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“There is no such thing as a failure. Any undesired and
unexpected result of a calculation can always be seen as a highly
significant anomaly.”

“The physicists’ law of induction: Let Pn, n = 1, . . . be a series of
propositions of great physical interest. Then: if P1 is true and P2
is true, it follows that Pn is true for all n.”

“I am a humble man”

(Abdus Salam)
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I. The Challenge of Quantum Gravity
Still a major issue in modern theoretical physics. It raises deep
problems of both a mathematical and a philosophical kind.
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I. The Challenge of Quantum Gravity
Still a major issue in modern theoretical physics. It raises deep
problems of both a mathematical and a philosophical kind.

1. General Relativity:

• Gravitational field described by the geometrical and, to
some extent, topological structure of space-time.

• The philosophical interpretation is thoroughly ‘realist’.
GR is the ultimate classical theory!

2. Quantum theory:

• Normally works within a fixed, background space-time.

• Interpretation is ‘instrumentalist’ in terms of what would
happen if a measurement is made.

• What do such ideas mean if applied to space and time
themselves?
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The Planck Length

Presumably something dramatic happens to the nature of

space and time at LP :=
√
G~
c3
' 10−35m ' 10−42secs.

• What?

• Main programmes are string theory and loop quantum
gravity. Both suggest a ‘discrete’ space-time structure.

The best, simple example of such a theory is causal sets.

It is often asserted that classical space and time ‘emerge’ from
the formalism in some limit.

Thus a fundamental theory may have no intrinsic
reference at all to spatio-temporal concepts.
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The Status of Standard Quantum Theory
What is the status of using standard quantum theory in QG?

String theory and LQG both assume this!
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The Status of Standard Quantum Theory
What is the status of using standard quantum theory in QG?

String theory and LQG both assume this!

We will focus on the problems posed by:

1. The a priori use of real numbers:

C and R are used in all standard formulations of quantum
theory: Hilbert spaces, C ∗-algebras, deformation
quantisation, geometric quantisation, quantum logic,
(formal) path integrals, . . .

2. The interpretational issues: instrumentalism versus
realism.

We want to talk about ‘the way things are’ in regard to
space and time.

5 / 25



Introduction Real numbers in QG-related QT Formulation of theories of physics Introducing topoi Introducing formal languages Conclusions

II. Problem of Real Numbers in QG-related QT

1. The Role of Real Numbers in Physics

Real numbers arise in theories of physics in three different (but
related) ways:
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II. Problem of Real Numbers in QG-related QT

1. The Role of Real Numbers in Physics

Real numbers arise in theories of physics in three different (but
related) ways:

(i) as the values of physical quantities;

(ii) as the values of probabilities;

(iii) as a fundamental ingredient in mathematical models of
space and time.

The use of R (and C) in standard quantum theory is a
reflection of (i) and (ii); and, indirectly, of (iii) too.
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2. Why are Physical Quantities Assumed Real-Valued?

Traditionally, quantities are measured with rulers and pointers.

• Thus there is a direct link between the ‘quantity-value
space’ and the assumed structure of physical space.

[Caution: This uses instrumentalist interpretation of QT]

• Thus we have a potential ‘category error’ at LP : if
physical space is not based on R, we should not assume a
priori that physical quantities are real-valued.

If the quantity-value space is not R, then what
is the status of the Hilbert-space formalism?
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3. Why Are Probabilities Assumed Real Numbers?

Relative-frequency interpretation: Ni
N
tends to r ∈ [0, 1] as

N →∞.

• This statement is instrumentalist. It does not work if
there is no classical spatio-temporal background in which
measurements could be made.

• In ‘realist’ interpretations, probability is often interpreted
as propensity (latency, potentiality).

– But why should a propensity be a real number in [0, 1]?

– Minimal requirement is, presumably, an ordered set, but
this need not be totally ordered.
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The Big Problem

Standard QT is grounded in Newtonian space and time.

How can the formalism be modified, or generalised, so as (i)
to be ‘realist’; and (ii) not to be dependent a priori on real and
complex numbers?

• For example, if we have a given causal-set background C,
what is the quantum formalism that is adapted to C?

• Very difficult: usual Hilbert-space formalism is very rigid.

There have been some studies using finite fields, but they
are rather artificial.

What are the basic principles of a ‘quantum theory’, or beyond?
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III. Formulation of Theories of Physics

1. The Realism of Classical Physics:

• A physical quantity A is represented by a function
Ã : S → R.

A state s ∈ S specifies ‘how things are’: i.e., the value of
any physical quantity A in that state is Ã(s) ∈ R.

• Hence, a proposition “A ∈ Δ” is represented by the
subset Ã−1(Δ) ⊆ S.

Thus, because of the structure of set theory, of necessity, the
propositions in classical physics form a Boolean logic.

The collection of such propositions forms a deductive system:
i.e., there is a sequent calculus for constructing proofs.

10 / 25



Introduction Real numbers in QG-related QT Formulation of theories of physics Introducing topoi Introducing formal languages Conclusions

2. The Failure of Realism in Quantum Physics

Kochen-Specker theorem: it is impossible to assign consistent
true-false values to all the propositions in quantum theory.

Equivalently: it is not possible to assign consistent values to
all the physical quantities in a quantum theory.

Conclusion:

• There is ‘no way things are’.

• Instead an instrumentalist interpretation is used.
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Theories of a Physical System
Let A be a physical quantity in a system S , with associated
propositions “A ∈ Δ”, where Δ ⊆ R.
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Theories of a Physical System
Let A be a physical quantity in a system S , with associated
propositions “A ∈ Δ”, where Δ ⊆ R.
1. Classical theory of S :

• S  S — a symplectic manifold
• A Ã : S → R
• “A ∈ Δ” Ã−1(Δ) ⊆ S; gives Boolean lattice.

2. Quantum theory of S :
• S  H — a Hilbert space
• A Â
• “A ∈ Δ” Ê [A ∈ Δ]; gives non-distributive lattice.

3. Category theory of S in a category τ :
• S  Σ — an object in τ
• A Ă : Σ→R
• “A ∈ Δ” a sub-object of Σ?
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IV. Introducing Topos Theory

Does such ‘categorification’ work?

1. Not in general: usually, sub-objects of an object do not
have a logical structure. However, they do in a topos!

2. A topos is a category that ‘behaves much like Sets’. In
particular there are:

• 0, 1; pull-backs & push-outs (hence, products &
co-products)

• Exponentiation:

Hom(C ,AB) ' Hom(C × B ,A)

• A ‘sub-object classifier’, Ω: to any sub-object A of B ,
∃χA : B → Ω such that A = χ

−1
A (1).
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The Logical Structure of Sub-objects
In a topos:

1. The collection, Sub(A), of sub-objects of an object A
forms a Heyting algebra.

2. The same applies to ΓΩ := Hom(1,Ω), ‘global elements’

A Heyting algebra is a distributive lattice, H, with 0 and 1, and
such that to each α, β ∈ H there exists α⇒ β ∈ H such that

γ � (α⇒ β) iff γ ∧ α � β.

• Negation is defined as ¬α := (α⇒ 0).

• Excluded middle may not hold: there may exist α ∈ H
such that α ∨ ¬α ≺ 1.

Equivalently there may be β such that β ≺ ¬¬β.
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The Mathematics of ‘Neo-Realism’
• In set theory: let K ⊆ X and x ∈ X . Consider the
proposition “x ∈ K”. The truth value is

ν(x ∈ K ) =

{
1 if x belongs to K ;
0 otherwise.

Thus “x ∈ K” is true if, and only if, x belongs to K .
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• In set theory: let K ⊆ X and x ∈ X . Consider the
proposition “x ∈ K”. The truth value is

ν(x ∈ K ) =

{
1 if x belongs to K ;
0 otherwise.

Thus “x ∈ K” is true if, and only if, x belongs to K .
• In a topos: a proposition can be only ‘partly true’:

Let K ∈ Sub(X ) with χK : X → Ω and let x ∈ X , i.e.,
pxq : 1→ X is a global element of X . Then

ν(x ∈ K ) := χK ◦ pxq

where χK ◦ pxq : 1→ Ω. Thus the ‘generalised truth
value’ of “x ∈ K” belongs to the Heyting algebra ΓΩ.

This represents a type of ‘neo-realism’.
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Our Main Contention

For a given theory-type, each system S to which the theory is
applicable can be formulated and interpreted within the
framework of a particular topos τφ(S).

Conceptually, this structure is ‘neo-realist’ in the sense:

1. A physical quantity, A, is represented by an arrow
Aφ,S : Σφ,S →Rφ,S where Σφ,S and Rφ,S are two special
objects in the topos τφ(S).

2. Propositions about S are represented by sub-objects of
Σφ,S . These form a Heyting algebra.

3. The topos analogue of a state is a ‘truth object’.
Propositions are assigned truth values in ΓΩτφ(S).
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• Thus a theory expressed in this way looks like classical
physics except that classical physics always employs the
topos Sets, whereas other theories—including
quantum theory—use a different topos.
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• Thus a theory expressed in this way looks like classical
physics except that classical physics always employs the
topos Sets, whereas other theories—including
quantum theory—use a different topos.

• A topos can be used as a foundation for mathematics
itself, just as set theory is used in the foundations of
‘normal’ (or ‘classical’) mathematics.

• In fact, any topos has an ‘internal language’ that is similar
to the formal language on which set theory is based.

This internal language is used to interpret the theory in a
‘neo-realist’ way.
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The Idea of a Truth Object

In classical physics, a truth value is assigned to propositions by
specifying a micro-state, s ∈ S. Then, the truth value of
“A ∈ Δ” is

ν(A ∈ Δ; s) =

{
1 if Ã(s) ∈ Δ;
0 otherwise.

(1)

• But: in a topos, the state object Σφ,S may have no global
elements.

For example, this is the case for the ’spectral presheaf’ in
quantum theory.

• So, what is the analogue of a state in a general topos?
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• In classical physics: Let T be a collection of sub-sets of
S; i.e., T ⊆ PS, or, equivalently, T ∈ PPS. Then

ν(A ∈ Δ;T ) =

{
1 if {s ∈ S | Ã(s) ∈ Δ} ∈ T ;
0 otherwise

=

{
1 if Ã−1(Δ) ∈ T ;
0 otherwise

• The two notions of a truth object coincide if we define

T s := {K ⊆ S | s ∈ K}
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S; i.e., T ⊆ PS, or, equivalently, T ∈ PPS. Then

ν(A ∈ Δ;T ) =

{
1 if {s ∈ S | Ã(s) ∈ Δ} ∈ T ;
0 otherwise

=

{
1 if Ã−1(Δ) ∈ T ;
0 otherwise

• The two notions of a truth object coincide if we define

T s := {K ⊆ S | s ∈ K}

• For a general topos: a truth object is T ∈ PPΣφ,S .
Then, if K ∈ Sub(Σφ,S), pKq : 1→ PΣφ,S , we have
ν(K ;T ) ∈ ΓΩφ,S .
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V. Formal Languages

There is a very elegant way of describing what we are doing.
Namely, to construct a theory of a system S is equivalent to
finding a representation in a topos of a certain formal
language, L(S), that is attached to S .
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There is a very elegant way of describing what we are doing.
Namely, to construct a theory of a system S is equivalent to
finding a representation in a topos of a certain formal
language, L(S), that is attached to S .

• The language, L(S) depends on the physical system, S ,
but not on the theory type (classical, quantum,...).

However, the representation does depend on theory type.

• We want to allow for a logic that is not Boolean, but still
gives a deductive system. We choose intuitionistic axioms
for the language.

• Equivalently, we construct a translation of L(S) into the
internal language of the topos.
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The Language L(S)

The language L(S) of a system S is typed. It includes:

• A symbol Σ: the linguistic precursor of the state object.

• A symbol R: the linguistic precursor of the quantity-value
object.

• A set, FL(S)(Σ,R) of ‘function symbols’ A : Σ→R: the
linguistic precursors of physical quantities.

• A symbol Ω: the linguistic precursor of the sub-object
classifier.

• A ‘set builder’ {x̃ | ω}. This is a term of type PT , where
x̃ is a variable of type T , and ω is a term of type Ω.
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Representing the Language L(S)

Next step: find a representation of L(S) in a suitable topos.

A classical theory of S : The representation σ is:

• The topos τσ(S) is Sets.

• Σ is represented by a symplectic manifold Σσ,S (was S).

• R is represented by the real numbers R; i.e., Rσ,S := R.

• The function symbols A : Σ→R become functions
Aσ,S : Σσ,S → R (was Ã)

• Ω is represented by the set {0, 1} of truth values.
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The Topos of Quantum Theory

• The key ingredient of normal quantum theory on which
we focus is the intrinsic contextuality implied by the
Kocken-Specher theorem.

• In standard theory, we can potentially assign ‘actual
values’ only to members of a commuting set of operators.

We think of such a set as a context or ‘classical snapshot’
of the system.

• This motivates considering the topos of presheaves over
the category of abelian subalgebras of B(H). This
category is a partially-ordered set under the operation of
sub-algebra inclusion.
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• The state object that represents the symbol Σ is the
‘spectral presheaf Σ.

1. For each abelian subalgebra V , Σ(V ) is spectrum of V .

2. The K-S theorem is equivalent to the statement that Σ
has no global elements.

3. Σ replaces the (non-existent) state space.

4. A proposition represented by a projector P̂ in QT is
mapped to a sub-object δ(P̂) of Σ. We call this
‘daseinisation’.

• The quantity-value symbol R is represented by a presheaf
R�. This is not the real-number object in the topos.

• Physical quantities represented by arrows Ă : Σ→ R�.

They are constructed from the Gel’fand transforms of the
spectra in Σ
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VI. Conclusions

1. General considerations of quantum gravity suggest the
need to go ‘beyond’ standard quantum theory:

1.1 Must escape from a priori use of R and C.

1.2 Need a ‘realist’ interpretation (K-S not withstanding)

2. Main idea: construct theories in a topos other than Sets.

2.1 A physical quantity, A, is represented by an arrow
Aφ,S : Σφ,S →Rφ,S where Σφ,S and Rφ,S are special
objects in the topos τφ(S).

2.2 The interpretation is ‘neo-realist’ with truth values that
lie in the Heyting algebra ΓΣφ,S . Propositions are
represented by elements of Heyting algebra Sub(Σφ,S)

3. Our scheme involves representing language L(S) in τφ(S).
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