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Compositional 
probabilistic verification 

Part 4 



Overview 

•  Lectures 1 and 2: 

−  1 – Introduction 
−  2 – Discrete-time Markov chains 
−  3 – Markov decision processes 
−  4 – Compositional probabilistic verification 

•  PRISM lab session (4.30pm) 
−  PC lab downstairs – or install PRISM on your own laptop 

•  Course materials available here: 
−  http://www.prismmodelchecker.org/courses/sfm11connect/ 
−  lecture slides, reference list, tutorial chapter, lab session 



Overview (Part 4) 

•  Compositional verification 
−  assume-guarantee reasoning 

•  Markov decision processes 
−  probabilistic safety properties 
−  multi-objective model checking 

•  Probabilistic assume guarantee 
−  semantics, model checking 
−  assume-guarantee proof rules 
−  quantitative approaches 
−  implementation & experimental results 
−  assumption generation with learning 



Compositional verification 

•  Goal: scalability through modular verification 
−  e.g. decide if M1|| M2 ⊨ G 
−  by analysing M1 and M2 separately 

•  Assume-guarantee (AG) reasoning 
−  use assumption A about the context of a component M2 

−  ⟨A⟩ M2 ⟨G⟩ – “whenever M2 is part of a system satisfying A, 
then the system must also guarantee G” 

−  example of asymmetric (non-circular) A/G rule: 

[Pasareanu/Giannakopoulou/et al.] 

M1 ⊨ A 

⟨A⟩ M2 ⟨G⟩ 

M1 || M2 ⊨ G 



AG rules for probabilistic systems 

•  How to formulate AG rules 
for MDPs? 

•  Key questions: 

−  1. What form do assumptions A take? 
•  needs to be compositional 
•  needs to be efficient to check 
•  needs to allow compact assumptions 

−  2. How do we generate suitable assumptions? 
•  preferably in a fully automated fashion 

−  3. Can we get “quantitative” results? 
•  i.e. numerical values, rather than “yes”/”no” 

M1 ⊨ A 

⟨A⟩ M2 ⟨G⟩ 

M1 || M2 ⊨ G 



AG rules for probabilistic systems 

•  How to formulate AG rules 
for MDPs? 

•  Key questions: 

−  1. What form do assumptions A take? 
•  needs to be compositional 
•  needs to be efficient to check 
•  needs to allow compact assumptions 

 ▷ various compositional relations exist 
•  e.g. strong/weak (probabilistic) (bi)simulation 
•  but these are either too fine (difficult to get small  

assumptions) or expensive to check 
 ▷ here, we use: probabilistic safety properties [TACAS’10] 

•  less expressive, but compact and efficient 
•  (see also generalisation to liveness/rewards [TACAS’11]) 

M1 ⊨ A 

⟨A⟩ M2 ⟨G⟩ 

M1 || M2 ⊨ G 



AG rules for probabilistic systems 

•  How to formulate AG rules 
for MDPs? 

•  Key questions: 

−  2. How do we generate suitable assumptions? 
•  preferably in a fully automated fashion 

 ▷ algorithmic learning (based on L* algorithm) 
     adapt techniques for (non-probabilistic) assumptions 

−  3. Can we get “quantitative” results? 
•  i.e. numerical values, rather than “yes”/”no” 

 ▷ yes: generate lower/upper bounds on probabilities 

M1 ⊨ A 

⟨A⟩ M2 ⟨G⟩ 

M1 || M2 ⊨ G 



Overview (Part 4) 

•  Compositional verification 
−  assume-guarantee reasoning 

•  Markov decision processes 
−  probabilistic safety properties 
−  multi-objective model checking 

•  Probabilistic assume guarantee 
−  semantics, model checking 
−  assume-guarantee proof rules 
−  quantitative approaches 
−  implementation & experimental results 
−  assumption generation with learning 



Recap: Markov decision processes 

•  Markov decision processes (MDPs) 
−  model probabilistic and nondeterministic behaviour 

•  An MDP is a tuple M = (S, sinit, αM, δM, L): 
−  S is the state space 
−  sinit ∈ S is the initial state 
−  αM is the action alphabet 
−  δM ⊆ S × (αM∪τ) × Dist(S) is the  

transition probability relation 
−  L : S → 2AP labels states 

with atomic propositions 
•  Notes: 

−  αM, δM have subscripts to avoid confusion with other automata 
−  transitions can also be labelled with a “silent” τ action 
−  we write s-a→µ as shorthand for (s,a,µ) ∈ δM 
−  MDPs, here, are identical to probabilistic automata [Segala] 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 



Recap: Model checking for MDPs 

•  An adversary σ resolves the nondeterminism in an MDP M 
−  make a (possibly randomised) choice, based on history 
−  induces probability measure PrM

σ over (infinite) paths PathM
σ 

−  can compute probability of some measurable property φ 
•  e.g. F err ≡ ◊err – “an error eventually occurs” 
•  or automata over action labels (see later) 

•  Property specifications: quantify over all adversaries 
−  e.g. PCTL: M ⊨ P≥p[φ]  ⇔  PrM

σ(φ) ≥ p for all adv.s σ ∈ AdvM 

−  corresponds to best-/worst-case behaviour analysis 
−  requires computation of PrM

min (φ) or PrM
max (φ) 

−  or in a more quantitative fashion: 
−  just ask e.g. Pmin=?

 (φ) or Pmax=?
 (φ) 

−  also extends to (min/max) expected costs & rewards 



Parallel composition for MDPs 

•  The parallel composition of M1 and M2 is denoted M1 || M2 
−  CSP style: synchronise over all common (non-τ) actions 
−  when synchronising, transition probabilities are multiplied 

•  Formally, if Mi = (Si, sinit,i, αMi
, δMi

, Li) for i=1,2, then: 
•  M1||M2 = (S1×S2, (sinit,1,sinit,2), αM1

∪αM2
, δM1||M2

, L12) where: 

−  L12(s1,s2) = L1(s1) ∪ L2(s2) 
−  δM1||M2

 is defined such that (s1,s2)-a→µ1×µ2 iff one of: 
•  s1-a→µ1, s2-a→µ2 and a ∈ αM1

∩αM2  
(synchronous) 

•  s1-a→µ1, µ2=ηs2
 and a ∈ (αM1

\αM2
) ∪ {τ}

  
(asynchronous) 

•  s2-a→µ2, µ1=ηs1
 and a ∈ (αM2

\αM1
) ∪ {τ}

 
(asynchronous) 

−  where µ1×µ2 denotes the product of distributions µ1, µ2  
−  and ηs ∈ Dist(S) is the Dirac (point) distribution on s ∈ S 



Running example 

•  Two components, each a Markov decision process: 
−  M1: controller which shuts down devices (after warning first) 
−  M2: device to be shut down (may fail if no warning sent) 

MDP M2 (“device”) MDP M1 (“controller”) 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 



Running example 

s0,t0 

0.2 

detect 
0.8 

warn 
s1,t0 

s2,t0 

s2,t1 

shutdown 

0.1 

shutdown 

0.9 s1,t2 

s2,t3 

off 

fail 

s3,t2 off 

MDP M2 (“device”) MDP M1 (“controller”) 

Parallel composition: M1 || M2 

system failure: 
PrM1||M2

max (◊err) = 0.02 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

{err} 



Safety properties 

•  Safety property: language of infinite words (over actions) 
−  characterised by a set of “bad prefixes” (or “finite violations”) 
−  i.e. finite words of which any extension violates the property 

•  Regular safety property  
−  bad prefixes are represented by a regular language 
−  property A stored as deterministic finite automaton (DFA) Aerr 

“a fail action 
never occurs” 

“warn occurs 
before shutdown” 

“at most 2 time steps 
pass before termination” 

fail 

fail 

q0 

q1 

shutdown warn 

q0 

q1 q0 warn,  
shutdown 

warn,  
shutdown 

time time,  
end 

q0 

q1 

q1 
time 

q2 time 

q1 

end 

end 
end 

time,  
end 



Probabilistic safety properties 

•  A probabilistic safety property P≥p [A] comprises 
−  a regular safety property A + a rational probability bound p 
−  “the probability of satisfying A must be at least p” 
−  M ⊨ P≥p[A]  ⇔  PrM

σ(A) ≥ p for all σ ∈ AdvM  ⇔  PrM
min(A) ≥p 

•  Examples: 
−  “warn occurs before shutdown with probability at least 0.8” 
−  “the probability of a failure occurring is at most 0.02” 
−  “probability of terminating within k time-steps is at least 0.75” 

•  Model checking: PrM
min(A) = 1 - PrM⊗Aerr

max(◊errA) 
−  where errA denotes “accept” states for DFA A 
−  i.e. construct (synchronous) MDP-DFA product M⊗Aerr 
−  then compute reachability probabilities on product MDP 



Running example 

•  Does probabilistic safety property P≥0.8 [A] hold in M1? 

MDP M1 (“controller”) 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

A (“warn occurs 
before shutdown”) 

shutdown warn 

q0 

q2 q1 warn,  
shutdown 

warn,  
shutdown 



Running example 

•  Does probabilistic safety property P≥0.8 [A] hold in M1? 

MDP M1 (“controller”) 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

A (“warn occurs 
before shutdown”) 

shutdown warn 

q0 

q2 q1 warn,  
shutdown 

warn,  
shutdown 

Product MDP M1⊗Aerr 
 PrM1

min(A) 
  =  1 – PrM1⊗Aerr

max(◊errA) 
  = 1 – 0.2 
  = 0.8 
  → M1 ⊨ P≥0.8 [A] 

s0,q0 

0.2 
detect 

0.8 

shutdown 

warn 
s1,q0 

s2,q0 

s2,q1 s3,q1 

shutdown 

off 

off 

s3,q2 

{errA} 



Multi-objective MDP model checking 

•  Consider multiple (linear-time) objectives for an MDP M 
−  LTL formulae Φ1,…,Φk and probability bounds ~1p1,…,~k pk 

−  question: does there exist an adversary σ ∈ AdvM such that: 

•  Motivating example: 
−  PrM

σ(□(queue_size<10)) > 0.99 ∧ PrM
σ(◊flat_battery) < 0.01 

•  Multi-objective MDP model checking [EKVY07] 
−  construct product of automata for M, Φ1,…,Φk 
−  then solve linear programming (LP) problem 
−  the resulting adversary σ can obtained from LP solution 
−  note: σ may be randomised (unlike the single objective case)  

PrM
σ(φ1) ~1p1 ∧ … ∧ PrM

σ(φk) ~k pk 



Multi-objective MDP model checking 

•  Consider the two objectives ◊D and ◊E in the MDP below 
−  i.e. the trade-off between the probabilities Pr(◊D) and Pr(◊E) 
−  an adversary resolves the choice between a/b/c 
−  increasing the probability of reaching one target decreases the 

probability of reaching the other 

c a

s0 

s3 s2 

b

0.4 
0.6 

0.5 0.5 
0.8 

0.2 

s5 E D 

s1 

s4 

choose a Pr(◊D) 

Pr(◊E) 0.8 0.5 

0.5 
0.6 

0 
0 

choose b 

choose c 



Multi-objective MDP model checking 

•  Need to consider all randomised adversaries 
−  for example, is there an adversary σ such that: 
−  Pr(◊D) > 0.2 ∧ Pr(◊E) > 0.6 

c a

s0 

s3 s2 

b

0.4 
0.6 

0.5 0.5 
0.8 

0.2 

s5 E D 

s1 

s4 

Pr(◊D) 

Pr(◊E) 0.8 0.5 

0.5 
0.6 

0 
0 

all (randomised)  
adversaries 

Pareto curve 

adversary σ 
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Probabilistic assume guarantee 

•  Assume-guarantee triples ⟨A⟩≥pA
 M ⟨G⟩≥pG

 where: 
−  M is an MDP 
−  P≥pA

[A] and P≥pG
[G] are probabilistic safety properties 

•  Informally: 
−  “whenever M is part of a system satisfying A with probability 

at least pA, then the system is guaranteed to satisfy G with 
probability at least pG” 

•  Formally: 
− ∀σ ∈ AdvM’ ( PrM’

σ (A) ≥ pA → PrM’
σ (G) ≥ pG ) 

−  where M’ is M with its alphabet extended to include αA 

−  reduces to multi-objective model checking on M’ 
−  look for adversary satisfying assumption but not guarantee 
−  i.e. can check ⟨A⟩≥pA

 M ⟨G⟩≥pG
  efficiently via LP problem 



An assume-guarantee rule 

•  The following asymmetric proof rule holds 
−  (asymmetric = uses one assumption about one component) 

•  So, verifying M1 || M2 ⊨ P≥pG [G]  requires: 
−  premise 1: M1 ⊨ P≥pA [A] (standard model checking) 
−  premise 2: ⟨A⟩≥pA

 M2 ⟨G⟩≥pG
 (multi-objective model checking) 

•  Potentially much cheaper if |A| much smaller than |M1| 

M1 ⊨ P≥pA [A]
 

⟨A⟩≥pA
 M2 ⟨G⟩≥pG 

M1 || M2 ⊨ P≥pG [G]
 

(ASYM) 



Running example 

•  Does probabilistic safety property P≥0.98 [G] hold in M1||M2? 

MDP M2 (“device”) MDP M1 (“controller”) 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

G (“a fail action 
never occurs”) 

fail 

fail 

q0 

q1 



Running example 

•  Does probabilistic safety property P≥0.98 [G] hold in M1||M2? 

•  Use AG with assumption 
⟨A⟩≥0.8 about M1 

MDP M2 (“device”) MDP M1 (“controller”) 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

G (“a fail action 
never occurs”) 

fail 

fail 

q0 

q1 

A (“warn occurs 
before shutdown”) shutdown warn 

a0 

a2 a1 warn,  
shutdown 

warn,  
shutdown 

⟨true⟩ M1 ⟨A⟩≥0.8 
⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 

⟨true⟩ M1 || M2 ⟨G⟩≥0.98 



Running example 

•  Premise 1: Does M1 ⊨ P≥0.8 [A] hold?  (same as earlier ex.) 

MDP M1 (“controller”) A (“warn occurs 
before shutdown”) 

shutdown warn 

q0 

q2 q1 warn,  
shutdown 

warn,  
shutdown 

Product MDP M1⊗Aerr 

s0 

0.2 

detect 

s3 

s1 0.8 
shutdown 

warn 

off 

s2 

 PrM1
min(A) 

  =  1 – PrM1⊗Aerr
max(◊errA) 

  = 1 – 0.2 
  = 0.8 
  → M1 ⊨ P≥0.8 [A] 

s0,q0 

0.2 
detect 

0.8 

shutdown 

warn 
s1,q0 

s2,q0 

s2,q1 s3,q1 

shutdown 

off 

off 

s3,q2 

{errA} 



Running example 

•  Premise 2: Does  ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 hold? 

A (“warn occurs 
before shutdown”) 

shutdown warn 

a0 

a2 a1 warn,  
shutdown 

warn,  
shutdown 

G (“a fail action 
never occurs”) 

fail 

fail 

q0 

q1 

MDP M2 (“device”) 

t1 

0.1 

warn 

t2 t3 

shutdown 0.9 
shutdown 

t0 

fail off 

Product MDP 
M’ = M2[αA]⊗Aerr⊗Gerr 

t0,a0,q0 
warn shutdown 

t1,a1,q0 

t3,a2,q0 fail 
t2,a2,q0 

fail 

t2,a1,q0 

shutdown 

off 

off 
0.9 

0.1 

t3,a2,q1 

{errA} 

{errA,  
errG} 

{errA} 



Running example 

•  Premise 2: Does  ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 hold? 

•   ∃ an adversary of M2 satisfying PrM
σ (A)≥0.8 but not PrM

σ (G)≥0.98 ? 
   ⇔ 
•   ∃ an an adversary of M’ with PrM’

σ’ (◊errA)≤0.2 and PrM’
σ’ (◊errG)>0.02 ? 

•   To satisfy PrM’
σ’ (◊errA)≤0.2, adversary σ’ must choose shutdown 

    in initial state with probability ≤ 0.2, which means PrM’
σ’ (◊errG)≤0.02 

•   So, there is no such adversary and ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 does hold  

Product MDP 
M’ = M2[αA]⊗Aerr⊗Gerr 

t0,a0,q0 
warn shutdown 

t1,a1,q0 

t3,a2,q0 fail 
t2,a2,q0 

fail 

t2,a1,q0 

shutdown 

off 

off 
0.9 

0.1 

t3,a2,q1 

{errA} 

{errA,  
errG} 

{errA} 



Other assume-guarantee rules 

•  Multiple assumptions:    Multiple components (chain): 

•  Circular rule:                           Asynchronous components: 

M1 ⊨ P≥p1 [A1] ∧…∧ P≥pk [Ak] 
⟨A1,…,Ak⟩≥p1,…,pk M2 ⟨G⟩≥pG 

M1 || M2 ⊨ P≥pG [G] 

M2 ⊨ P≥p2 [A2] 
⟨A2⟩≥p2 M1 ⟨A1⟩≥p1 

⟨A1⟩≥p1 M2 ⟨G⟩≥pG 

M1 || M2 ⊨ P≥pG [G] 

M1 ⊨ P≥p1 [A1] 
⟨A1⟩≥p1 M2 ⟨A2⟩≥p2 

… 
⟨An⟩≥pn Mn ⟨G⟩≥pG 

M1 || … || Mn ⊨ P≥pG [G] 

(ASYM-N) 

(CIRC) 

(ASYM-MULT) 

⟨A1⟩≥p1 M1 ⟨G1⟩≥q1 

⟨A2⟩≥p2 M2 ⟨G2⟩≥q2 

⟨A1,A2⟩≥p1p2 M1 || M2 ⟨G1∨G2⟩≥(q1+q2-q1q2) 

(ASYNC) 



A quantitative approach 

•  For (non-compositional) probabilistic verification 
−  prefer quantitative properties: PrM

min(G), not M ⊨ P≥pG 
[G] 

−  can we do this for compositional verification? 

•  Consider, for example, AG rule (ASym) 
−  this proves PrM1∥M2

min(G) ≥ pG 
for certain values of pG 

−  i.e. gives lower bound for PrM1∥M2
min(G) 

−  for a fixed assumption A, we can compute the maximal lower 
bound obtainable, through a simple adaption of the multi-
objective model checking problem 

−  we can also compute upper bounds using generated 
adversaries as witnesses 

−  furthermore: can explore trade-offs in parameterised models 
by approximating Pareto curves 

⟨true⟩ M1 ⟨A⟩≥pA 
⟨A⟩≥pA

 M2 ⟨G⟩≥pG 

⟨true⟩ M1 || M2 ⟨G⟩≥pG 



Implementation + Case studies 

•  Prototype extension of PRISM model checker 
−  already supports LTL for Markov decision processes 
−  automata can be encoded in modelling language 
−  added support for multi-objective LTL model checking, using 

LP solvers (ECLiPSe/COIN-OR CBC) 

•  Two large case studies 
−  randomised consensus algorithm (Aspnes & Herlihy) 

•  minimum probability consensus reached by round R 
−  Zeroconf network protocol 

•  maximum probability network configures incorrectly 
•  minimum probability network configured by time T 



Experimental results 

Case study 
[parameters] 

Non-compositional Compositional 
States Time (s) LP size Time (s) 

Randomised 
consensus 

(3 processes) 
[R,K] 

3, 2 1,418,545 18,971 40,542 29.6 
3, 20 39,827,233 time-out 40,542 125.3 
4, 2 150,487,585 78,955 141,168  376.1 

4, 20 2,028,200,209 mem-out 141,168 471.9 

ZeroConf 
[K] 

4 313,541 103.9 20,927 21.9 
6 811,290 275.2 40,258 54.8 
8 1,892,952 592.2 66,436 107.6  

ZeroConf 
time-bounded 

[K, T] 

2, 10 65,567 46.3 62,188 89.0 
2, 14 106,177 63.1 101,313 170.8 
4, 10 976,247 88.2 74,484 170.8 
4, 14 2,288,771 128.3 166,203 430.6 



Experimental results 

Case study 
[parameters] 

Non-compositional Compositional 
States Time (s) LP size Time (s) 

Randomised 
consensus 

(3 processes) 
[R,K] 

3, 2 1,418,545 18,971 40,542 29.6 
3, 20 39,827,233 time-out 40,542 125.3 
4, 2 150,487,585 78,955 141,168  376.1 

4, 20 2,028,200,209 mem-out 141,168 471.9 

ZeroConf 
[K] 

4 313,541 103.9 20,927 21.9 
6 811,290 275.2 40,258 54.8 
8 1,892,952 592.2 66,436 107.6  

ZeroConf 
time-bounded 

[K, T] 

2, 10 65,567 46.3 62,188 89.0 
2, 14 106,177 63.1 101,313 170.8 
4, 10 976,247 88.2 74,484 170.8 
4, 14 2,288,771 128.3 166,203 430.6 

•  Faster than conventional model checking in a number of cases  



Experimental results 

Case study 
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4, 14 2,288,771 128.3 166,203 430.6 

•  Verified instances where conventional model checking is infeasible 



Experimental results 

Case study 
[parameters] 

Non-compositional Compositional 
States Time (s) LP size Time (s) 

Randomised 
consensus 

(3 processes) 
[R,K] 

3, 2 1,418,545 18,971 40,542 29.6 
3, 20 39,827,233 time-out 40,542 125.3 
4, 2 150,487,585 78,955 141,168  376.1 

4, 20 2,028,200,209 mem-out 141,168 471.9 

ZeroConf 
[K] 

4 313,541 103.9 20,927 21.9 
6 811,290 275.2 40,258 54.8 
8 1,892,952 592.2 66,436 107.6  

ZeroConf 
time-bounded 

[K, T] 

2, 10 65,567 46.3 62,188 89.0 
2, 14 106,177 63.1 101,313 170.8 
4, 10 976,247 88.2 74,484 170.8 
4, 14 2,288,771 128.3 166,203 430.6 

•  LP problem generally much smaller than full state space 
(but still the limiting factor) 
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Generating assumptions 

•  Can model check M1||M2 compositionally 
−  but this relies on the existence  

of a suitable assumption P≥pA [A] 

•  1. Does such an assumption always exist? 

•  2. When it does exist, can we generate it automatically? 

•  Our approach: use algorithmic learning techniques 
−  inspired by non-probabilistic AG work of [Pasareanu et al.] 
−  uses L* algorithm to learn finite automata for assumptions 
−  we use a modified version of L* 
−  to learn probabilistic assumptions for rule (ASYM) [QEST’10] 

M1 ⊨ P≥pA [A]
 

⟨A⟩≥pA
 M2 ⟨G⟩≥pG 

M1 || M2 ⊨ P≥pG [G]
 



The L* learning algorithm 

•  The L* algorithm [Angluin] 
−  learns an unknown regular language L, as a (minimal) DFA 

•  Based on “active” learning 
−  relies on existence of a “teacher” to guide the learning 
−  answers two type of queries: “membership” and “equivalence” 
−  membership: “is trace (word) t in the target language L?” 

•  stores results of membership queries in observation table 
•  based on these, generates conjectures A for the automata 

−  equivalence: “does automata A accept the target language L”? 
•  if not, teacher must return counterexample c 
•  (c is a word in the symmetric difference of L and L(A)) 



The L* learning algorithm 

Update 
table 

Generate 
conjecture 

Membership 
query 

Update 
table 

Membership query 
(analyse trace t)  

Equivalence query 
(analyse conjecture A) 

trace t 

counterexample c 

conjecture A 

yes/no 

done? 
yes 

Teacher L* 

no 



L* for assume-guarantee 

•  Breakthrough in automated compositional verification 
−  use of L* to learn assumptions for A/G reasoning 
−  [Pasareanu/Giannakopoulou/et al.] 
−  uses notion of “weakest assumption” about a component that 

suffices for compositional verification (always exists) 
−  weakest assumption is the target regular language 

•  Fully automated L* learning loop 
−  model checker plays role of teacher, returns counterexamples 
−  in practice, can usually stop early: either with a simpler 

(stronger) assumption or by refuting the property 

•  Successfully applied to several large case studies 
−  does particularly well when assumption/alphabet are small 
−  much recent interest in learning for verification… 



Probabilistic assumption generation 

•  Goal: automate A/G rule (ASYM) 
−  generate probabilistic assumption P≥pA [A] 
−  for checking property P≥pG [G] on M1 || M2 

•  Reduce problem to generation of 
non-probabilistic assumption A 
−  then (if possible) find lowest pA such that premises 1 & 2 hold 
−  in fact, for fixed A, we can generate lower and upper bounds 

on PrM1||M2
min (G), which may suffice to verify/refute P≥pG [G] 

•  Use adapted L* to learn non-probabilistic assumption A 
−  note: there is no “weakest assumption” (AG rule is incomplete) 
−  but can generate sequence of conjectures for A in similar style 
−  “teacher” based on a probabilistic model checker (PRISM), 

feedback is from probabilistic counterexamples [Han/Katoen] 
−  three outcomes of loop: “true”, “false”, lower/upper bounds 

M1 ⊨ P≥pA [A]
 

⟨A⟩≥pA
 M2 ⟨G⟩≥pG 

M1 || M2 ⊨ P≥pG [G]
 



Probabilistic assumption generation 

Update 
table 

Generate 
conjecture 

Membership 
query 

Update 
table 

Membership query 
(analyse trace t) 

Check: 
t || M2 ⊨ P≥pG [G] ? 

Equivalence query 
(analyse conjecture A) 

Try to find pA such that: 
(i) M1 ⊨ P≥pA [A] 

(ii) ⟨A⟩≥pA
 M2 ⟨G⟩≥pG

  

trace t 

cex. c 

conj. A 

yes/no 

done? 
yes 

“true” 
M1||M2  
⊨ P≥pG [G] 

“false” 
M1||M2  
⊨ P≥pG [G] / 

M1, M2, 
P≥pG [G] 

Teacher L* 

OUT: 

bounds 
PrM1||M2

(G) 
∈ [lo,up] 

IN: 

no 

min 



Implementation + Case studies 

•  Implemented using: 
−  extension of PRISM model checker 
−  libalf learning library [Bollig et al.] 

•  Several case studies 
−  client-server (A/G model checking benchmark + failures) 

•  minimum probability mutual exclusion not violated 
−  randomised consensus algorithm [Aspnes & Herlihy] 

•  minimum probability consensus reached by round R 
−  sensor network [QEST’10] 

•  minimum probability of processor error occurring 
−  Mars Exploration Rovers (MER) [NASA] 

•  minimum probability mutual exclusion not violated in k cycles 



Experimental results (learning) 

Case study 
[parameters] 

Component sizes Compositional 
|M2⊗Gerr| |M1| |Aerr| Time (s) 

Client-server 
(N failures) 

[N] 

3 229 16 5 6.6 
4 1,121 25 6 26.1 
5 5,397 36 7 191.1 

Randomised 
consensus 

[N,R,K] 

2, 3, 20 391 3,217 6 24.2 
2, 4, 4 573 431,649 12 413.2 

3, 3, 20 8,843 38,193 11 438.9 

Sensor 
network [N] 

2 42 1,184 3 3.7 
3 42 10,662 3 4.6 

MER 
[N R] 

2, 5 5,776 427,363 4 31.8 
3, 2 16,759 171 4 210.5 



Experimental results (learning) 

Case study 
[parameters] 

Component sizes Compositional 
|M2⊗Gerr| |M1| |Aerr| Time (s) 

Client-server 
(N failures) 

[N] 

3 229 16 5 6.6 
4 1,121 25 6 26.1 
5 5,397 36 7 191.1 

Randomised 
consensus 

[N,R,K] 

2, 3, 20 391 3,217 6 24.2 
2, 4, 4 573 431,649 12 413.2 

3, 3, 20 8,843 38,193 11 438.9 

Sensor 
network [N] 

2 42 1,184 3 3.7 
3 42 10,662 3 4.6 

MER 
[N R] 

2, 5 5,776 427,363 4 31.8 
3, 2 16,759 171 4 210.5 

•  Successfully learnt (small) assumptions in all cases 



Experimental results (learning) 

Case study 
[parameters] 

Component sizes Compositional 
|M2⊗Gerr| |M1| |Aerr| Time (s) 

Client-server 
(N failures) 

[N] 

3 229 16 5 6.6 
4 1,121 25 6 26.1 
5 5,397 36 7 191.1 

Randomised 
consensus 

[N,R,K] 

2, 3, 20 391 3,217 6 24.2 
2, 4, 4 573 431,649 12 413.2 

3, 3, 20 8,843 38,193 11 438.9 

Sensor 
network [N] 

2 42 1,184 3 3.7 
3 42 10,662 3 4.6 

MER 
[N R] 

2, 5 5,776 427,363 4 31.8 
3, 2 16,759 171 4 210.5 

•  In some cases, learning + compositional verification is faster 
(than non-compositional verification, using PRISM) 



Summary (Part 4) 

•  Compositional verification, e.g. assume-guarantee 
−  decompose verification problem based on system structure 

•  Compositional probabilistic verification based on: 
−  Markov decision processes, with arbitrary parallel composition 
−  assumptions/guarantees are probabilistic safety properties 
−  reduction to multi-objective model checking 
−  multiple proof rules; adapted to quantitative approach 
−  automatic generation of assumptions: L* learning 

•  Can work well in practice 
−  verified safety/performance on several large case studies 
−  cases where infeasible using non-compositional verification 

•  For further detail, see [KNPQ10], [FKP10], [FKN+11] 

•  Next: PRISM lab session… 



More info here: 
www.prismmodelchecker.org 

Thanks for your attention 


