
Radboud University

Master’s Thesis

ZX-Calculus and Quantum
Stabilizer Theory

Coen Borghans

supervised by
Dr. Aleks Kissinger

November 20, 2019

1 Introduction

Quantum computing is the theoretical study of computation based on the rules
of quantum mechanics. Where standard models of computation have access to
a binary memory consisting of bits, quantum computing uses so called qubits,
which are quantum mechanical superpositions of bits. Exploiting quantum
phenomena to manipulate these qubits in a useful way could yield enormous
speedups when compared to classical computing. As of November 2019 this
research area is still mostly theoretical as any scalable, reliable, fault tolerant
quantum computers have yet to be constructed. The largest quantum computer
that exists today was created by Google and consists of 72 programmable qubits
[14]. This limit in size comes from the great difficulties that arise when dealing
with quantum effects, which make qubits hard to control and very unstable.
Therefore the area of quantum computing is mainly concerned with researching
the possibilities of quantum computers, should they exist.

There are a number of ways to look at quantum computing, using different
notations or varying in the approach. One such system is a relatively new for-
malism known as the ZX-Calculus. This is a graphical language for reasoning
about quantum circuits based on category theory. Using a set of rewrite rules
to transform between diagrams one can intuitively examine the behaviour of
quantum circuits. The ZX-Calculus makes complicated quantum circuits more
easily readable and allows both humans and machines to reason about them
more efficiently.

Quantum stabilizer theory is a part of quantum mechanics that does not de-
scribe a quantum state directly, but rather in terms of specific operators for
which that state is a fixed point. These operators are called stabilizers. Writing
a state in terms of its stabilizers can be more efficient and gives a lot of infor-
mation about the state that can be used in areas like quantum cryptography.

We will look at how we can convert between ZX-Calculus and stabilizer theory.
This means that we develop a procedure to find stabilizers for a given state in the
ZX-Calculus as well as a method to create a ZX-state for a given set of stabiliz-
ers. These are then presented as algorithms that can be efficiently implemented.

In section 2 we lay out all the required background information. First we give
a short introduction to quantum mechanics and quantum computing. Then
we explain the basics of ZX-Calculus and stabilizer theory, followed by a short
description of how we can transition between the two. The next two sections
focus on either side of the conversion process. Section 3 builds up to an algorithm
for finding the stabilizers for a given ZX-state and section 4 goes the other way,
helping us find a ZX-diagram for a state when given its stabilizers.

1

2 Background

This section contains a short description of the background that is needed. We
discuss some of the basic properties of quantum mechanics, how these are used
in quantum computing and we describe our two main areas of interest: Stabi-
lizer Theory and ZX-Calculus. For a more complete introduction to quantum
computing we refer to [3]. We assume knowledge of basic linear algebra as
taught in a bachelor level course.

2.1 Dirac notation

Quantum computing is based on quantum mechanics, which is mainly studied
by physicists. Therefore, we adopt the physicist’s convention of writing our lin-
ear algebra in Dirac notation. We quickly summarise this notation here.

Given a vector v we write the vector itself as |v〉 = v and its conjugate transpose
as 〈v| = v†. We call the first a ket and the second a bra. Multiplying a bra and
a ket gives a bra-ket, or bracket, 〈v|w〉 = 〈v||w〉. This is the inner product of v
and w. The outer product of two vectors v and w is obtained by multiplying
the bra and ket the other way; |v〉 〈w|.

Looking at tensor products of outer products we have |v〉 〈v| ⊗ |w〉 〈w| = |v〉 ⊗
|w〉 〈v| ⊗ 〈w|. Taking the conjugate transpose of a tensor product gives (|v〉 ⊗
|w〉)† = 〈v| ⊗ 〈w|. For any linear map A we have (A |v〉)† = 〈v|A†.

2.2 Quantum mechanics

The central idea in quantum computing is to use quantum mechanical phenom-
ena to our advantage when preforming computations. In order to understand
what happens in quantum computing, we obviously need a little knowledge of
the underlying quantum mechanics. We give a short description of the notions
of superposition, entanglement, measurement and unitary evolution.

In classical physics a certain physical system can be in one state at a time. The
spin of an electron is either facing up, or facing down. A photon that is shot at
a wall with two slits either passes through the upper slit, or it passes through
the lower slit. A cat in a box with unstable poisonous gas is either dead or
still alive. However, physicists have discovered through numerous experiments
that things are not as simple as that. The world we live in shows quantum
mechanical behaviour, which surpasses our intuition. It turns out that the spin
of an electron can be a superposition of both up and down: it is in both states
at once and only when we measure, it collapses to either the one or the other.

More formally speaking, we start with a physical system that can be in one of
N classical states. Here classical state means a state in which the system can be
when we observe it. To represent these states, we use an orthonormal basis of an

2

N -dimensional Hilbert space H. For simplicity we will always use H = CN . We
usually write these basis states as |0〉 , |1〉 , ..., |N − 1〉, following the computer
science convention. A quantum state |ψ〉 is a superposition of these classical
states, which amounts to a vector of norm 1 in H. That is

|ψ〉 = α0 |0〉+ α1 |1〉+ ...+ αN−1 |N − 1〉

Where the value αi ∈ C is called the amplitude of |i〉. We have that the norm

of |ψ〉 is 1, so
∑N−1
i=0 |αi|2 = 1.

We can get make bigger spaces from smaller ones by taking tensor products.
Given two spaces, H1 with orthonormal basis {|0〉 , |1〉 , ..., |N − 1〉} and H2 with
orthonormal basis {|0〉 , |1〉 , ..., |M − 1〉}, we can make a new spaceH = H1⊗H2.
This space is NM -dimensional and has basis {|n〉⊗ |m〉 |n ∈ {0, ..., N − 1},m ∈
{0, ...,M − 1}}. A state |ψ〉 ∈ H is called a bipartite state. We can create
a bipartite state by taking the tensor product of two states |ψ〉1 ∈ H1 and
|ψ〉2 ∈ H2: |ψ〉 = |ψ〉1 ⊗ |ψ〉2 ∈ H. However, not all states in H can be made
like this. A bipartite state that cannot be written as a tensor product of states
from the original spaces is called an entangled state. An example of this is the
state 1√

2
|00〉+ |11〉 ∈ C2 ⊗C2. This state is called an EPR-pair after Einstein,

Podolski and Rosen and shows some interesting, counter-intuitive behaviour. At
first the state is not classical in either space. However, if we measure just one
of the parts we get |0〉 or |1〉 and have the other part collapse to the same. This
means that measuring in one space can have effect on the state in another space
if we have entanglement. This phenomenon is known as quantum non-locality.

There are two things that we can do to a quantum state. The first is that we
can measure it. When observing a quantum state, we cannot see the full su-
perposition. The only thing we can do is measure it, that is to say, observe it,
at which moment the state collapses to only one of the possible classical states,
which we can see. So measuring a quantum state destroys all the quantum me-
chanical information and we are left with a classical state. However, it is not
predetermined which classical state will be found when measuring a quantum
state. In fact, the probability of getting outcome |i〉 is |αi|2, the squared norm
of the amplitude. This is the main reason why we require a quantum state |ψ〉
to have Euclidean norm 1.

The second thing we can do is to apply some linear function to a quantum state.
This amounts to multiplying the state by some operator U . The new state U |ψ〉
must again be a quantum state, so we require

|U |ψ〉 |2 = 1

Or in other words, we need U to be unitary. As every unitary has an inverse
(U−1 = U†), we know that every operation on quantum states is reversible. This
is in contrast to the previously described measuring, which is not reversible as

3

you cannot construct the full superposition from just one classical state.

Some of the most important unitaries in quantum computing include the Pauli
operators X,Y and Z, the Hadamard gate H and the controlled not CNOT:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

H =
1√
2

(
1 1
1 −1

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


2.3 Quantum Computing

Classical computing is based around the bit, a unit of information that can
take the values 0 and 1. When computing we start with a number of bits and
manipulate them with certain operations in order to get a result. In quantum
computing we have the quantum bit, or qubit, which is a superposition of the

classical 0 and 1. Mathematically we represent this as follows. Let |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
be orthonormal basis states of C2. Then a qubit is a unit vector

in C2, or in other words, a superposition of |0〉 and |1〉. So a qubit looks like

α0 |0〉+ α1 |1〉

where |α0|2 + |α1|2 = 1.

Of course we can also use different bases for the same space. Next to {|0〉 , |1〉},
which is known as the computational basis, we also often use |+〉 = H |0〉 =
1√
2
(|0〉+ |1〉) and |−〉 = H |1〉 = 1√

2
(|0〉 − |1〉) as an orthonormal basis.

As in classical computing, we often look at systems of many qubits at the same
time. Such a system is just the tensor product of the one qubit case. For
example, a system on two qubits exists in C2 ⊗ C2 ∼= C4. The basis vectors of
this space are

|0〉 ⊗ |0〉 =


1
0
0
0

 , |0〉 ⊗ |1〉 =


0
1
0
0

 , |1〉 ⊗ |0〉 =


0
0
1
0

 and |1〉 ⊗ |1〉 =


0
0
0
1

 ,

which is often abbreviated to |00〉, |01〉, |10〉 and |11〉.

When looking at n qubits together we call this a register of qubits. Such a reg-
ister of n qubits can be in a superposition of 2n basis states of C2n . This makes

4

it seem as if qubits can store exponentially more information than regular bits,
but we must not forget that we cannot access all this information. When we
measure the register of qubits, it collapses to a classical state, removing all the
other information. In quantum computing the challenge is to make use of the
hidden quantum information in such a way that after measuring, we still get
a useful answer. Many algorithms exist that do this successfully. Famous ex-
amples include Shor’s factoring algorithm and Grover’s search algorithm, which
provide great speedups compared to all known classical counterparts. See e.g.
[3] for more details.

In classical computing the bits are manipulated by applying a series of el-
ementary gates in a specific order. These gates include AND, OR, NOT,
COPY, SWAP, etc. Formally the way to manipulate bits is by applying a
map f : Bn → Bm. Making such a map from elementary gates amounts to
taking tensor products and composing. Writing something out like that can
get complicated and difficult to read or interpret. Instead, it is often much
more intuitive and useful to draw such a map as a diagram or circuit where the
elementary gates are represented as boxes, dots and wires:

AND OR NOT

These can then be composed by plugging the output wires (to the top) into the
input (at the bottom) of the next , or tensored by simply placing them next to
each other.

Example 2.3.1. The map

f : B4 → B
x 7→ 1 if x = 1001

x 7→ 0 otherwise

can be expressed in terms of elementary gates as follows:

f = AND ◦AND⊗AND ◦ I⊗NOT⊗NOT⊗ I

Alternatively, we can represent the same map with a circuit:

AND

AND AND

NOT NOT

5

Example 2.3.2. The map f : B4 → B4 that multiplies two binary numbers a
and b can be expressed in terms of elementary gates as follows:

f = AND⊗OR⊗ I⊗ I ◦ SWAP4,5 ◦ COPY⊗ COPY⊗ I⊗ I ◦ I⊗AND⊗OR⊗ I

◦ SWAP3,4 ◦ I⊗ COPY⊗ COPY⊗ I ◦AND⊗AND⊗AND⊗AND

◦ SWAP4,7 ◦ SWAP2,5 ◦ SWAP2,3 ◦ COPY⊗ COPY⊗ COPY⊗ COPY

Alternatively, it can be represented as a circuit, which is significantly easier for
humans to read and reason about:

AND AND ANDAND

AND OR

ORAND

ab

out

In quantum computing we do something quite similar to classical computing.
The qubits are prepared in some state, usually |00...0〉, then we apply a series of
unitaries to these qubits, followed by a measurement to give a final outcome. As
n qubits live in a 2n-dimensional space, calculating the matrices that correspond
to some larger unitaries can get hard quite fast. To simplify things, often some
small set of unitaries, including X,Z,CNOT etc., is chosen to be regarded as
elemental gates. These can then be combined by taking tensor products and
composing, which leads to bigger maps. However, just like in classical computing
it can be difficult to read bigger combinations of elementary gates. Therefore
it can be more useful to look at quantum computing through circuits. This is
called the quantum circuit model.

Example 2.3.3. When we plug the state |00〉 into the following quantum circuit,
we first apply H to the first qubit, yielding 1√

2
(|0〉+ |1〉) |0〉. Then CNOT gives

6

1√
2
(|00〉+ |11〉). So this circuit turns |00〉 into an entangled state.

CNOT

H

The analogue of the classical NOT is the Pauli X as X |0〉 = |1〉 and X |1〉 = |0〉.
There are no analogues for AND and OR because these are not reversible. Also,
we cannot copy qubits, by the quantum no-cloning theorem (see e.g. [1]).

2.4 ZX-Calculus

ZX-Calculus is a graphical language that is similar to the quantum circuit no-
tation that we described before. Instead of reasoning about big tensor products
of linear maps in the form of matrices, the calculation of which gets compli-
cated rather quickly, ZX-Calculus offers a way to analyse quantum processes in
a simpler, more intuitive diagrammatic way. In addition to that, it provides a
set of rewrite rules that make reasoning about diagrams easier. This makes it
so that one can graphically derive equalities between diagrams and get a better
understanding of what a diagram does.

Example 2.4.1. Equalities such as

Z

H

=

H

Z

or

CNOT

Z

=

CNOT

Z Z

might not be evident in the quantum circuit notation without writing out the
associated matrices or checking the possible inputs. However, using the rewrite
rules of the ZX-Calculus such equalities are immediately clear.

Quantum states and maps are represented by ZX-diagrams. These diagrams
consist of so called spiders that are connected by wires. Some wires are not
connected at the bottom, in which case they are an input, and other wires are
not connected at the top, making them outputs. There are two types of spiders;
green and red. Next to that, spiders also have a phase α, a number that is taken

7

modulo 2π. These red and green spiders represent the following maps:

α

...

...

m

n

= |0m〉 〈0n|+ eiα |1m〉 〈1n|

α

...

...

m

n

= |+m〉 〈+n|+ eiα |−m〉 〈−n|

If the phase of a spider is 0, we will omit the number and draw a smaller empty
spider.

In particular, if a diagram has no input it represents a state. We recognize the
following simple ZX-diagrams (up to normalization):

|0〉 = |1〉 = π |+〉 = |−〉 = π

X = π Z = π

Two spiders can be connected by plugging any output wires of one spider into
some input wires of the other. This can be repeated to create larger diagrams.

We will use the following shorthand notation for the Hadamard gate H in the
ZX-Calculus:

:= e−
π
4 π

2

π
2

π
2

Remark. Diagrams with no input and no output represent scalars. When study-
ing ZX-Calculus these are often omitted, as they have little physical relevance
and are not interesting for the structure of a diagram. However, in what we
are going to do, keeping track of scalars is necessary. We have chosen to write

8

scalars out as the number they represent, instead of leaving them as a diagram.
This is why we have the above equation and not the purely ZX-variant:

:= π
2

π
2

π
2

−π
2

−π
2

We now describe the rules of the ZX-Calculus as presented in [4]. In all these
rules ellipses (...) mean zero or more wires. First of all, we can fuse spiders of
the same colour together and change the colour of a spider as follows:

α

β
...

......

... ...

(f)
=

...

...

α+ β

...

...

α
(h)
=

...

...

α

Next, the bialgebra rule can be used to replace a specific combination of red
and green spiders by one green and red spider. The copy rule allows us to copy
phase zero spiders through opposite coloured spiders:

...

...

(b)
=

...

...

...

α
(c)
=

...

Phase π-spiders can be copied though using the pi-copy rule and two spiders
can be rearranged:

...

π

(p1)
=

...
ππ

α

π

(p2)
= eiα

π

−α

Lastly, we have two identity rules:

(i1)
=

(i2)
=

Next to these explicit rules, there is one more overarching rule: only connec-
tivity matters. This means that two diagrams that are topologically the same,

9

represent the same map or matrix. Moving spiders around without changing
connections or bending wires does not change the meaning of a diagram. We
have for instance:

π

π

π

=

π

π

π

Using rules (h), (f) and (i2) we see that all rules are also true when the colours
are flipped.

Example 2.4.2. To see that rule (i1) also holds for a red spider, we apply rule
(i2) to both wires:

=

Next, we change colour with rule (h):

=

What is left is to use (i1) and (i2) to get the desired result:

= =

From the given rules of the ZX-Calculus we can derive many others. Some
of these will prove to be useful later on and are therefore ideal to serve as an
example of reasoning in the ZX-Calculus.

10

Proposition 2.4.3. The following stronger version of rule (p1) is derivable in
the ZX-Calculus:

...

α

π

(p1’)
= eiα

...
ππ

−α

Proof. We un-fuse the green α-spider to get:

...

α

π

=

...

π

α

Then we swap using rule (p2)

= eiα

...

π

−α

Now we can copy by applying (p1)

= eiα

...

π

−α

π

Which just leaves fusing the green spiders with rule (f) to get the desired result

= eiα

...

−α

ππ

11

Proposition 2.4.4 (Lemma 2.2 in [2]). The following rule is derivable in the
ZX-Calculus

=
√

2

Proof. Starting with the left hand side, we can bend one of the two parallel
wires to get

=

Using the both colour versions of the identity rule (i1), we add two spiders to
the newly created loop

=

From these spiders we can extract two new spiders by the spider fusion rule (f)

=

By rule (b) we have

=

12

Now, by applying the copy rule (c), we get

=

Which leaves us to verify that the value of the scalar is indeed
√

2. We know

that = |+〉+ |−〉 and = 〈0|+ 〈1|. Composing them gives us

= (〈0|+ 〈1|)(|+〉+ |−〉)

= (〈0|+ 〈1|)(1√
2

(|0〉+ |1〉) +
1√
2

(|0〉 − |1〉))

= (〈0|+ 〈1|) 2√
2
|0〉

=
√

2(〈0|0〉+ 〈0|1〉)

=
√

2

as desired

Proposition 2.4.5 (Lemma 2.3 in [2]). The following is rule is derivable in the
ZX-Calculus

...

α

π

= eiα
...

π π

Proof. We can pull a red spider out the bottom by using the spider fusion rule
(f) from right to left:

...

α

π

=

...

α

π

13

Then we copy the red π using rule (p1’), which we derived in Proposition 2.4.3

= eiα

...

−α

π π

Now we can copy the red spider with rule (c)

= eiα
...

π π

and finish the proof by fusing the spiders with rule (f)

= eiα
...

π π

Another useful thing to note is that spiders on a wire can pass by Hadamard
gates by changing colour.

Lemma 2.4.6. The following holds in the ZX-Calculus:

π
=

π

Proof. We apply rule (i2) backwards and then change colour with rule (h):

π
= π =

π

To simplify large ZX-diagrams we make use of the !-box (pronounced as bang-
box) notation introduced in [12]. A !-box is drawn as a blue rectangle in a
diagram and is used to indicate that the sub-graph it surrounds is copied as
many times as indicated, potentially depending on some parameter.

Example 2.4.7. The !-box notation is used as follows:

i ∈ {1, ..., 5}

=

14

i ∈ {1, 2}

iπ = π

This notation can make complicated ZX-diagrams more structured and makes
it easier to prove more general features of diagrams later on.

ZX-Calculus is a new way of representing quantum states and maps. Of course
this is only useful if it agrees with the old theory. Luckily it is not hard to check
that all the rules in the ZX-Calculus are sound, meaning that they are also
true when translated to the linear maps they represent. Furthermore, when
restricted to a small part of quantum mechanics, namely stabilizer quantum
mechanics, the ZX-Calculus is known to be complete. This means that any
equality that is valid in stabilizer quantum mechanics can also be derived in the
ZX-Calculus.

We only covered the bare basics of ZX-Calculus in this section. A full description
of the ZX-Calculus and graphical reasoning can be found in [1].

2.5 Stabilizer theory

Quantum error correction plays a significant role in realizing quantum comput-
ers in practice. As qubits are hugely susceptible to noise due to their unstable
nature, it is essential that there exists a way to detect and correct errors that
are induced during computation. This can be achieved by creating so-called
quantum error correcting codes (see e.g. [8]), which are analogous to their clas-
sical counterparts. One powerful way of creating such quantum error correcting
codes is by using stabilizer theory. This area of quantum mechanics only allows
a certain number of operators to be used. These are known as Clifford operators.
After this restriction, stabilizer quantum mechanics can be efficiently simulated
classically (as seen in [11]), so without using quantum mechanics. However,
stabilizer quantum mechanics still shows quantum behaviour and is interesting
to study.

At the core of stabilizer theory stand the Pauli operators that we have encoun-
tered before:

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Note that X2 = Y 2 = Z2 = I.

Definition 2.5.1. The Pauli group, P1, is the group generated by {X,Y, Z}
under composition.

15

It can be easily verified that the Pauli group consists of the sixteen operators
of the form α · P , where α ∈ {1,−1, i,−i} and P ∈ {I,X, Y, Z}. Furthermore,
we see that two elements of the Pauli group always either commute or anti-
commute.

We can expand this definition to operators on multiple qubits.

Definition 2.5.2. The n-qubit Pauli group, Pn, is the n-fold tensor product of
P1:

Pn = P1⊗P1⊗...⊗P1 = {α·P1⊗P2⊗...⊗Pn|α ∈ {1,−1, i,−i}, P ∈ {I,X, Y, Z}}

The operators in the Pauli group have some interesting, easy to prove properties.
We discuss these in the next proposition.

Proposition 2.5.3. An operator P = α · P1 ⊗ P2 ⊗ ... ⊗ Pn ∈ Pn has the
following three properties:

1. P is unitary.

2. P 2 = α2 · I = ±I.

3. Given Q = β ·Q1⊗Q2⊗ ...⊗Qn ∈ Pn we have PQ = ±QP . Where P and
Q commute iff an even number of Pi and Qi anti-commute and P and Q
anti-commute iff an odd number of Pi and Qi anti-commute.

Proof. First of all, we have

P † = (α · P1 ⊗ P2 ⊗ ...⊗ Pn)† = ᾱ · P †1 ⊗ P
†
2 ⊗ ...⊗ P †n

= ᾱ · P−11 ⊗ P−12 ⊗ ...⊗ P−1n

= (α · P1 ⊗ P2 ⊗ ...⊗ Pn)−1 = P−1.

Next, the second property holds as

P 2 = (α · P1 ⊗ P2 ⊗ ...⊗ Pn)2 = α2 · P 2
1 ⊗ P 2

2 ⊗ ...⊗ P 2
n = α2 · I ⊗ I ⊗ ...⊗ I

= α2I.

Lastly,

PQ = (α · P1 ⊗ P2 ⊗ ...⊗ Pn)(β ·Q1 ⊗Q2 ⊗ ...⊗Qn)

= αβ · P1Q1 ⊗ P2Q2 ⊗ ...⊗ PnQn
= αβ · (−1)s1Q1P1 ⊗ (−1)s2Q2P2 ⊗ ...⊗ (−1)snQnPn = αβ(−1)

∑
si ·QP.

Here we take si = 0 if Pi and Qi commute and si = 1 if they do not. Then
indeed P and Q commute iff an even number of Pi and Qi anti-commute and
they anti-commute otherwise.

16

If we ignore the scalar, every member of the n-qubit Pauli group can be expressed
as Xx1Zz1 ⊗ Xx2Zz2 ⊗ ... ⊗ XxnZzn with xi, zi ∈ {0, 1}, as XZ = iY . This
gives us a nice correspondence between Pn and B2n. More formally, if we factor
out the center Z(Pn) = {αI|α = 1,−1, i,−i} we end up with a group Pn =
Pn/Z(Pn) of order 4n. This can be identified with the binary vector space B2n

by a useful isomorphism.

Proposition 2.5.4. The function

f : B2n → Pn
(x1, x2, ..., xn, z1, z2, ..., zn)T 7→ Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxnZzn

is an isomorphism.

Proof. Given two vectors

v = (x1, x2, ..., xn, z1, z2, ..., zn)T , w = (p1, p2, ..., pn, q1, q2, ..., qn)T ∈ B2n

suppose that f(v) = f(w). Then

Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxnZzn = Xp1Zq1 ⊗Xp2Zq2 ⊗ ...⊗XpnZqn ,

so

Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxnZzn = αXp1Zq1 ⊗Xp2Zq2 ⊗ ...⊗XpnZqn

for some α ∈ {1,−1, i,−i}. This can only be true if XxiZzi = XpiZqi for all i,
which in turn means that v = w. Therefore f is injective. Furthermore, as the
order of both groups is equal, we have a bijection.

Now

f(v + w) = f((x1 + p1, x2 + p2, ..., xn + pn, z1 + q1, z2 + q2, ..., zn + qn)T)

= Xx1+p1Zz1+q1 ⊗Xx2+p2Zz2+q2 ⊗ ...⊗Xxn+pnZzn+qn

= Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxnZzn ◦Xp1Zq1 ⊗Xp2Zq2 ⊗ ...⊗XpnZqn

= f(v) ◦ f(w).

So indeed f is an isomorphism.

This isomorphism can be used to treat n-qubit Pauli operators as vectors (up to
a scalar), which allows us to speak of linear independence and use linear algebra
to analyse Pauli operators.

Lemma 2.5.5. Given two operators S, T ∈ Pn, let S = αXx1Zz1 ⊗Xx2Zz2 ⊗
... ⊗XxnZzn and T = βXp1Zq1 ⊗Xp2Zq2 ⊗ ... ⊗XpnZqn . S and T commute
iff
∑n
i=1 xiqi +

∑n
i=1 zipi = 0 mod 2.

17

Proof. By Proposition 2.5.3 we know that S and T commute iff an even number
of XxiZzi and XpiZqi anti-commute.

We want to use the fact that for any a, b ∈ {0, 1} we have XaZb = (−1)abZbXa.
This is true because if either a or b is equal to 0, then the corresponding Pauli
is the identity, which commutes with everything. If both are equal to 1, then
we have XY = −Y X.

For a given i ∈ {1, ..., n} XxiZzi and XpiZqi anti-commute iff

XxiZziXpiZqi = −XpiZqiXxiZzi .

By our previously stated fact we have

XxiZziXpiZqi = (−1)piziXxiXpiZziZqi = (−1)piziXpiXxiZqiZzi

= (−1)pizi+xiqiXpiZqiXxiZzi .

Therefore we know that XxiZzi and XpiZqi anti-commute iff pizi + xiqi = 1
mod 2. This is true for an even number of i iff

∑n
i=1 xiqi +

∑n
i=1 zipi = 0

mod 2, proving the lemma.

Definition 2.5.6. Given a unitary U and a state |ψ〉 we say that U stabilizes
|ψ〉 or that U is a stabilizer of |ψ〉 if |ψ〉 is a +1-eigenvector of U :

U |ψ〉 = |ψ〉

Definition 2.5.7. A stabilizer group S is an abelian subgroup of Pn that does
not contain −I.

Such a stabilizer group can be identified by a set of independent generators. We
call a set of stabilizers independent if none can be written as a product of the
others. This corresponds to linear independence of the binary vectors that are
associated with the stabilizers by the isomorphism of Proposition 2.5.4.

Definition 2.5.8. The stabilizer space of a stabilizer group S ⊆ Pn is the set
of vectors that are stabilized by all S ∈ S.

Example 2.5.9. We take a look at the stabilizer group S = {II, IX,XI,XX} ⊆
P2. Clearly II stabilizes all vectors. Basis vectors for the space that is stabilized
by IX are |0〉 |+〉 and |1〉 |+〉. For XI these are |+〉 |0〉 and |+〉 |1〉 and for XX
we have |+〉 |+〉 and |−〉 |−〉. The only states that are in all of these spaces at
the same time are of the form α |+〉 |+〉, so the stabilizer space of S is generated
by |+〉 |+〉.

Lemma 2.5.10. Given a stabilizer group S ⊆ PN with independent generators
S1, S2, ..., Sn, where n ≤ N , and a number m < n we can find an operator T ∈
PN that commutes with S1, ..., Sm and that anti-commutes with Sm+1, ..., Sn.

18

Proof. Let Si = αiX
xi,1Zzi,1 ⊗Xxi,2Zzi,2 ⊗ ...⊗Xxi,NZzi,N for all i ∈ {1, ..., n}.

By Lemma 2.5.5 we have to find an operator T = αXx1Zz1 ⊗ Xx2Zz2 ⊗ ... ⊗
XxNZzN ∈ PN such that

∑N
j=1 xizi,j +

∑N
i=1 zixi,j = 0 mod 2 for all i ∈

{1, ...,m} and
∑N
j=1 xizi,j+

∑N
i=1 zixi,j = 1 mod 2 for all i ∈ {m+1, ..., n}. As

the Si are independent, we know the vectors (xi,1, xi,2, ..., xi,N , zi,1, zi,2, ..., zi,N)T , i ∈
{1, ..., n} are linearly independent. This means that we can find a solution
(x1, x2, ..., xN , z1, z2, ..., zN)T for the system described above. This means that
the operator T = Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxNZzN satisfies the conditions.

Proposition 2.5.11. If stabilizer group S ⊆ Pn is generated by m independent
generators S1, ..., Sm, then its stabilizer space has dimension 2n−m.

Proof. We prove this by induction on m. If m = 0, then S has no generators,
meaning that S = {I}. Therefore, every vector gets stabilized by S, which
means that the entire n-qubit space is the stabilizer space of S. This has di-
mension 2n, so we are done.

Now suppose m > 0 and that the stabilizer space of the group 〈S1, ..., Sm−1〉
has dimension 2n−m+1. For each S ∈ S we have S2 = I as otherwise −I would
be in S. This means that the only possible eigenvalues for I 6= S ∈ S are
±1. By Lemma 2.5.10 we can find an operator T ∈ Pn that commutes with
S1, ..., Sm−1, but anti-commutes with Sm. For every eigenvector |ψ〉 of Sm in
the stabilizer space of 〈S1, ..., Sm−1〉 that has eigenvalue +1 we can now find
one with eigenvalue −1:

SmT |ψ〉 = −TSm |ψ〉 = −T |ψ〉 .

This eigenvector T |ψ〉 is then still in the stabilizer space of 〈S1, ..., Sm−1〉 as for
i < m:

SiT |ψ〉 = TSi |ψ〉 = T |ψ〉 .

Therefore, in the 2n−m+1-dimensional stabilizer space of 〈S1, ..., Sm−1〉 we can
find exactly 2n−m orthogonal +1-eigenvectors of Sm. This means that the
stabilizer space of S has dimension 2n−m.

A special case of this proposition shows us that n independent stabilizers sta-
bilize exactly one state (up to a scalar).

Definition 2.5.12. A stabilizer state is a quantum state that is stabilized by
some non-trivial stabilizer group.

Stabilizer quantum mechanics is limited to only using stabilizer states. This
means that we need to restrict the unitaries that we allow as well, as most
unitaries do not preserve stabilizer states.

Definition 2.5.13. The n-qubit Clifford group Cn is the normalizer of the Pauli
group Pn. That is, Cn = {C|CPC† ∈ Pn ∀P ∈ Pn}.

19

So in stabilizer quantum mechanics we only allow stabilizer states, Clifford uni-
taries and measurements in the computational basis.

In the ZX-Calculus we can apply the same restriction. This amounts to limiting
the phases that we allow in our diagrams.

Definition 2.5.14. A Clifford diagram is a ZX-diagram where every spider has
a phase α ∈ {0, π2 , π,−

π
2 }.

This restriction of the ZX-Calculus corresponds to stabilizer quantum mechan-
ics. Moreover, as mentioned before, this part of the ZX-Calculus is complete
for stabilizer quantum mechanics [5].

2.6 Transitioning between ZX-Calculus and Stabilizer the-
ory

The goal of this thesis is two-fold. First, we want to have a direct way to find
n generating stabilizers for a given n-qubit Clifford ZX-state. Second, given a
stabilizer group G ⊆ Pn with n independent generators, we want to be able
to find an explicit ZX-diagram that represents a state that is stabilized by G.
Before we discuss these two problems themselves, we first look at how we can
translate stabilizer theory into the ZX-Calculus.

To speak of stabilizers in the ZX-Calculus, we first need the equivalents of the
Pauli operators. We have the following equalities:

X = π Y =
π

π

i Z = π

The fact that some operator S stabilizes a state |ψ〉 can simply be expressed as
follows:

...
S

ψ

...

=
...

ψ

Example 2.6.1. The state

|ψ〉 =

20

has generating set of independent stabilizers {X ⊗ I ⊗ I, I ⊗X ⊗ I, I ⊗ I ⊗X}
as the following three diagrams

π

π

π

are all equal to |ψ〉 by rule (c).

The state

|φ〉 =

is stabilized by the group generated by {Z⊗Z⊗I, I⊗Z⊗Z,X⊗X⊗X} because
both

ππ

and

π π

can be shown to be equal to |φ〉 by fusing the spiders with rule (f) and we have

π ππ =
π

π

π

π

by copying with rule (p1), which is equal to |φ〉 because we can fuse with (f) and
then apply (i1).

We already know of a way to find stabilizers for a given ZX-state. This method
uses so-called graph states and local Clifford operations to get a ZX-diagram in
a form from which it is easy to see what the stabilizers are. We take a brief look
at how this works.

Definition 2.6.2. A graph state is a ZX-diagram that consists of Z-spiders with
phase 0 that are connected by edges with a Hadamard gate on it. There are no
parallel edges or self-loops and every Z-spider is connected to exactly one output
and no inputs.

21

Example 2.6.3. The following ZX-diagram is a graph state:

1

2

3

4

5

6

Here we have labeled the outputs 1, ..., 6.

Definition 2.6.4. A local Clifford operation on n qubits is an operation in C⊗n1 .

It has been shown in [9] that we can transform a ZX-diagram into a graph state
up to a local Clifford operation. To see how we find stabilizers for such a state,
we first illustrate how to find them for a graph state.

For each of the Z-spiders we can put an X on its output wire and a Z on all
of its neighbours’ and obtain a stabilizer. To see why this works we look at the
graph state of Example 2.6.3. If we pick the first Z-spider to put an X on the
output and a Z on its neighbours’. We get the following:

1

2

3

4

5

6

π π

π

22

Here we can push the two Z’s towards the first Z-spider and change their colour:

=

1

2

3

4

5

6

π

π

π

=

1

2

3

4

5

6

π

π

π

By copying one of the X’s and fusing them we get back to our original state,
showing that X⊗Z⊗ I⊗Z⊗ I⊗ I is indeed a stabilizer. Repeating the process
for all Z-spiders gives us n independent stabilizers, which generate the group
that only stabilizes the given state.

To find stabilizers for a graph state with a local Clifford operation C applied to
it, we can simply replace any stabilizer S for the graph state with CSC†, which
will be a stabilizer for the whole state. Moreover, as Cliffords preserve Pauli’s,
we still have a generating set for a stabilizer group.

Our goal here is to completely bypass graph states and give a direct way to find
stabilizers for any Clifford state. We want this method to be constructive and
to lead to an easy algorithm. In order to achieve this we will only transform a
Clifford state to a minimal degree before using its properties to discover what
operators stabilize it.

Going the other way, from stabilizers to a ZX-diagram, we can also use graph
states. There are ways to construct graph states from a given set of stabilizers, as
[7] indirectly shows, however, it does not provide an easy constructive algorithm.
Our goal is to again pass by graph states and produce a regular ZX-diagram
that is stabilized by a given set of stabilizers. Our method is somewhat similar
to and in the same spirit as [10] and [6], where maps to encode stabilizer codes
are constructed.

3 ZX to Stabilizers

The aim of this section is to create an algorithm that can take in the ZX-diagram
of any Clifford state and derive a generating set of stabilizers for it. We start off
by discussing graph-like diagrams, which are the standard form we will want a
diagram to be in before looking for stabilizers. Then we produce an algorithm
to find stabilizers in the simplified case where all spiders in the diagram have
phase 0. Lastly we generalize the solution to work for all Clifford states.

23

3.1 Graph-like diagrams

In order to retrieve the stabilizers from a given Clifford state, we will first put
it in a standard form that is useful for us. This form is similar to the one used
in [2], but differs slightly from it to suit our needs.

Definition 3.1.1. A ZX-diagram is called graph-like if

1. No two connected spiders have the same colour.

2. There are no parallel edges or self loops.

3. Every input or output is connected to a phaseless Z-spider and every phase-
less Z-spider is connected to at most one input or output.

Transforming a ZX-diagram into this form enables us to think of it as a graph.
This gives us some tools which will simplify the process of finding the stabilizers
of a given diagram. We can transform every ZX-diagram to be graph-like by
the following lemma.

Lemma 3.1.2. Every ZX-diagram is equal to a graph-like ZX-diagram.

Proof. Given a ZX-diagram, we first fuse all adjoining same-coloured spiders
together using rule (f). This gives us a diagram where no two connected spiders
have the same colour.

Next we can remove any occurrence of a parallel edge by applying Lemma 2.4.4
as follows:

α

β

...

...

=

α

β

...

...

=
√

2

α

β

...

...

=
√

2

α

β

...

...

Self loops can be eliminated as we have:

α

...
= α

...
= α

...

This also holds for red spiders, so we end up with a diagram that has no self
loops.

Now we ensure that property 3 is met whilst preserving properties 1 and 2. We
do this by adding a green spider to every input or output connected to a red

24

spider using the identity rule (i1):

α

...
= α

...

This does not introduce any same coloured connected spiders, nor do we obtain
any parallel edges or self loops, so the first two properties are still valid.

For inputs or outputs connected to a green spider with a nonzero phase we do
something similar:

α

...
= α

...

Again, we preserve properties 1 and 2.

All that is left is to ensure that every spider is connected to at most one input
or output. As we have already enforced that every input or output is connected
to a green phaseless spider, we only have to look at the case where multiple
inputs or outputs are connected to a single green phaseless spider. In that case
we can do the same as we did before to all but one of the input or output wires,
giving us:

...

...

=
...

...

Which ensures that property 3 is met, whilst also preserving properties 1 and
2. Therefore we have obtained a graph-like ZX-diagram that is equal to the
original diagram.

Remark. Note that when finding stabilizers for a given ZX-state, scalars are
unimportant because if S |ψ〉 = |ψ〉 then also Sα |ψ〉 = α |ψ〉. This means that
we will often drop the scalar that is induced by removing parallel edges, as this
will not have any effect on the stabilizers we will find.

As the proof of Lemma 3.1.2 is constructive, we can use it to create an algorithm
to put a ZX-diagram in the desired standard form. The method works for any
ZX-diagram, but we are only interested in Clifford ZX-states, so this algorithm
only regards those cases.

25

Algorithm 1: Finding an equal graph-like diagram

input : Clifford ZX-state D
output: Graph-like Clifford ZX-state that is equal to D up to a scalar
Fuse all the adjoining same-coloured spiders in D;
Remove all parallel edges in D;
Remove all self-loops in D;
Add a green spider to every output wire in D that is connected to a red
spider;

Add a green and a red spider to every output wire in D that is
connected to a green spider with a nonzero phase;

Add a green and a red spider to every output wire in D that is
connected to a green spider with more than one output wire;

return D ;

The correctness of this algorithm follows directly from the proof of Lemma 3.1.2.

Example 3.1.3. Consider the following ZX-diagram:

π

π
4

π
2 ππ

2

−π
2

π
2

π
2

This diagram is not graph-like, as it has a self loop and there are green spiders
connected to green spiders as well as red spiders to red spiders. When we merge
all the same coloured spiders together, we get:

−π
4 ππ

2

π
2

This has created some parallel edges which we still have to get rid of. As we
have seen, we can simply remove parallel edges and self loops in the ZX-Calculus,
leaving us with:

−π
4 ππ

2

π
2

What remains is to ensure that the outputs are connected to green phaseless

26

spiders:

−π
4 ππ

2

π
2

Resulting in a graph-like diagram that is equal to the original diagram (up to a
scalar).

Definition 3.1.4. An open graph is a triple (G, I,O), where G = (V,E) is an
undirected graph and I and O are subsets of V . We call I the set of inputs and
O the set of outputs of G.

Definition 3.1.5. Given a graph-like ZX-diagram D, the underlying open graph
G(D) is an open graph with vertices that correspond to the spiders and edges that
correspond to the wires of D. The sets I and O are exactly those vertices that
correspond to spiders that are connected to the inputs or outputs respectively.

Example 3.1.6. Below we see an example of a graph-like ZX-diagram together
with its underlying graph:

D =

−π
2

π
2

π

π
2π G(D) =

∈ O ∈ O∈ O

∈ I ∈ I

With the help of the underlying graph we can now apply graph theory to graph-
like ZX-diagrams. This will help us analyse the problem of finding stabilizers.

Remark. When discussing a certain graph-like ZX-diagram D we might implic-
itly use some of its underlying graphs properties. For example x : (x, y) ∈ E
will be understood to mean the spiders x that are connected to the spider y in
diagram D.

3.2 Phaseless States

We want to find stabilizers for any given Clifford state. However, to simplify
things, we start off by only allowing spiders with phase zero in the diagrams.

Definition 3.2.1. A ZX-diagram is called phaseless if all of its spiders have
phase 0.

27

We will show how to find the stabilizers of a phaseless ZX-state and then later
expand the method to work for any Clifford state.

The central property in this method for constructing stabilizers is that we can
fire a spider in either colour as follows.

Definition 3.2.2. Given a red node v, we say that we fire v in green when we
put a green π on all of its legs:

...

...

→

...

...

π π

ππ

We say that we fire v in red when we put a red π on an even number of its legs:

...

...

→

π π

... ...

2m times

...

Analogously, given a green node w, we that that we fire w in red when we put a
red π on all of its legs:

...

...

→

...

...

π π

ππ

Lastly, we say that we fire w in green when we put a green π on an even number

28

of its legs:

...

...

→

π π

... ...

2m times

...

This definition of firing will prove to be very useful for us when we look for
stabilizers for a Clifford diagram. The first reason for this is that firing nodes in
a diagram does not change the underlying state, as seen in the next proposition.

Proposition 3.2.3. Firing any spider in a phaseless ZX-diagram is allowed in
the ZX-Calculus.

Proof. For any X-spider we have

...

...

=

...

...

=

...

...

π

π

=

...

...

π π

ππ

showing that firing a red spider green is allowed in the ZX-Calculus. Flipping all
the colours provides us with a proof that firing a green node red also preserves
the diagram.

Next, firing a red spider red doesn’t change anything by spider fusion

...

...

=

...

...

2mπ =

π π

... ...

2m times

...

Again, flipping the colours also proves the case where we fire a green node
green.

Firing a spider, either in its own or in the opposite colour, does not change the
state itself, but it does introduce Pauli’s, which we will use to find the stabilizers
of the state.

29

Example 3.2.4. When we have the state

We can fire the leftmost and the middle Z-spider in red to obtain

π π

π π π π

Now we fire the bottom two X-spiders in red, by putting a red π on their two
leftmost legs.

π π

π π π π

ππ
ππ

These new π’s cancel with the ones that were already there from the previous
step by fusing them with rule (f) and then applying (i1), so we get

π π

By Proposition 3.2.3 we now see that the original state is equal to itself with
X ⊗X ⊗ I applied to it. In other words, we found X ⊗X ⊗ I as a stabilizer for
this state by firing certain spiders.

This example shows us that firing spiders can help us discover stabilizers, but
some questions still remain. How do we decide which spiders to fire? Can all
stabilizers be found with the help of firing? To answer the these questions we
take a look at what needs to happen if we are to find a stabilizer by firing some
spiders and leaving others be. To end up with a stabilizer, we need to find the
original state back, plus some Pauli’s on the output wires. This means that we

30

need all the internal wires to not have any left over π-gates on them. We are
certain to get rid of all the gates on these wires if every two neighbours fire in
the same colour. In that case the π’s they put on their wires get cancelled out,
as seen in the above example. So if a certain node x fires in the opposite colour,
then its neighbour y must fire in that colour too, putting a π on the wire to
x. As we assume the diagram to be graph-like, we know that this neighbour
must fire in its own colour. Because of how firing in the same colour works, we
see that y must have an even number of neighbours that fire in their opposite
colour. Only then can y counteract this by putting an even number of π’s on
its wires. This holds for any non-output node y: we need an even number of its
neighbours to fire.

For output nodes something similar holds. The output wires are the only wires
where we allow left over π’s, as these spiders will give us the stabilizers we are
looking for. Therefore if an odd number of neighbours of a output node fire in
their opposite colour (which is necessarily green, as we are dealing with graph-
like diagrams), this can still be counteracted by the output node. It simply
fires green in all the directions of those firing neighbours and additionally puts
a green π on the output wire, making the total number of green π’s it put on
the wires even again. If an even numbers of its neighbours fire green, it can fire
in those directions and not put a green π on the output wire.

In the next example we will see what goes wrong when an odd number of
neighbours of some node fire in the opposite colour.

Example 3.2.5. Starting again from the state

When we fire only the left green node, we get

π

π π

To compensate for the π’s on the internal wires, we need to fire the red spiders

31

in red, but we cannot do that on just one leg, so we would get, for instance

π

π π

ππ
ππ

Which is the same as

π

π
π

Where we see that we are left with red π’s on the wires. The two red nodes
had only one neighbour fire in red, which makes them unable to clear the wires
again.

We want to keep track of all the possible combinations of green and red π’s that
can be put on the output wires without changing the rest of the diagram, as
this will directly give us stabilizers. To do this we introduce binary variables ri
and gi representing whether or not a red or a green π has been put on the ith

output wire respectively. So in Example 3.2.4, we would have r1 = 1, r2 = 1
and r3 = 0, because the first and second output wires get a red π. As there are
no green π’s, we have g1 = g2 = g3 = 0.

Next, we also have to keep track of which spiders fired in the opposite colour
and which did not. As we are dealing with a graph-like ZX-diagram we know
that the nodes that are connected to the output are all green spiders. The only
way to get a red π on an output wire by firing spiders is to have the corre-
sponding output spider fire red. Therefore, we already have a variable that tells
us whether or not the ith output spider fired, namely ri. For all other nodes
qj ∈ V \O we introduce a new binary variable qj that models if the correspond-
ing node has fired in its opposite colour.

Remark. There is a natural way to order the output nodes of a graph-like ZX-
diagram, simply looking at which of the n output wires they are connected
to. In assigning variables q1, ..., qm to the m remaining internal nodes, we are
implicitly using an ordering of these nodes. We will not distinguish between
any such orderings and always choose an arbitrary one as everything we do will
be completely independent of which ordering is used. To simplify things, we
slightly abuse notation and write v for the binary variable associated to a node
v and vice versa. So ri is the node that corresponds to binary variable ri, which

32

is the ith output node, and qj is the node that corresponds to the variable qj
by the implicit ordering we picked.

Definition 3.2.6. Given an n-qubit phaseless graph-like ZX-state D with m+n
spiders, where r1, ..., rn are output spiders and q1, ..., qm are internal spiders, we
call ~v = (g1 ... gn r1 ... rn q1 ... qm)T ∈ F2n+m

2 a firing assignment vector for D.

What we want to do when we are given a firing assignment vector for a certain
diagram D is first to fire all green spiders x ∈ D in red if we have x = 1 in ~v.
Then we want to fire red spiders y ∈ D in red by putting a red π on every edge
where one of its neighbours already put one; so on every wire leading to a green
node x with x = 1. Next, we want to fire all red nodes y ∈ D in green if y = 1
in ~v and then fire the green spiders by putting a green π on every wire leading
to a red node y with y = 1 as well as on the ith output wire if gi = 1. This
series of firings is only allowed if it complies with Definition 3.2.2. Therefore we
need same-colour firings to occur on an even number of legs. This means that
we need some conditions to hold in order for ~v to lead to something useful.

Definition 3.2.7. A firing assignment vector ~v for a diagram D is called valid
if for every internal node q ∈ V \O we have∑

x:(q,x)∈E

x = 0 mod 2

and for every output node r ∈ O

r +
∑

x:(r,x)∈E

x = 0 mod 2

We can write these conditions more concisely in matrix form.

Definition 3.2.8. Given an n-qubit phaseless graph-like ZX-state D we define
the firing verification matrix MD of D to be:

MD :=

(
In
∅

∣∣∣∣N)
where N is the adjacency matrix of the underlying graph of D, using the implicit
ordering of the nodes of D.

Lemma 3.2.9. A firing assignment vector ~v for D is valid if MD~v = ~0.

Proof. Writing out the system of linear equations we see that we get exactly
the constraints described in Definition 3.2.7, as the adjacency matrix N of D
contains a 1 for every neighbour of a node.

33

Example 3.2.10. We take a look at the state from the previous example and
for once we explicitly give it some labeling.

D = r1 r2 r3

q1 q2

,

Now we have ~v = (g1 g2 g3 r1 r2 r3 q1 q2)T and we get the following adjacency
matrix for D

N =


0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0


Adding three columns for the output wires we get

MD =


1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0


Setting MD~v = ~0 ensures that ~v is a valid firing assignment.

Theorem 3.2.11. If a vector ~v = (g1 g2 ... gn r1 r2 ... rn q1 q2 ... qm)T is a valid
firing assignment for a phaseless graph-like ZX-state D, then Xr1Zg1⊗Xr2Zg2⊗
...⊗XrnZgn is a stabilizer for D.

Proof. Given fining assignment vector ~v, we fire all green nodes x ∈ V with
x = 1 in red. Next we fire the red nodes in red in every direction where its
neighbour has corresponding binary value 1. This doesn’t change the state
and we are ensured by MD~v = ~0 that every red node has an even number of
neighbours with value 1, so this firing is allowed. This leaves us with an X-spider
on the output wires where ri = 1, as ri fired red in that direction. Nothing else
changed in the diagram of D, as every other wire has either no red π’s on it, in
case the neighbouring green node didn’t fire, or two red π’s, in case the green
node did fire. Now we do the same for firing in green. We fire all red nodes
y ∈ V with y = 1 green and fire the green nodes green in every direction where
its neighbour has value 1 and if gi = 1 also on the ith output wire. The same
argument shows that we end up with the original state, with a Z-spider on any
output wire where gi = 1, followed by an X-spider whenever ri = 1.

We now know that any solution to MD~v = ~0 gives us a stabilizer for our state.
What we would like is that every stabilizer can be found this way. That would

34

mean that finding all the stabilizers for a given state can be reduced to solving a
system of linear equations. This turns out to be the case, as seen in the following
theorem.

Theorem 3.2.12. Every stabilizer S of a phaseless graph-like ZX-state D cor-
responds to at least one valid firing assignment ~v of D.

Proof. Let n be the number of outputs of D. We know that linearly inde-
pendent vectors (z1 z2 ... zn x1 x2 ... xn)T correspond to independent operators
Xx1Zz1⊗Xx2Zz2⊗ ...⊗XxnZzn . So if we find n valid firing assignment vectors
for |ψ〉 that are independent of each other when restricted to the first 2n entries
(g1 g2 ... gn r1 r2 ... rn)T , we know that we found n independent stabilizers and
therefore we found them all by Proposition 2.5.11. So we will look at how many
different stabilizers we can find using Theorem 3.2.11.

As MD contains the adjacency matrix of the underlying graph of D we know
something about its structure. We can use the fact yhat output nodes are not
connected to each other, as D is graph-like. We get the following general form

MD =

(
I ∅ AT

∅ A B

)
where B = BT . The dimension of the solution space to MD~v = ~0 is the
dimension of the kernel of MD. We have

dim(ker(MD)) = 2n+m− rank(MD)

= 2n+m− (n+ rank(
(
A B

)
))

= n+m− rank(

(
AT

B

)
)

= n+ dim(ker(

(
AT

B

)
))

The solutions we are interested in are the solutions where the first 2n entries
are not all zero, or in other words, solutions that lead to a non-trivial stabilizer.
The ones we are not interested in, solutions starting with 2n zeroes, are of the
form ~v = (0n 0n ~q)T . We then have

~0 = MD~v =

(
AT

B

)
~q.

So ~q ∈ ker(

(
AT

B

)
), so if we pick a basis {~q1, ~q2, ..., ~qd} for ker(

(
AT

B

)
), then the

vectors ~bi = (02n ~qi)
T ∈ ker(MD) are linearly independent and we can expand

this to a basis of ker(MD) by adding n more independent vectors, which cannot
have zeroes as their 2n first entries, as otherwise they would be dependent of
the ~bi’s. This means that we have found n vectors of which the first 2n entries
are linearly independent. Therefore, with the previous result, we have found n

35

independent stabilizers for D, showing that all stabilizers are found using this
method.

In the proof of this theorem we encountered solutions that we do not care
about: solutions starting with 2n zeroes. In the next example we see what
these solutions are and why we get them.

Example 3.2.13. We start again with the state

D = .

We already saw what MD looks like in Example 3.2.10. From this we see that

(
AT

B

)
=


1 1
1 1
1 1
0 0
0 0

 .

Now we have ~q = (1 1)T ∈ ker

(
AT

B

)
), so we get a trivial solution ~b1 =

(0 0 0 1 1)T . This corresponds to firing the bottom two red spiders in green

ππ
ππ

ππ

followed by firing the green nodes on their two bottom wires in green too

ππ
ππ

ππ

π π π π π
π

.

All the π’s cancel out and we are left with D. So we see that ~b1 is indeed a
solution that doesn’t give us a stabilizer; it has only internal firings and does
not leave anything on the output wires as a result.

36

These last two theorems directly lead to a relatively simple algorithm to find
stabilizers for a given phaseless Clifford state D.

Algorithm 2: Finding stabilizers for a phaseless ZX-state

input : Phaseless ZX-state D
output: Generating set of stabilizers for the group consisting of all the

stabilizers of D
Let D′ be the outcome of Algorithm 1 when applied to D;
Let n be the number of output wires of D;

Find a basis B = {~b1, ..., ~bn+d} for the solution space of MD′~v = ~0;
Pick a set B′ of n vectors from B such that they are independent when
restricted to the first 2n entries;

return The set of stabilizers that correspond to the vectors in B′ as in
Theorem 3.2.11;

Correctness of this algorithm can be shown by first noting that B consists of valid
firing assignment vectors of D′, which is a graph-like phaseless ZX-state because
Algorithm 1 does not introduce any phases. Next we know from Theorem ??
that B must include vectors that correspond to a generating set of stabilizers
for the group of all the stabilizers of D′. This means that we can indeed find n
vectors that are independent in the first 2n entries. These directly correspond
to such a generating set by Theorem 3.2.11 and as D′ and D are equal up to a
scalar, we have found generating stabilizers for D as well.

Example 3.2.14. For the state D of the last examples we found the matrix
MD in example 3.2.10. Solving MD~v = ~0 gives us

B = {



1
1
1
0
0
0
1
0


,



0
0
0
1
1
0
0
0


,



0
0
0
0
1
1
0
0


,



0
0
0
0
0
0
1
1


}

Where the last vector is the uninteresting internal solution we found in Example
3.2.13. Reducing to the first six entries we see that the other three are indepen-
dent and therefore give us a generating set of stabilizers Z ⊗Z ⊗Z, X ⊗X ⊗ I
and I ⊗X ⊗X.

3.3 Clifford States

Now that we have seen how we can find the stabilizers for a phaseless ZX-state,
it is time to generalize out solution to all Clifford states. We will still work with
the basic concept of firing nodes in a certain colour. However, firing nodes with
a phase has a little more going on than we have seen thus far.

37

Definition 3.3.1 (Firing π-spiders). Given a green π-spider x we say that we
fire x in red when we put red π’s on all of its wires, while multiplying by a phase
of −1:

...

...

π → (−1)

...

...

π

ππ

ππ

We say that we fire x in green when we put a green π on an even number of its
wires.

...

...

π → π

π π

... ...

2m times

...

Analogously, for a red π-spider y we say that we fire y in green when we put
green π’s on all of its wires, while multiplying by a phase of −1.

...

...

π → (−1)

...

...

π

ππ

ππ

Last, we say that we fire y in red when we put an even number of red π’s on its
wires.

...

...

π → π

π π

... ...

2m times

...

38

Just as in the phaseless case these definitions make sense in the way that we
can fire π-spiders without changing the meaning of the diagram. This follows
from the next proposition.

Proposition 3.3.2. Firing any π-spider in a Clifford diagram is allowed in the
ZX-Calculus.

Proof. For any green π-spider we have

...

...

π =

...

...

π

=

...

...

π

π

ππ

π

= (−1)

...

...

ππ

π

π

π

= (−1)

...

...

π

ππ

ππ

Which shows that firing a green π-spider red is allowed in the ZX-Calculus.
Again, the proof for firing a red π-spider green is obtained by flipping the
colours. Next, similar to the phaseless case, for any red π-spider we have

...

...

π =

...

...

(2m+ 1)π = π

π π

... ...

2m times

...

Where again, flipping the colours proves the green case.

Now we know how to fire red and green nodes with phase 0 or π. What remains
is to define firing for the ±π2 -phase case.

Definition 3.3.3 (Firing ±π2 -spiders). Given a green π
2 -spider x, we say that

we fire x in red when we put red π’s on all of its legs, followed by one green π

39

on one of its legs and we multiply by a factor i.

...

...

π
2 → i

...

...

π
2

ππ

π

π

π

For a green −π2 -spider x, we say that we fire x in red when we put red π’s on
all of its legs, followed by one green π on one of its legs and we multiply by a
factor −i.

...

...

−π
2 → (−i)

...

...

−π
2

ππ

π

π

π

In a similar way, but slightly different, for a red π
2 -spider y we say that we fire

y in green when we put a red π on one of its legs, followed by green π’s on all
of its legs and we multiply by a factor of −i.

...

...

π
2 → (−i)

...

...

π
2

ππ

π

π

π

Firing a red −π2 -spider is the same, but multiplying by a factor i instead.

...

...

−π
2 → i

...

...

−π
2

ππ

π

π

π

Lastly firing red and green ±π2 -spiders in their own colour is the same as in the

40

other phase cases; we put an even number of same coloured π’s on its wires.

...

...

±π
2 → ±π

2

π π

... ...

2m times

...

...

...

±π
2 → ±π

2

π π

... ...

2m times

...

Of course, the reason that firing ±π2 -spiders gets a little more complicated is
to make sure that we can still fire all nodes without changing the meaning of
the diagram we are working on. We show that this is indeed the case in the
next proposition. There is a slight difference in firing red and green nodes in
the opposite colour to make keeping track of the phases easier later on.

Proposition 3.3.4. Firing any ±π2 -spider in a Clifford diagram is allowed in
the ZX-Calculus.

Proof. For any green π
2 -phase spider we have

...

...

π
2 =

...

...

π
2

=

...

...

π
2

π π

ππ

= i

...

...

−π
2

π

π

ππ

= i

...

...

−π
2

π π

ππ

= i

...

...

π
2

ππ

π

π

π

41

Swapping the colours almost completes the proof for the red case, we only need
to switch the red and green π around.

...

...

π
2 = i

...

...

π
2

ππ

π

π

π

= (−i)

...

...

π
2

ππ

π

π

π

The proof for −π2 -spiders is very similar. In the green case we get a factor −i
instead of i because switching a green −π2 and a red π in the third step intro-
duces −i. In the red case, we have the same phase difference occuring for that
reason.

Lastly, firing in the same colour has the same proof as in Propositions 3.2.3
and 3.3.2 as adding an even number of π’s does not change the phase of the
spider.

We will approach finding stabilizers for a given state the same way we did in
the phaseless case. Because different kinds of spiders show different behaviour
when fired, we need to keep track of the types of spiders we have. Therefore, for
a graph-like diagram D we split its set of nodes V up even further. We already
had the set O ⊆ V of output nodes and introduce P,H ⊆ V \O, where P is the
set of spiders with phase π and H the set of spiders with phase ±π2 . The set H
can then be split in two, according to whether firing a spider introduces +i or
−i. We take H+ ⊆ H to be the set of green phase π

2 and red phase −π2 spiders
and H− ⊆ H to consist of the red phase π

2 and green phase −π2 spiders.

Again, we want to use binary variables to keep track of which nodes to fire and
which to leave alone. To this end we expand the definition of firing assignment
vector to the general Clifford case.

Definition 3.3.5. Given an n-qubit graph-like Clifford ZX-state D with n+m+r
spiders, where r1, ..., rn are output spiders, q1, ..., qm are internal spiders with
phases 0 or π and h1, ..., hr are internal spiders with phase ±π2 , we call ~v =

(g1 ... gn r1 ... rn q1 ... qm h1 ... hr)
T ∈ F2n+m+r

2 a firing assignment vector for D.

In order for such a firing assignment to be useful, we need some conditions to
hold. Again, when a neighbour of a node x fires, we want x to fire in the same
colour in that direction in order to counteract the π on that wire, leaving us
with the original state plus some Pauli’s on the output wires. If we want to
achieve this, we again need to put restrictions on our system, as phaseless and
π-spiders can only fire in their own colour on an even number of wires. The
±π2 -spiders are a little more complicated. They can fire their own colour on an
even number of wires in case they didn’t fire the opposite colour and can fire

42

on an odd number of wires if they did. So in order for all the internal wires to
be clean again after all the nodes have fired, we need the following constraints
to hold.

Definition 3.3.6. A firing assignment vector ~v for a Clifford diagram D is
called valid if for every phase 0 or phase π internal node q ∈ (V \ O) \ H we
have ∑

x:(q,x)∈E

x = 0 mod 2,

for every output node r ∈ O

r +
∑

x:(r,x)∈E

x = 0 mod 2

and for every phase ±π2 internal node h ∈ H∑
x:(h,x)∈E

x = h mod 2.

Once again, these conditions can be written down more concisely in matrix form
using the extended definition of the firing verification matrix.

Definition 3.3.7. Given an n-qubit graph-like Clifford ZX-state D we define
the firing verification matrix MD of D to be:

MD :=

(
In
∅

∣∣∣∣N)− (∅ ∅
∅ Ir

)
where N is the adjacency matrix of the underlying graph of D, using the implicit
ordering of the nodes of D and r is the number of phase ±π2 internal nodes.

This matrix can be used to verify if a firing assignment vector is valid.

Lemma 3.3.8. A firing assignment vector ~v for D is valid if MD~v = ~0.

Proof. Writing out the system of equations immediately yields the desired result.

Just like in the phaseless case, we now want to show that a basis of valid firing
assignment vectors corresponds to a generating set of stabilizers for the given
state. Again, we spit this into two parts. The first shows that valid firing
assignment vectors do indeed give stabilizers.

Theorem 3.3.9. If a vector ~v = (g1 ...gnr1 ...rnq1 ...qmh1 ...hr)
T is a valid firing

assignment for a graph-like Clifford-state D, then iS(~v) ·Xr1Zg1⊗Xr2Zg2⊗ ...⊗
XrnZgn is a stabilizer for D, where S(~v) = 2

∑
q∈P q +

∑
h∈H+ h−

∑
h∈H− h

43

Proof. The proof is similar to the phaseless case. We first fire all green nodes
with x = 1 red, then compensating on all its neighbours by firing red in that
direction, then doing the same for firing green. MD~v = ~0 ensures that all firings
are allowed. What we need to keep track of is the sign of the resulting state. As
we have seen, firing a π-spider introduces a factor −1, so we need to multiply by
i2 for every fired π-spider. Firing a green π

2 -spider or a red −π2 -spider introduces
a factor i. Lastly, firing a green −π2 -spider or a red π

2 -spider introduces a factor
−i. So we multiply by i−1. Because we always fire red first, we ensure that
there are no places where we need to switch red and green π’s around to let
them cancel out. So we introduce no more sign changes. This shows that the
sign of the resulting state is indeed iS(~v) and when we put this phase in the
stabilizer, we end up with our original state with a stabilizer applied to it.

The second part shows that we get enough stabilizers this way to get a generating
set.

Theorem 3.3.10. Every stabilizer S of a graph-like Clifford state D corre-
sponds to at least one valid firing assignment ~v of D.

Proof. If the first 2n entries of valid firing assignment ~vi of D are independent,
then the corresponding stabilizers are independent as well. We see that this
is true by first noting that independent vectors (z1 z2 ... zn x1 x2 ... xn)T corre-
spond to independent operators Xx1Zz1 ⊗Xx2Zz2 ⊗ ...⊗XxnZzn . This means
that the only chance to have any dependencies between the stabilizers is to have
them differ only by a factor is. However, this is impossible, as two operators
that stabilize the same state cannot differ by a scalar.

This means we can continue to use the same argument as in Theorem 3.2.12.
We have

MD =

(
I ∅ AT

∅ A B

)
−
(
∅ ∅
∅ Ir

)
,

which is still of the form (
I ∅ AT

∅ A B′

)
with B′ = B′†, so the argument still holds.

These last two theorems lead us to an algorithm for finding stabilizers from a
given Clifford diagram. This algorithm is very similar to Algorithm 2.

44

Algorithm 3: Finding stabilizers for a Clifford ZX-state

input : Clifford ZX-state D
output: Generating set of stabilizers for the group consisting of all the

stabilizers of D
Let D′ be the outcome of Algorithm 1 when applied to D;
Let n be the number of output wires of D;

Find a basis B = {~b1, ..., ~bn+d} for the solution space of MD′~v = ~0;
Pick a set B′ of n vectors from B such that they are independent when
restricted to the first 2n entries;

return The set of stabilizers that correspond to the vectors in B′ as in
Theorem 3.3.9;

Correctness of this algorithm can be shown the same way we showed it for
Algorithm 2 using the results of this section.

Example 3.3.11. Suppose we want to find stabilizers for the state

D =
π
2

We first find an equal diagram that is graph-like:

D′ =
π
2

Then we construct its firing verification matrix

MD′ =

1 0 0 0 1
0 1 0 0 1
0 0 1 1 1


and solve MD′~v = ~0. This gives us

B = {


1
1
1
0
1

 ,


0
0
1
1
0

}
These solutions correspond to the stabilizers X⊗X and −i ·XZ⊗Z = −Y ⊗Z

Example 3.3.12. Consider the state

D =

π π π

45

If we want to find stabilizers for this state, we first find a graph like diagram
that represents the same state, which we give some labeling:

D′ =

π π π

r1 r2 r3

q3

q6q5

q2q1

q4

Next, we create the firing verification matrix

MD′ =



1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0


Solving MD′~v = ~0 gives

B = {



0
0
0
1
0
0
0
0
0
1
0
0



,



0
0
0
0
1
0
0
0
0
0
1
0



,



0
0
0
0
0
1
0
0
0
0
0
1



}

These correspond to the stabilizers −X ⊗ I ⊗ I, −I ⊗X ⊗ I and −I ⊗ I ⊗X.

4 Stabilizers to ZX

In this section we aim to find a way of constructing a ZX-diagram for a state
of which we know the stabilizer group. This group will be given in terms of
a generating set of stabilizers and we will use them to build up the desired
diagram. We first describe the general idea of the solution, then we discuss the
normal form we want the stabilizers to be in and we finish the section by looking
at how filter diagrams can help us reach the desired algorithm.

46

4.1 Introduction

When we are given a stabilizer group on n qubits in terms of n independent
generators S = {S1, ..., Sn}, we know that the group stabilizes exactly one state
(up to a scalar). Our goal is to be able to construct an explicit ZX-diagram for
a state |ψ〉 from a generating set of its stabilizers.

To achieve this we use filter diagrams to make sure our state is stabilized by S
one generator at a time. Such a diagram is a map from n − 1 to n qubits and
uses the first qubit to absorb one of the generators. Given a generating set of

stabilizers S we choose one Si = (−1)si ·P (i)
1 ⊗...⊗P

(i)
n where P

(i)
k ∈ {I,X, Y, Z}.

Ideally the corresponding filter diagram will filter out Si as follows.

P
(i)
1 P

(i)
2 P

(i)
n−1 P

(i)
n

...(−1)si

F (Si)

...

=

...

F (Si)

...

(1)

Whilst leaving the other generators Sj = (−1)sj ·P (j)
1 ⊗ ...⊗P (j)

n ∈ S \Si alone
on the last n− 1 qubits.

P
(j)
1 P

(j)
2 P

(j)
n−1 P

(j)
n

...(−1)sj

F (Si)

...

=

...

(−1)sj

F (Si)

...P
(j)
2 P

(j)
n−1 P

(j)
n

(2)

This means that if we apply F (Si) to any n − 1-qubit state |ψ0〉, we obtain a
state |ψ1〉 = F (Si) |ψ0〉 that is guaranteed to be stabilized by Si. As for any
such |ψ0〉 we can apply (1) directly to obtain

P
(i)
1 P

(i)
2 P

(i)
n−1 P

(i)
n

...(−1)si

F (Si)
...

|ψ0〉

=

...

F (Si)
...

|ψ0〉

So we used up one of the n available qubits to ensure that one of the n given
generators is indeed a stabilizer for the state we are constructing. What remains
is to find a state |ψ0〉 which is in turn stabilized by the remaining, mostly

unaffected operators {(−1)sj · P (j)
2 ⊗ ... ⊗ P (j)

n |j 6= i}. If we can always find
such a state |ψ0〉, we can use the same filtering strategy all the way down until
there are no qubits left and we have found a state that is stabilized by all of our
original n stabilizers. It turns out that this strategy works, but we need to be
a bit careful as the next example points out.

47

Example 4.1.1. Say we are given the following generating set of stabilizers on
3 qubits: {Z ⊗ I ⊗ Z, Z ⊗ Z ⊗ I, X ⊗X ⊗X}. When we choose to filter out
Z⊗I⊗Z first, we are left with the task of finding a state |ψ0〉 which is stabilized
by the remaining two generators Z⊗I and X⊗X. The problem is that these two
operators do not commute and therefore cannot have a simultaneous eigenstate.
This means that there is no such |ψ0〉, leaving us empty handed.

4.2 Normal Form

Example 4.1.1 shows us that the filtering technique will not immediately work
on any set of generators. But it turns out that choosing different generators
of the same set of stabilizers will solve our problem. Our goal is to get the
generators in such a form that the n − 1 operators that remain after filtering,
form a generating set of stabilizers again. To do this we need the following
lemma.

Lemma 4.2.1. Given a generating set of stabilizers S on n qubits, for every
i ∈ {1, ..., n} there is at least one S ∈ S that has support on qubit i, i.e. S =
(−1)s · P1 ⊗ ...⊗ Pn with Pi 6= I.

Proof. Suppose there is a qubit i ∈ {1, ..., n} with no support in S. If n = 1
we have S = {I}, which is a contradiction as this set is not independent. Now
suppose n > 1. We can make a new set S ′ by taking every S ∈ S and removing
the ith Pauli. So we let

S ′ = {(−1)s · P1 ⊗ ...⊗ Pi−1 ⊗ Pi+1 ⊗ ...⊗ Pn|(−1)s · P1 ⊗ ...⊗ Pn ∈ S}.

We see that S ′ consists of operators from n − 1 to n − 1 qubits. However,
these operators still commute and are independent, as S is a generating set of
stabilizers and we only removed a column of I’s. So we have found n indepen-
dent, commuting stabilizers for a state on n− 1 qubits. This is a contradiction.
Therefore we cannot have one qubit with no support.

We will use Lemma 4.2.1 to define the normal form for a generating set of
stabilizers. This form will ensure that the remainder after filtering out the first
stabilizer will be a generating set of stabilizers again. To make this possible we
need to pick a compatible Pauli for each of X,Y and Z.

Definition 4.2.2. Given P ∈ {X,Y, Z} we call Q(P) ∈ {X,Y, Z} the compat-
ible Pauli of P . We have Q(X) = Z, Q(Y) = X and Q(Z) = X.

Remark. The compatible Pauli of P has to differ from P , as we will see later.
However, the choice between the other two possibilities has been made purely
for simplicity of the resulting diagrams. Other choices would have worked just
as well. The only difference is that we would have needed more spiders to create
our filter diagrams later on.

Definition 4.2.3 (Stabilizer Normal Form). Given a generating set of stabiliz-

ers S = {S1, ..., Sn} where Si = (−1)si ·P (i)
1 ⊗ ...⊗P

(i)
n , we say S has a normal

48

form if there is an ordering (S1, ..., Sn) of S such that the following properties
hold:

1. P
(i)
i ∈ {X,Y, Z} for all i ∈ {1, ..., n}.

2. P
(j)
i ∈ {I,Q(P

(i)
i)} for all i ∈ {1, ..., n} and i < j ≤ n.

We say that such an ordering (S1, ..., Sn) is in normal form.

When we order the stabilizers of a generating set and put them in a table, we see
that it is in normal form if it has support on the diagonal and in every column,
below the diagonal, we only find I and one other Pauli, depending on the one
on the diagonal.

Example 4.2.4. The generating set of stabilizers S = {X ⊗X ⊗X ⊗X,Z ⊗
Z ⊗ I ⊗ I, I ⊗ I ⊗ Y ⊗Z,Z ⊗ I ⊗X ⊗X} is in normal form when ordered from
left to right. This can be most easily checked by writing S in a table.

X ⊗ X ⊗ X ⊗ X
Z ⊗ Z ⊗ I ⊗ I
I ⊗ I ⊗ Y ⊗ Z
Z ⊗ I ⊗ X ⊗ X

Now we see that indeed the diagonal does not have an I on it. Furthermore, in
the first column we only have I and Z under the diagonal, in the second we only
have I and in the third only X. Ensuring that this ordering of S is in normal
form.

Rearranging the stabilizers in S as follows

I ⊗ I ⊗ Y ⊗ Z
Z ⊗ Z ⊗ I ⊗ I
X ⊗ X ⊗ X ⊗ X
Z ⊗ I ⊗ X ⊗ X

makes it so that this ordering is not in normal form. This is because the first
diagonal entry is an I, the first column has both X and Y below the diagonal
and the third column has an X below the diagonal whilst there is already an X
on the diagonal as well.

Getting a generating set of stabilizers in normal form is useful, because it will
ensure that we can filter out the first stabilizer and be left with another gener-
ating set of stabilizers on n− 1 qubits, as we see from the next proposition.

Proposition 4.2.5. Given a generating set of stabilizers S with normal form
(S1, ..., Sn), the resulting set of operators after filtering out S1,

S ′ = {S′i = (−1)si · P (i)
2 ⊗ ...⊗ P (i)

n |1 < i ≤ n},

is a generating set of stabilizers on n−1 qubits that has normal form (S′2, ..., S
′
n).

49

Proof. Suppose we have two operators S′i, S
′
j ∈ S ′, S′i = (−1)si ·P (i)

2 ⊗ ...⊗P
(i)
n

and S′j = (−1)sj · P (j)
2 ⊗ ... ⊗ P (j)

n . As the corresponding Si, Sj ∈ S commute

we know that there is an even number of indices k ∈ {1, ..., n} such that P
(i)
k

and P
(j)
k anti-commute. As i, j > 1 we know that P

(i)
1 , P

(j)
1 ∈ {I,Q(P

(1)
1)},

because S is in normal form. Therefore P
(i)
1 and P

(j)
1 must commute. This

means that we have an even number of indices k ∈ {2, ..., n} such that P
(i)
k and

P
(j)
k anti-commute. Which shows that S′i and S′j commute.

Next suppose that S′2, ..., S
′
n are dependent. We have∏

2≤i≤n

aiS
′
i = I ⊗ ...⊗ I for some ai ∈ {0, 1}, not all 0. (3)

Because S1, ..., Sn are independent we must have S =
∏

2≤i≤n aiSi 6= I⊗ ...⊗ I.
As the last n− 1 Pauli’s of S are equal to I by (3), the first Pauli of S cannot

be I. The only other possibility for this first Pauli is Q(P
(1)
1), because S is in

normal form. So we have S = (−1)sQ(P
(1)
1)⊗ I ⊗ ...⊗ I for some s. However,

as Q(P
(1)
1) 6= P

(1)
1 we have that S and S1 do not commute, which is a contra-

diction. So S′2, ..., S
′
n must be independent of each other.

Lastly, the fact that S ′ is in normal form follows directly from S being in normal
form.

Having a generating set of stabilizers in normal form solves the problem we
encountered in Example 4.1.1. As after filtering out the first stabilizer we end
up with another generating set in normal form. So we can repeat the process all
the way down. What we would like, is that we can use the filtering method for
finding the underlying state for every generating set of stabilizers S. It turns
out that this is possible by transforming S into an equivalent generating set
that is in normal form.

Proposition 4.2.6. For any generating set of stabilizers S there is a generating
set S ′ with a normal form that stabilizes the same state.

Proof. We prove this by induction on n. Suppose n = 1. Then S consists of
one Pauli. This Pauli cannot be I, because S is an independent set. Therefore
the diagonal property is satisfied. The sub-diagonal property is automatically
satisfied too. So we have that S is in normal form already.

Now suppose n > 1. By Lemma 4.2.1 we can find at least one S ∈ S that has
support on the first qubit. We set this to be our first stabilizer S′1. We now
have a Pauli other than I in the first diagonal entry.

Given two stabilizers S, T ∈ S, we can create another generating set of sta-
bilizers, S ′ that stabilizes the same state, by replacing T by ST . So we can

50

ensure that the second property is met in the first column by replacing every
T ∈ S \ {S′1} that has an unwanted first Pauli by S′1T . As S′1 has support on
the first entry we can see from the basic properties of Pauli matrices that we
do indeed get that the first column now obeys the second property for being in
normal form.

Next, we can follow the proof of Proposition 4.2.5 to see that the n− 1 by n− 1
block in the bottom right is again a generating set of stabilizers, however, this
time not necessarily in normal form. We can apply the induction hypothesis and
find a way to reorder and replace the rows of this block to get it in normal form.
Applying these same reorderings and replacements on the last n− 1 rows of the
whole table results in a table for S ′. Clearly S ′ stabilizes the same state as S
does, as we only rearranged the rows and added some rows to others. Also the
bottom right n−1 by n−1 block is in normal form by the induction hypothesis.
This means that the 2nd to the nth diagonal entries are not I and per column
we have only one Pauli other than I under the diagonal. We didn’t touch the
first row, so also the first diagonal entry is not an I. Lastly, in the last step
we rearranged and replaced within the last n − 1 rows. This cannot introduce
a new Pauli to the first column, so this still satisfies the normal form property.
Therefore the entire table for S ′ is in normal form.

The proof of this last proposition shows us how to construct a new generating
set of stabilizers that is in normal form and stabilizes the same state. This leads
to the following algorithm.

Algorithm 4: Putting stabilizers in normal form

input : A set S of n generating stabilizers on n qubits
output: A normal form (S′1, ..., S

′
n) of a generating set of stabilizers

that stabilizes the same state as S
Choose an ordering (S1, ..., Sn) of S and create the array
S = [S1, ..., Sn];

for i = 1, ..., n do
Pick j ≥ i such that S[j] has support on the ith qubit;
Switch S[i] and S[j];

Let P be the ith Pauli of S[i];
for j = i+ 1, ...n do

if the ith Pauli of S[j] is not I or Q(P) then
Replace S[j] by S[i]S[j];

end

end

end
return The ordering (S[1], ..., S[n]);

The correctness of this algorithm follows from the proof of Proposition 4.2.6.

Example 4.2.7. We saw that the generating set from Example 4.1.1 caused
some problems. We can solve these by putting S in normal form. We start with

51

the original stabilizers

Z ⊗ I ⊗ Z
Z ⊗ Z ⊗ I
X ⊗ X ⊗ X

We already have support on the first diagonal entry, so we can immediately start
using the first row to clear the others of Z or Y in the first column. So we add
the first row to the second to obtain

Z ⊗ I ⊗ Z
I ⊗ Z ⊗ Z
X ⊗ X ⊗ X

which is in normal form.

4.3 Filter Diagrams

What we have seen so far is that if we can make filter diagrams that satisfy (1)
and (2), we can use them to construct a ZX-diagram for a state |ψ〉, given a
generating set S of its stabilizers. What remains is to actually create such filter
diagrams.
We will start by putting S in normal form (S1, ..., Sn). The idea is to turn the

first Pauli operator P
(1)
1 = X,Y, Z into a Z, then make n copies of this Z, use

the first copy to absorb the phase (−1)si and change the others so that they
absorb the rest of the Pauli’s of that stabilizer. This process is best viewed
through an example.

Example 4.3.1. If we want to make a filter diagram for −X ⊗X ⊗Z it would
look like this.

π

Plugging in our stabilizer −X ⊗X ⊗ Z we get

(−1)

π

π π π

52

We see that we can now change the first X to a Z and create 3 copies.

(−1)

π

π π

π

= (−1)

π

π π

π

π

π

One copy goes down and by getting absorbed by the bottom red π it changes the
phase to +1. Of the other two, one is transformed into an X to absorb the
second Pauli, whilst the other remains a Z and absorbs the third.

π

π

2ππ =

π

2π2π

This last diagram of course being equal to our original filter diagram, as desired.

On the other hand, if we plug in Z ⊗ X ⊗ X, a stabilizer that commutes with
X ⊗X ⊗ Z and could appear after it in normal form, we get

π

π π π

The Z gets transformed to an X, the first X just passes through and the last X
gets copied.

π

π π

π

π

53

We see that we end up with the desired result, as the two left over X’s merge
and disappear.

π

π π

2π

So indeed we have that this stabilizer is left mostly intact. We saw that we can
end up with some left over π’s on the wires to the leftmost node. It turns out
that these appear whenever the ith Pauli of the filtered stabilizer doesn’t commute
with the stabilizer that is plugged in. As these stabilizers will always commute
we end up with an even number of these left over π’s, making sure that they
always disappear. We will see that this is the case in general.

Filter diagrams will consist of two parts. The first turns the incoming Pauli into
n copies of a Z spider, of which it uses one to get rid of the phase. The second
gets one of the remaining n−1 copies of Z and uses this to absorb the incoming
Pauli on that wire. Using these parts we define a filter diagram as follows.

Definition 4.3.2 (Filter diagram). Given a stabilizer S = (−1)s · P1 ⊗ P2 ⊗
...⊗ Pn the filter diagram F (S) of S is

sπ

P̂1

P̂i
†

P̂i

i ∈ {2, ..., n}

P̃i

Where

X̂ := Ŷ := −π
2 Ẑ := Î :=

and

X̃ := Ỹ := Z̃ :=

54

Ĩ :=

Remark. Note that as all the P̂ are unitary, we have P̂ † = P̂−1. This means
that

X̂† := Ŷ † := π
2 Ẑ† := Î† :=

To prove that these filter diagrams do indeed show the behaviour that we want,
we need a couple of lemmas. These are about the properties of smaller parts of
filter diagrams and will make it easier to see the big picture later on. However,
before we take a look at these, we first need another small lemma about the
P̂ -spiders that we just defined.

Lemma 4.3.3. For any Pauli P 6= I we have:

P̂

P

=

P̂

π

Proof. We distinguish between the three possible cases P = X,Y, Z. First,
when plugging in P = X we get:

X̂

X

=

π

=

π

=

X̂

π

Next, taking P = Y gives us

Ŷ

Y

=

π

π

π
2

i

=

π

π

π
2

=

π

−π
2

=

Ŷ

π

55

Finally, the case where P = Z is completely trivial as:

Ẑ

Z

=

π

=

π

=

Ẑ

π

Using Lemma 4.3.3 we can now examine the behaviour of the left side of a filter
diagram when it encounters the Pauli it was meant for.

Lemma 4.3.4. For any Pauli P 6= I and phase (−1)s we have

(−1)s

sπ

P̂ i ∈ {2, ..., n}

P

=

sπ

P̂ i ∈ {2, ..., n}

π

Proof. By applying Lemma 4.3.3 we have:

(−1)s

sπ

P̂ i ∈ {2, ..., n}

P

= (−1)s

sπ

P̂

i ∈ {2, ..., n}
π

56

Copying the Z-spider with rule (c) we get:

(−1)s

sπ

P̂
i ∈ {2, ..., n}

π

π

Next we absorb the bottom Z-spider by applying (c) or Proposition 2.4.5 to
obtain

sπ

P̂ i ∈ {2, ..., n}

π

Next we take a look at what happens on the right side of a filter diagram.

Lemma 4.3.5. For any Pauli P we have

P̂ †

P̂

P

=

P̂ †

P̂

χ(P)π

where χ(P) = 1 if P 6= I and χ(P) = 0 if P = I.

57

Proof. We split the proof into two cases: P = I and P 6= I. We first consider
the easiest case P = I, the proof of which is just writing out the definition.

Î†

Î

I

= =

Î†

Î

χ(I)π

Next, taking P 6= I, we apply Lemma 4.3.3 to the top and obtain

P̂ †

P̂

P

=

P̂ †

P̂

π

So we can just push the Z-spider through by using (f) twice and get

P̂ †

P̂

π

as desired.

This gives us all that we need to show that the filter diagram defined in 4.3.2
satisfies (1). In other words, our filter diagrams do actually behave the way we
want them to.

58

Theorem 4.3.6. Given a stabilizer S = (−1)s · P1 ⊗ P2 ⊗ ... ⊗ Pn the filter
diagram F (S) of S, as defined in 4.3.2, satisfies

P1 P2 Pn...

F (S)

...

(−1)s

=

...

F (S)

...

Proof. Writing out the definition we have

P1 P2 Pn...

F (S)

...

(−1)s

= (−1)s

P1 Pi

sπ

P̂1

P̂i
†

P̂i

i ∈ {2, ..., n}

P̃i

Now we use Lemma 4.3.4 to obtain

sπ

P̂1

P̂i
†

P̂i

i ∈ {2, ..., n}

χ(Pi)πP̃i

59

Next by applying Lemma 4.3.5 we get

sπ

P̂1

P̂i
†

P̂i

i ∈ {2, ..., n}

χ(Pi)πP̃iπ

What remains is to show that

χ(P)πP̃π = P̃ (4)

First, for P = I we have

χ(I)πĨπ = π

=

= Ĩ

With P 6= I we get

χ(P)πP̃π = ππ

=

= P̃

60

proving (4). Returning to the filter diagram, we apply (4) and obtain

sπ

P̂1

P̂i
†

P̂i

i ∈ {2, ..., n}

P̃i

which is F (S), as we desired.

Now that we have seen that our filter diagram satisfies (1) for the stabilizer that
it is supposed to filter out, it is time to look at what happens when stabilizers
that are lower in the table get encountered. We will assume that the table we
are stabilizing is in normal form.

If we are constructing a diagram for the state that is stabilized by a given
stabilizer table in normal form, we have some knowledge of what stabilizers can
come after the one we are filtering out. When we are filtering a stabilizer of the
form Si = X ⊗ ... we know that we can only have Sj = I ⊗ ... or Sj = Z ⊗
Similarly when filtering Si = Y ⊗ ... or Si = Z ⊗ ... we can only get Sj = I ⊗ ...
or Sj = X ⊗ The next lemma tells us something about the behaviour of the
left part of a filter diagram when we encounter the nontrivial stabilizers lower
in the table.

Lemma 4.3.7. For any Pauli P 6= I we have

P̂

Q(P)

=

P̂

π

Proof. We prove this separately for all three cases P = X,Y, Z. First taking
P = X we write out the definitions and change the colour using rules (i2) and

61

(h):

X̂

Q(X)

=

π

=

π

=

X̂

π

Next, P = Y is even easier as we can just fuse and un-fuse using (f) twice:

Ŷ

Q(Y)

=

π

−π
2

=

π

−π
2

=

Ŷ

π

Finally, the case P = Z is trivial:

Ẑ

Q(Z)

=

π

=

π

=

Ẑ

π

Our goal for the right part of a filter diagram is to let every Pauli go through.
That way we get the behaviour of property (2). As we’ve seen in Example
4.3.1, it is possible that some red π’s leak to the side. This lemma captures
what happens to the right side of filter diagrams.

62

Lemma 4.3.8. Given two Pauli’s P and Q the following holds

P̂ †

P̂

Q

P̃ =

P̂ †

P̂

P̃

Q

Cπ

where C = 0 if P and Q commute and C = 1 if they do not.

Proof. We will prove this by looking at all the cases for P and Q. First, note
that if Q = I then P and Q always commute. Therefore C = 0 and we are done.

Now, if P = I we also have C = 0, so what we want to show is:

Q

=

Q

This can be easily proven as for any Pauli Q:

Q

=

Q

=

Q

=

Q

=

Q

=

Q

63

What remains are the cases P,Q ∈ {X,Y, Z}. We need to show that:

P̂ †

P̂

Q

=

P̂ †

P̂

Q

Cπ

If P = Q we know that C = 0, as they definitely commute. In that case, by
Lemma 4.3.3 we have

P̂ †

P̂

P

=

P̂ †

P̂

π

We push the green π through and get:

=

P̂ †

P̂

π

64

As we are dealing with unitaries we know P̂ † = P̂−1. Therefore we can reverse
Lemma 4.3.3:

=

P̂ †

P̂

P

which is the desired result as we know C = 0.

Six cases remain. Three of these are of the form Q=Q(P) as in Definition 4.2.2.
We start with those, applying Lemma 4.3.7 to get:

P̂ †

P̂

Q(P)

=

P̂ †

P̂

π

65

Then we copy the red π:

=

P̂ †

P̂

π

π

Just like we did previously, we can reverse Lemma 4.3.7 because P̂ is unitary.
This gives the desired result:

=

P̂ †

P̂

π

Q(P)

66

The last three cases we do separately, starting with P = X,Q = Y :

X̂†

X̂

π

π
i

=

π

π
i

=

π

i

π

=

π

i π

π

= i π

π

π

= i π

π

π

=

i

π

π

π

67

We continue with P = Y,Q = Z:

Ŷ †

Ŷ

π

=

−π
2

π
2

π

= (−i)

π
2

π
2

π

= (−i)

π
2

π
2

π

=

π
2

−π
2

π

=

−π
2

−π
2

π

π

=

−π
2

−π
2

π

π

π

=

−π
2

π
2

π

π

Lastly, we look at P = Z,Q = Y , which is relatively simple:

Ẑ†

Ẑ

π

π
i

=

π

π
i

=

π

i

π

=

i
π

π

π

As we have covered the seven cases where P = I or Q = I, then looked at the
three remaining possibilities for P = Q, followed by the six cases I 6= P 6= Q 6= I,
we have proven the lemma for all sixteen combinations of Pauli’s P and Q.

68

Theorem 4.3.9. Given a generating set of stabilizers S in normal form (S1, ..., Sn),

where Sj = (−1)sj · P (j)
1 ⊗ ...⊗ P (j)

n we have

P
(j)
1 P

(j)
2 P

(j)
n

...

F (S1)

...

(−1)sj

=

...

F (S1)

...(−1)sj P
(j)
2 P

(j)
n

for j > 1.

Proof. We start by writhing out the definition of F (S1):

P
(j)
1 P

(j)
2 P

(j)
n

...

F (S1)

...

(−1)sj

=

P
(j)
1 P

(j)
i

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

69

By Lemma 4.3.8 we have, with Ci = 0 if P
(1)
i and P

(j)
i commute and Ci = 1 if

they do not:

=

P
(j)
1

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

Ciπ

P
(j)
i

Fusing the red spiders we get:

=

P
(j)
1

∑n
i=2 Ciπ

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

P
(j)
i

In the case that
∑n
i=2 Ciπ = 0 mod 2π we know that S1 and Sj commute in

an even number of the entries 2, ...n. As S1 and Sj stabilize the same state,

we know that they commute as a whole. This means that P
(1)
1 and P

(j)
1 must

commute as well. Because S is in normal form we have that P
(j)
1 ∈ {I,Q(P

(1)
1)}.

But as P
(1)
1 and Q(P

(1)
1) don’t commute, we know that P

(j)
1 = I. So in that

70

case:

P
(j)
1

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

P
(j)
i

=

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj P
(j)
i

which is the desired result.

Similarly, in the other case, in which
∑n
i=2 Ciπ = π mod 2π, we know that

71

P
(j)
1 = Q(P

(1)
1). Therefore we can apply Lemma 4.3.7 and obtain:

P
(j)
1

π

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

P
(j)
i

=

Q(P
(1)
1)

π

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj

P
(j)
i

=

s1π

ˆ
P

(1)
1

ˆ
P

(1)
i

†

ˆ
P

(1)
i

i ∈ {2, ..., n}

˜
P

(1)
i

(−1)sj P
(j)
i

proving the theorem.

With this theorem we have shown that property (2) is indeed satisfied by the
filter diagram that we constructed in Definition 4.3.2. This means that the filter
diagrams behave as desired. We can therefore use them to create a ZX-diagram
for any given generating set of stabilizers.

Theorem 4.3.10. Given a generating set of stabilizers S for a state |ψ〉 with

normal form (S1, ..., Sn), where Si = (−1)si · P (i)
1 ⊗ ... ⊗ P

(i)
n . If we write

72

S′i = (−1)si · P (i)
i ⊗ ...⊗ P

(i)
n , then up to normalization

|ψ〉 =

...

F (S′1)

F (S′2)

F (S′n)

...

...

.... . .

Proof. We use induction on n.

When n = 1 we have normal form (S1), where S1 = (−1)s1 · P1. By Theorem
4.3.6 we see that

F (S′1)

P1(−1)s1

=

F (S1)

P1(−1)s1

=

F (S1)

=

F (S′1)

Let Ti = (−1)si+1 · P (i+1)
2 ⊗ ... ⊗ P

(i+1)
n . By Proposition 4.2.5 we see that

(T1, ..., Tn−1) is a stabilizer normal form for some state |ψ′〉. By the induction
hypothesis we have

|ψ′〉 =

...

F (T ′1)

F (T ′2)

F (T ′n−1)

...

...

.... . .

=

...

F (S′2)

F (S′3)

F (S′n)

...

...

.... . .

73

So by using Theorem 4.3.9 we see that for all i ∈ {2, ..., n} we have

F (S′1)

F (S′2)

F (S′n)

...

...

.... . .

P
(i)
1 P

(i)
2 P

(i)
n

...(−1)si

=

...

F (S′1)

F (S′2)

F (S′n)

...
.... . .

(−1)si P
(i)
2 P

(i)
n

...

=

...

F (S′1)

F (S′2)

F (S′n)

...

...

.... . .

by Theorem 4.3.6 we also have that with i = 1:

F (S′1)

F (S′2)

F (S′n)

...

...

.... . .

P
(1)
1 P

(1)
2 P

(1)
n

...(−1)s1

=

...

F (S′1)

F (S′2)

F (S′n)

...

...

.... . .

So the diagram is indeed stabilized by S1, ..., Sn and as up to normalization

74

there is only one n-qubit state that is stabilized by n independent stabilizers,
the diagram must equal |ψ〉.

Using this last theorem we can directly formulate our final algorithm.

Algorithm 5: Finding a ZX-state for given stabilizers

input : A set S of n generating stabilizers on n qubits
output: A ZX-diagram D that represents a state that is stabilized by S
Let (S1, ..., Sn) be the ordering that we get from Algorithm 4 when

applied to S, where Si = (−1)si · P (i)
1 ⊗ ...⊗ P

(i)
n for every i = 1, ..., n;

Let S′i = (−1)si · P (i)
i ⊗ ...⊗ P

(i)
n for every i = 1, ..., n;

Let D be the filter diagram of S′n;
for i = n− 1, ..., 1 do

Replace D by D plugged into the filter diagram of S′i;
end
return D;

The correctness of this algorithm follows immediately when noting that (S1, ..., Sn)
stabilizes the same state as S by Proposition 4.2.6 and then applying Theorem
4.3.10.

Example 4.3.11. Given the following generating set of stabilizers S = {X ⊗
Z,Z⊗X}. The first step in finding a state stat is stabilized by these operators is
to find a set of stabilizers that generate the same group that has a normal form.
It so happens that (X ⊗ Z,Z ⊗X) is a normal form, so we pick that. Now we
create the state by plugging the respective filter diagrams together:

This can then be simplified to become:

Example 4.3.12. Consider the following generating set of stabilizers S = {X⊗
Y ⊗Z,−I⊗I⊗Z,X⊗I⊗I}. We first find a normal form that stabilizes the same
state. We can simply take S1 = X⊗Y ⊗Z, but then we need to change X⊗I⊗I
out for I ⊗ Y ⊗Z by multiplying it by S1 in order for our table to be in normal
form. We then take this to be S2. Lastly we can just take S3 = −I ⊗ I ⊗ Z.

75

Now that we have a normal form, we can plug in the filter diagrams and obtain:

−π
2

π
2

−π
2

π

Which we can simplify to:

π
2 π

5 Discussion and Future Work

In this section we will briefly discuss the results that we derived in the last two
sections. We look at the similarities between the problems and describe related
problems that arose on the way.

First of all, the two problems that we looked into, finding stabilizers for a given
ZX-diagram and finding a ZX-diagram for a given set of stabilizers, seem to be
each others inverse, or dual. The solutions that we presented here however lack
any direct link. Where we find stabilizers by solving systems of equations using
linear algebra, we do not apply any of this when going back. The main reason
for this is that the resulting stabilizers are only part of the solution to the sys-
tem of equations. We are only interested in the output nodes and whether or
not they fired. The internal firings are disregarded, as they do not add anything
to the actual stabilizers, apart from contributing to the sign. It is much harder
to retrieve these internal workings when presented only with the resulting sta-
bilizer. We cannot reconstruct the whole matrix MD from a basis of stabilizers,
as these are only the first 2n entries of the actual solutions. Next to that, we
would not even know the dimension of the solutions we are looking for, as we
are ignorant of the amount of internal nodes that a certain state should have.
Instead of working around these problems, we opted for another solution, taking
for granted that the connection between the two methods would be less explicit.

Going the other way, from stabilizers to diagrams, we used a layer-by-layer con-
struction that filtered out every stabilizer, making sure that each of them indeed
stabilizes the constructed state. Any Clifford state can be transformed into the
general form of a state constructed by filter diagrams as in Theorem 4.3.10,
as the ZX-Calculus is complete for stabilizer quantum mechanics. From this it
would be easy to read off a generating set of stabilizers for that state. We have
not looked into how plausible this method is for finding stabilizers from a given

76

state, but it might be interesting to research that in the future. This would give
us a nice two way algorithm for going back and forth between ZX-Calculus and
stabilizer theory.

The algorithms that are presented, for going from ZX-Calculus to stabilizers and
to go back, have not yet been implemented. All of them seem very suitable for
implementation in PyZX. This is a Python tool for reasoning in ZX-Calculus,
enabling the user to visualize and rewrite large-scale quantum circuits [13].

77

References

[1] Coecke, B. Kissinger, A. Picturing Quantum Processes, Oxford University
Press (2007).

[2] Duncan, R. Kissinger, A. Perfrix, S. Van de Wetering, J. Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus Quantum Physics
and Logic (2019).

[3] De Wolf, R.Quantum Computing: Lecture Notes (2019)

[4] Backens, M. Perdrix, S. Wang, Q.A Simplified Stabilizer ZX-calculus,
Quantum Physics and Logic (2017).

[5] Backens, M.The ZX-calculus is complete for stabilizer quantum mechanics,
New Journal of Physics, Volume 16, Issue 9 (2014).

[6] Duncan, R. Lucas, M. Verifying the Steane code with Quantomatic, Quan-
tum Physics and Logic (2014).

[7] Schlingemann, D. Stabilizer codes can be realized as graph codes (2001).

[8] Preskill, J. Quantum Computation: Lecture Notes, Chapter 7: Quantum
Error Correction.

[9] Van den Nest, M. Dehaene, J. De Moor, B. Graphical description of the
action of local Clifford transformations on graph states, Physical Review
A, vol. 69, Issue 2 (2004).

[10] Grassl, M. Variations on Encoding Circuits for Stabilizer Quantum Codes
Chee Y.M. et al. (eds) Coding and Cryptology. IWCC 2011. Lecture Notes
in Computer Science, vol 6639. Springer, Berlin, Heidelberg (2011)

[11] Aaronson, S. Gottesman, D. Improved Simulation of Stabilizer Circuits,
Physical Review A, vol. 70, Issue 5 (2004).

[12] Dixon, L. Duncan, R. Graphical Reasoning in Compact Closed Categories
for Quantum Computation, R. Ann Math Artif Intell (2009).

[13] Kissinger, A. Van de Wetering, J. PyZX: Large Scale Automated Diagram-
matic Reasoning, arXiv:1904.04735v1 (2019).

[14] Kelly, J. A Preview of Bristlecone, Google’s New Quantum Processor,
Google AI blog (2018).

78

