn then if qaccept ∈ cn, we say that M accepts x; if
qreject ∈ cn, we say that M rejects x.

The Turing machine M decides the language L ⊆ Σ∗ if for every x ∈ Σ∗, x ∈ L implies
M accepts x, and x /∈ L implies M rejects x.

We say that M is a polynomial-space Turing machine if there exists a polynomial p(n)
such that for any input x ∈ Σ∗ and the computation c0, c1, . . . , ci, . . . from x the length of
every configuration |ci| ≤ p(|x|).

Now we give a polynomial-time reduction from the decision problem for any language
L ∈ PSPACE to the universality problem for some set of NFAω

p .
Assume M = (Q, Σ, Γ, q0, qaccept, qreject) is a polynomial-space Turing machine that

decides L. We give an algorithm which for every x ∈ Σ∗ constructs a NFAω
p Ax in

polynomial size of |x| such that Ax accepts all words, except the word:
w0 = #·#·c0 ·(xy)l0 ·#·c1 ·(xy)l1 ·# · · ·#·ck ·(xy)lk ·#·ck ·(xy)lk · · ·

were c0, c1, . . . , ck is an accepting computation for x (if any); li = l − |ci|, were l = p(|x|)
for polynomial p(n) bounding the size of configurations of M ; # is a new symbol (# /∈ Γ).
Thus, x ∈ L iff M rejects x iff M does not accept x iff Ax is universal, and
we can obtain the reduction since PSPACE = co-PSPACE.

Consider the word w0. Note that every three subsequent symbols σi−1, σi, σi+1 at the
positions i− 1, i, i + 1 of w0 uniquely determine the symbol σi+l+1 at the position i + l + 1
of w0. To be precise, σi+l+1 = Next(σi−1, σi, σi+1), were:

Next(qi, a, σ1) = c, Next(b, qi, a) = b, Next(#, qi, a) = qj, Next(σ1, b, qi) = qj

if δ(qi, a) = (qj, c, L), qi 6= qaccept;
Next(qi, a, σ1) = qj, Next(σ1, qi, a) = c, Next(σ1, b, qi) = b

if δ(qi, a) = (qj, c, R), qi 6= qaccept;
Next(σ1, σ2, σ3) = σ2 in all other cases;
(a, b, c ∈ Γ, σi ∈ Γ ∪ {#}).

The informal description of Ax is as follows: given an infinite string w ∈ (Γ∪{#})ω, Ax

accepts w if it can find that w 6= w0, which can be done by detecting one of the following:

1. First l + 2 symbols of w differ from those of ##x(xy)l0 (l0 = l − |x|);

2. For some i ≥ 2 the symbol σi+l+1 6= Next(σi−1, σi, σi+1);

3. The string w contains the symbol qreject.

Note that since M decides the language L ⊆ Σ∗, every computation c0, c1, . . . , ci, . . . from
the x ∈ Σ∗ should end either with the accepting state qaccept or with the rejecting state
qreject. So, w 6= w0 iff w satisfies one of the 1-3 above.

8

Formally, Ax = A1
x ∪ A2

x ∪ A3
x were: Ai

x is the NFAω
p over (Γ ∪ {#})w which accepts

a word w if the corresponding condition i above is fulfilled (i = 1, 2, 3). The union of
two automata A1 = (Σ, Q1, δ1, Q1

0, F
1) and A2 = (Σ, Q2, δ2, Q2

0, F
2) is the automaton

A = (Σ, Q1 ∪ Q2, δ1 ∪ δ2, Q1
0 ∪ Q2

0, F
1 ∪ F 2). A accepts a word iff it is accepted by A1 or

A2. The automata A1
x, A

2
x and A3

x are constructed as follows:

1. A1
x = (Γ ∪ {#}, Q1, δ1, {q1

0}, {f
1}), were Q1 = {q1

0, q
1
1, . . . , q

1
l+1, f

1};
δ1 = {(q1

i , σ, q1
i+1} ∪ {(q1

i , σ, f1) | 1 ≤ i ≤ l, σ 6= (i + 1)-th element of ##x(xy)l0}

2. A2
x = (Γ ∪ {#}, Q2, δ2, {q2

0}, {f
2}), were

Q2 = {q2
0, q2

σ1
, q2

σ1σ2
, q2

σ1σ2σ3i, q2
f | σ1, σ2, σ3 ∈ Γ ∪ {#}; 1 ≤ i ≤ l};

δ2 = {(q2
0, σ, q2

0), (q2
0, σ, q2

σ), (q2
σ1

, σ, q2
σ1σ), (q2

σ1σ2
, σ, q2

σ1σ2σ1),
(q2

σ1σ2σ3i, σ, q2
σ1σ2σ3(i+1)) | σ, σ1, σ2, σ3 ∈ Γ ∪ {#}; 1 ≤ i < l} ∪

{(σ2
σ1σ2σ3l, σ, f2) | σ, σ1, σ2, σ3 ∈ Γ ∪ {#}; σ 6= Next(σ1σ2σ3)}

3. A3
x = (Γ ∪ {#}, Q3, δ3, {q3

0}, {f
3}), were Q3 = {q3

0, f
3};

δ3 = {(q3
0, σ, q3

0), (q3
0, qreject, f

3) | σ ∈ Γ ∪ {#}}

The size of automata A1
x, A

2
x and A3

x are linear in l = p(|x|) (Γ is fixed). So, the construction
of Ax can be performed in polynomial time of |x|.

To summarize, we have constructed a polynomial time reduction from any language
L ∈ PSPACE to the universality problem for NFAω

p and thus, have proven its PSPACE-
hardness. ¤

References

[Baa90] Franz Baader. “Terminological cycles in KL-ONE-based knowledge representation
languages.” In Proc. of the 8th Nat. Conf. on Artificial Intelligence (AAAI’90), pages
621–626, Boston (Ma, USA), 1990.

[Baa96] Franz Baader. “Using automata theory for characterizing the semantics of termi-
nological cycles.” Ann. of Mathematics and Artificial Intelligence, 18:175–219, 1996.

[Neb91] Bernhard Nebel. “Terminological cycles: Semantics and computational proper-
ties.” In John F. Sowa, editor, Principles of Semantic Networks, pages 331–361. Mor-
gan Kaufmann, Los Altos, 1991.

[Sip97] Michael F. Sipser. “Introduction to the Theory of Computation.”, PWS Publishing,
1997

[Tho90] Wolfgang Thomas. “Automata on infinite objects.”, in Handbook of Theoretical
Computer Science (J. van Leeuwen Ed.), Vol. B (Elsevier, Amsterdam 1990), pages
133–191, 1990.

[Var95] Moshe Y. Vardi. “An Automata-Theoretic Approach to Linear Temporal Logic.”
Banff Higher Order Workshop, pages 238–266, 1995.

9

