UNIVERSITY OF

OXFORD

Automated Verification Techniques

for Probabilistic Systems

Vojtéch Forejt
Marta Kwiatkowska
Gethin Norman

Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011

..........

O =T B3 erc [@#E THE ROYAL
= QNI\.lla S EPSRC erc ®J& SOCIETY

.

)
NN
L

EU-FP7: CONNECT LSCITS /PSS VERI.WARE

Part 4

Compositional
probabilistic verification

Overview

Lectures 1 and 2:

— 1 - Introduction

— 2 - Discrete-time Markov chains

— 3 - Markov decision processes

— 4 - Compositional probabilistic verification

PRISM lab session (4.30pm)
— PC lab downstairs - or install PRISM on your own laptop

Course materials available here:
— http://www.prismmodelchecker.org/courses/sfm11connect/
— lecture slides, reference list, tutorial chapter, lab session

Overview (Part 4)

Compositional verification
— assume-guarantee reasoning

Markov decision processes
— probabilistic safety properties

— multi-objective model checking

Probabilistic assume guarantee
— semantics, model checking
— assume-guarantee proof rules
— quantitative approaches
— implementation & experimental results
— assumption generation with learning

Compositional verification

- Goal: scalability through modular verification
— e.g. decide if M, || M, £ G
— by analysing M, and M, separately

- Assume-guarantee (AG) reasoning
— use assumption A about the context of a component M,

— (A) M, (G) - “whenever M, is part of a system satisfying A,
then the system must also guarantee G”

— example of asymmetric (non-circular) A/G rule:

— e e ey

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

— e e ey

How to formulate AG rules i M, = A i
for MDPs? LA M, (G
M, | M, =G

Key questions: oo .

— 1. What form do assumptions A take?
. needs to be compositional
. needs to be efficient to check
. needs to allow compact assumptions

— 2. How do we generate suitable assumptions?
. preferably in a fully automated fashion

— 3. Can we get “quantitative” results?
. i.e. numerical values, rather than “yes”/’no”

AG rules for probabilistic systems

— e e ey

- How to formulate AG rules i M, = A i
for MDPs? LA M, (G
M, | M, =G

Key questions: oo .

— 1. What form do assumptions A take?
. needs to be compositional
. needs to be efficient to check
. needs to allow compact assumptions

> various compositional relations exist
. e.g. strong/weak (probabilistic) (bi)simulation

. but these are either too fine (difficult to get small
assumptions) or expensive to check

> here, we use: probabilistic safety properties [TACAS’10]

. less expressive, but compact and efficient
. (see also generalisation to liveness/rewards [TACAS'11])

AG rules for probabilistic systems

— e e ey

How to formulate AG rules i M, = A i
for MDPs? LA M, (G
M, | M, =G

Key questions: oo .

— 2. How do we generate suitable assumptions?
. preferably in a fully automated fashion

> algorithmic learning (based on L* algorithm)
adapt techniques for (non-probabilistic) assumptions

— 3. Can we get “quantitative” results?
. i.e. numerical values, rather than “yes”’/’no”

> yes: generate lower/upper bounds on probabilities

Overview (Part 4)

Compositional verification
— assume-guarantee reasoning

Markov decision processes
— probabilistic safety properties

— multi-objective model checking

Probabilistic assume guarantee
— semantics, model checking
— assume-guarantee proof rules
— quantitative approaches
— implementation & experimental results
— assumption generation with learning

Recap: Markov decision processes

Markov decision processes (MDPs)
— model probabilistic and nondeterministic behaviour
- An MDP is a tuple M = (S, s;,;;, &y, Oy, L):
— S is the state space
— Siit € Sis the initial state warn

— oy is the action alphabet

— 0y € S X (0 UT) X Dist(S) is the shutdown ' shutdown
transition probability relation '

— L:S — 2AP |abels states

) . L @‘ fail @’ off
with atomic propositions

Notes:
— oy, Oy have subscripts to avoid confusion with other automata
— transitions can also be labelled with a “silent” T action
— we write s-2—u as shorthand for (s,a,p) € 9
— MDPs, here, are identical to probabilistic automata [Segala]

Recap: Model checking for MDPs

- An adversary o resolves the nondeterminism in an MDP M
— make a (possibly randomised) choice, based on history

— induces probability measure Pr,,° over (infinite) paths Path,,°
— can compute probability of some measurable property ¢

. e.g. F err = ¢err - “an error eventually occurs”
. or automata over action labels (see later)

Property specifications: quantify over all adversaries
— e.g. PCTL: M E P_ [¢] < Pry9(d) = p for all adv.s o € Ady,
— corresponds to best-/worst-case behaviour analysis
— requires computation of Pr,M" () or Pr,,mx ()
— or in a more gquantitative fashion:

— just ask e.g. P.,i,_»(p) or P, .. (P)
— also extends to (min/max) expected costs & rewards

Parallel composition for MDPs

- The parallel composition of M, and M, is denoted M, || M,
— CSP style: synchronise over all common (non-T) actions
— when synchronising, transition probabilities are multiplied

- Formally, if M; = (S;, Siici K. 6Mi, L) for i=1,2, then:
© M[IMy = (5183, (Sinit,15Sinit,2)s X, Y&u,» Om,(m,» Li12) Where:

— Li2(s1,52) = Ly(sy) U Ly(sy)
— Oy, |, is defined such that (s;,s,)-*—u, XW; iff one of:
+ S1=%=Hy, S;=*—~Hyand a € oy Naxy, (synchronous)
+ S1==Hy, Up=ng, and a € (axy \xy,) U {1} (@asynchronous)
+ S;=% =My, My=n,, and a € (xy,\oy) U {T}(asynchronous)
— where u,xu, denotes the product of distributions u,, Y,
— and n, € Dist(S) is the Dirac (point) distribution on s € S

Running example

- Two components, each a Markov decision process:
— M,: controller which shuts down devices (after warning first)
— M,: device to be shut down (may fail if no warning sent)

MDP M, (“controller”) MDP M, (“device”)

warn

shutdown shutdown ' shutdown

Running example

MDP M, (“controller”) MDP M, (“device”)

warn

shutdown shutdown shutdown

Parallel composition: M, || M,

warn shutdown

—— G55 o

Safety properties

Safety property: language of infinite words (over actions)
— characterised by a set of “bad prefixes” (or “finite violations”)
— i.e. finite words of which any extension violates the property

Regular safety property
— bad prefixes are represented by a regular language
— property A stored as deterministic finite automaton (DFA) A_,

l fail shutdown
.. _ warn, warn,
fail shutdown shutdown

“a fail action “warn occurs “at most 2 time steps
never occurs before shutdown” pass before termination”

Probabilistic safety properties

- A probabilistic safety property P_ [A] comprises
— a regular safety property A + a rational probability bound p
— “the probability of satisfying A must be at least p”
- M= P, [A] & PryA) = pforall o € Advy < Pry™n(A) >p

Examples:
— “warn occurs before shutdown with probability at least 0.8”
— “the probability of a failure occurring is at most 0.02”
— “probability of terminating within k time-steps is at least 0.75”

Model checking: Pry,mn(A) = 1 - PrM®AerrmaX(<>errA)
— where err, denotes “accept” states for DFA A
— i.e. construct (synchronous) MDP-DFA product M®A

err

— then compute reachability probabilities on product MDP

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

MDP M, (“controller”) A ('warn occurs
before shutdown”)

warn shutdown

warn, ’ warn

shutdown shutdO\’/vn

Running example

Does probabilistic safety property P_, ¢ [A] hold in M,?

MDP M, (“controller”) A ('warn occurs
before shutdown”)

warn shutdown
warn, ' warn,
shutdown shutdown

err PrM]mln(A)

= 1 = Pry o, m(0erry)
=1-0.2

= 0.8

- M, & P.slAl

Multi-objective MDP model checking

+ Consider multiple (linear-time) objectives for an MDP M
— LTL formulae ¢,,...,®, and probability bounds ~,p,,...,~ P
— question: does there exist an adversary o € Adv,, such that:

Pry(d,) ~1p; A ... A Pry®(d,) ~ Py

- Motivating example:
— Pry°(O(queue_size<10)) > 0.99 A Pry,°(¢flat_battery) < 0.01

- Multi-objective MDP model checking [EKVYO07]

— construct product of automata for M, ®,,...,®,

— then solve linear programming (LP) problem

— the resulting adversary o can obtained from LP solution

— note: o0 may be randomised (unlike the single objective case)

Multi-objective MDP model checking

- Consider the two objectives ¢D and OE in the MDP below
— i.e. the trade-off between the probabilities Pr(¢D) and Pr(OE)
— an adversary resolves the choice between a/b/c

— increasing the probability of reaching one target decreases the
probability of reaching the other

choose a

/ / choose b

choose ¢

4

4 >
0.5 0.8 PI’(<> E)

| I

Multi-objective MDP model checking

- Need to consider all randomised adversaries

— for example, is there an adversary o such that:
— Pr(¢D) > 0.2 A Pr(OE) > 0.6

all (randomised)
adversaries

Pareto curve

4/ adversary o

I >
0.5 0.8 PI’(Q E)

Overview (Part 4)

- Compositional verification
— assume-guarantee reasoning

- Markov decision processes
— probabilistic safety properties

— multi-objective model checking

- Probabilistic assume guarantee
— semantics, model checking
— assume-guarantee proof rules
— quantitative approaches
— implementation & experimental results
— assumption generation with learning

Probabilistic assume guarantee

- Assume-guarantee triples <A>ZIOA M (G).,_ where:
— Mis an MDP

— PZpA[A] and PZpG[G] are probabilistic safety properties

ZpG

Informally:

— “whenever M is part of a system satisfying A with probability
at least p,, then the system is guaranteed to satisfy G with
probability at least p.”

Formally:
— Vo € Advy, (Pry°(A) = pp — Pry°(G) = pc)
— where M’ is M with its alphabet extended to include o,
— reduces to multi-objective model checking on M’
— look for adversary satisfying assumption but not guarantee
— i.e. can check Azp, M <G>ZIOG efficiently via LP problem

An assume-guarantee rule

- The following asymmetric proof rule holds
— (asymmetric = uses one assumption about one component)

(ASYM)

- So, verifying M, [| M, & P=p.[G] requires:
— premise 1: M, = P=p, [A] (standard model checking)
— premise 2: Azp, My <G>ZIOG (multi-objective model checking)

- Potentially much cheaper if |A| much smaller than |M, |

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

MDP M, (“controller”) MDP M, (“device”) G (“a fail action

nhever occurs”)
detect warn @

shutdown

shutdown shutdown :
l fail

@‘ fail @’ off ’

fail

Running example

Does probabilistic safety property P_, o5 [G] hold in M, ||M,?

MDP M, (“controller”) MDP M, (“device”) G (“a fail action

nhever occurs”)
detect warn @

shutdown

shutdown

@‘ fail @’ off ’

Use AG with assumption fail

(A)_y g about M,

A (“warn occurs

true) M, (Ad.o g before shutdown”) shutdown
(A)=0.8 Mz (G298
truey M, || M, (G). g g warn, warn,

shutdown shutdown

Running example

- Premise 1: Does M, = P_, ¢ [A] hold? (same as earlier ex.)

MDP M, (“controller”) A ('warn occurs
before shutdown”)

shutdown shutdown
Product MDP M, ®A,,,
min
PrM] (A)
= 1 = Pry o, m(0erry)
=1-0.2
= 0.8

- M] = PzO.S [A]

Running example

- Premise 2: Does (A)_,3 M, (G)_, o5 hold?

G (“a fail action

MDP M, (“device”) A (“warn occurs never occurs”)

warn before shutdown”)

b shutdown - <hutdown shutdown lfa”

Product MDP
M’ = MZ[O(A]®Aerr®Gerr

Running example

Premise 2: Does (A)_,g M, (G)_, 95 hold?

warn
Product MDP _

M’ = MZ[O(A]®Aerr®Gerr

shutdown

1 an adversary of M, satisfying Pr,,° (A)>=0.8 but not Pr,,° (G)>0.98 ?
=

3 an an adversary of M’ with Pry,% (¢err,)<0.2 and Pr,° (Cerr:)>0.02 ?

To satisfy Pry,.9 (Oerr,)<0.2, adversary ¢’ must choose shutdown
in initial state with probability < 0.2, which means Pr,,° (0err-)<0.02

So, there is no such adversary and (A)_, g M, (G)_, 45 does hold

Other assume-guarantee rules

Multiple assumptions:

M] = P=p, [A 1 AA P>p, [Ak]
<A'|, Ak>>p]

M || My &= P=p¢ [G]

- Circular rule:

MZ = Psz [AZ]
<A2>Zp2 M] <A]>Zpl
<A1>2p1 M2 <G>ch

(CIRC)

M; [I My & P=p¢[G]

o My (G)=p; (ASYM-MULT)

Multiple components (chain):

M, & P>p, [A,]
<A1>Zp1 Mz <A2>Zp2
(ASYM-N)
<An>2pn Mn <G>ch

M, || ... || M, & P>p.[C]

Asynchronous components:

<A'|>Zp] M] <G'|>Zq]
<A2>ZI32 Mz <Gz>ZQ2

(ASYNC)

(A1,Ap=pip, My || M, (G, VG,)=(a,+0,-9,4,)

A quantitative approach

For (non-compositional) probabilistic verification
— prefer quantitative properties: Pr,,™"(G), not M = PZIOG [G]
— can we do this for compositional verification?

arue> My (A)
Poopy My G

(true) My [| My <G,
— i.e. gives lower bound for Pry ,™"(C) -

Consider, for example, AG rule (ASym) =PA

I
I
1
. 1
— this proves Pry y,™"(C) = pg |
for certain values of pg |

1

=p

— for a fixed assumption A, we can compute the maximal lower
bound obtainable, through a simple adaption of the multi-
objective model checking problem

— we can also compute upper bounds using generated
adversaries as witnesses

— furthermore: can explore trade-offs in parameterised models
by approximating Pareto curves

Implementation + Case studies

Prototype extension of PRISM model checker
— already supports LTL for Markov decision processes
— automata can be encoded in modelling language

— added support for multi-objective LTL model checking, using
LP solvers (ECLiPSe/COIN-OR CBQ)

- Two large case studies
— randomised consensus algorithm (Aspnes & Herlihy)
. minimum probability consensus reached by round R
— Zeroconf network protocol
- maximum probability network configures incorrectly
. minimum probability network configured by time T

Experimental results

Case study Non-compositional Compositional
RS

3,2 1,418,545 18,971 40,542 29.6
Randomised _

consensus 3, 20 39,827,233 time-out 40,542 125.3

(3 processes) 4,2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209 mem-out 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 592.2 66,436 107.6

2,10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K, T] 4,10 976,247 88.2 74,484 170.8

4,14 2,288,771 128.3 166,203 430.6

Experimental results

Case study Non-compositional Compositional
parametersl [s] Time | (Psize | Tme)

3,2 1,418,545 18,971 40,542 29.6
Randomised _
consensus 3, 20 39,827,233 time-out 40,542 125.3
(3 processes) 4,2 150,487,585 78,955 141,168 376.1
[R,KI 4,20 2,028,200,209 mem-out 141,168 471.9
4 313,541 103.9 20,927 21.9
Zerﬁgonf 6 811,290 2752 40,258 54.8
8 1,892,952 592.2 66,436 107.6
\
2,10 65,567 46.3 62,188 89.0
ZeroConf 2,14 106,177 63.1 101,313 170.8
time-bounded
K, T] 4,10 976,247 88.2 74,484 170.8
4,14 2,288,771 128.3 166,203 430.6

* Faster than conventional model checking in a number of cases

Experimental results

Case study Non-compositional Compositional
RS

3,2 1,418,545 18,971 40,542 29.6
Randomised :

consensus 3, 20 39,827,233 time-out| 40,542 125.3

(3 processes) 4, 2 150,487,585 78,955 141,168 376.1

[R,KI 4,20 2,028,200,209[mem—out] 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 40,258 54.8

8 1,892,952 502.2 66,436 107.6

2.10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 101,313 170.8

time-bounded
K. T] 4,10 976,247 88.2 74.484 170.8
4,14 2,288,771 128.3 166,203 430.6

* Verified instances where conventional model checking is infeasible

Experimental results

Case study Non- compositional Compositional
RS

3,2 1,418,545 18,971 (40,542 29.6
Randomised

consensus 3, 20 39,827,233 time-out | 40,542 125.3

(3 processes) 4,2 150,487,585 78,955 | 141,168 376.1

[R,KI 4,20 2,028,200,209 mem-out | 141,168 471.9

4 313,541 103.9 20,927 21.9

Zerﬁgonf 6 811,290 2752 | 40,258 54.8

8 1,892,952 592.2 66,436 107.6

2,10 65,567 46.3 62,188 89.0

ZeroConf 2,14 106,177 63.1 | 101,313 170.8
time-bounded

K, T] 4,10 976,247 88.2 74,484 170.8

4,14 2,288,771 128.3 | 166,203, 430.6

* LP problem generally much smaller than full state space
(but still the limiting factor)

Overview (Part 4)

Compositional verification
— assume-guarantee reasoning

Markov decision processes
— probabilistic safety properties

— multi-objective model checking

Probabilistic assume guarantee
— semantics, model checking
— assume-guarantee proof rules
— guantitative approaches
— implementation & experimental results
— assumption generation with learning

Generating assumptions

Can model check M, ||M, compositionally

— but this relies on the existence :
of a suitable assumption P=p, [A] L Apy My G,y

1. Does such an assumption always exist?

2. When it does exist, can we generate it automatically?

Our approach: use algorithmic learning techniques
— inspired by non-probabilistic AG work of [Pasareanu et al.]
— uses L* algorithm to learn finite automata for assumptions
— we use a modified version of L*
— to learn probabilistic assumptions for rule (Asym) [QEST’10]

The L* learning algorithm

- The L* algorithm [Angluin]
— learns an unknown regular language L, as a (minimal) DFA

- Based on “active” learning
— relies on existence of a “teacher” to guide the learning

— answers two type of queries: “membership” and “equivalence”
— membership: “is trace (word) t in the target language L?”

. stores results of membership queries in observation table
. based on these, generates conjectures A for the automata

— equivalence: “does automata A accept the target language L™

. if not, teacher must return counterexample c
. (cis a word in the symmetric difference of L and L(A))

The L* learning algorithm

L* Teacher
— i AL N trace t e sses AR :
> Memllj::shlp E b i
-P'CI y Membership query
table :
. 2
- done? :
NO oy :
yes
Generate : conJecture A ’._
........ SelAlSEIig . Equivalence query |
.. counterexample ¢ (analyse conjecture A)
Update €
table P |

L* for assume-guarantee

- Breakthrough in automated compositional verification
— use of L* to learn assumptions for A/G reasoning
— [Pasareanu/Giannakopoulou/et al.]

— uses notion of “weakest assumption” about a component that
suffices for compositional verification (always exists)

— weakest assumption is the target regular language

- Fully automated L* learning loop
— model checker plays role of teacher, returns counterexamples

— in practice, can usually stop early: either with a simpler
(stronger) assumption or by refuting the property

- Successfully applied to several large case studies
— does particularly well when assumption/alphabet are small
— much recent interest in learning for verification...

Probabilistic assumption generation

- Goal: automate A/G rule (Asym) R e E T Ty
— generate probabilistic assumption P-p, [A] M, &= P=p, [A]

— for checking property P-,.[G] on M, || M, i Adzpy My (G2

Reduce problem to generation of
non-probabilistic assumption A

— then (if possible) find lowest p, such that premises 1 & 2 hold

— in fact, for fixed A, we can generate lower and upper bounds
on Pry u,™" (G), which may suffice to verify/refute P-,. [G]

Use adapted L* to learn non-probabilistic assumption A
— note: there is no “weakest assumption” (AG rule is incomplete)
— but can generate sequence of conjectures for A in similar style

— “teacher” based on a probabilistic model checker (PRISM),
feedback is from probabilistic counterexamples [Han/Katoen]

— three outcomes of loop: “true”, “false”, lower/upper bounds

Probabilistic assumption generation

L* Teacher

: Membersh|p [trace Tl i Membership query . OUT: :
: Ler naluse trace & | e
q y.- (yh k) —» “true”
~ Update | |Yesimo| MC:; N L
table S = P.p. [G
. -
done? : T : —» “false
no R eS Equ|va|ence query M] | |M2
y _ : (analyse conjecture A)
""""" Conerate & |conj. 1 # P.p. [G]
enerate ,, :
conjecture Try to find Pa such that: :
RN GNUE DRSNS H +b0unds
sy | oo (i) My = P, [A] o
Update » : (i) (A M. <G> - PrM]HMz(G)
............... table e e Gk | € [l0,up]

Implementation + Case studies

- Implemented using:
— extension of PRISM model checker
— libalf learning library [Bollig et al.]

- Several case studies
— client-server (A/G model checking benchmark + failures)
- minimum probability mutual exclusion not violated
— randomised consensus algorithm [Aspnes & Herlihy]
- minimum probability consensus reached by round R
— sensor network [QEST’10]
. minimum probability of processor error occurring
— Mars Exploration Rovers (MER) [NASA]
- minimum probability mutual exclusion not violated in k cycles

Experimental results (learning)

parametersl [oc, | jwi | i | Tme
3 229 16 6.6

. 5
Client-server
(N failures) 4 1,121 25 6 26.1
[N] 5 5.397 36 7 191.1
e 2,135120 391 3,217 6 24.2
consensus 2,4, 4 573 431,649 12 413.2
[N,R,K] 3,3, 20 8.843 38,193 11 438.9
network [N] 3 42 10,662 3 4.6
MER 2,5 5,776 427,363 4 31.8
[N R] 3,2 16,759 171 4 210.5

[parameters] IM,®G, .| m
3 229 16

Client-server

(N failures) 4 1,121
[NI 5 5,397
Randomised % 2y 20 el
consensus 2,4,4 573
[N;R,K] 3,3, 20 8,843
Sensor 2 42
network [N] 3 42
MER 2,5 5,776

[N R] 3, 2 16,759

5 6.6

25 6 26.1

36 7 191.1

3,217 6 24.2
431,649 12 413.2
38,193 11 438.9
1,184 3 3.7
10,662 3 4.6
427,363 4 31.8
) 4 210.5

* Successfully learnt (small) assumptions in all cases

Experimental results (learning)

parametersl [oc, | jwi | i | Tme
3 229 16 6.6

. 5
Client-server

(N failures) 4 1,121 25 6 26.1
[N] 5 5.397 36 7 191.1

randomised 21320 391 3,217 6
consensus 2,4, 4 573 431,649 12 413.2
[N,R,K] 3,3, 20 8.843 38,193 11 438.9
network [N] 3 42 10,662 3 4.6
MER 2,5 5,776 427,363 4 31.8
[N R] 3,2 16,759 171 4 210.5

* In some cases, learning + compositional verification is faster
(than non-compositional verification, using PRISM)

Summary (Part 4)

Compositional verification, e.g. assume-guarantee
— decompose verification problem based on system structure
Compositional probabilistic verification based on:
— Markov decision processes, with arbitrary parallel composition
— assumptions/guarantees are probabilistic safety properties
— reduction to multi-objective model checking
— multiple proof rules; adapted to quantitative approach
— automatic generation of assumptions: L* learning
Can work well in practice

— verified safety/performance on several large case studies
— cases where infeasible using non-compositional verification

For further detail, see [KNPQ10], [FKP10], [FKN+11]

Next: PRISM lab session...

Thanks for your attention

More info here:
www.prismmodelchecker.org

