Exactly Learning Weighted Automata over a Field

Preliminaries

A weighted automaton over a field K is a tuple A = (n, X, o, { M (0) }yex, M)
comprising the dimension n € N, alphabet X, initial-state vector a € K",
family of transition matrices M (o) € K"*" and final-state vector n € K™.
Extend M freely to ¥* by writing M (o1 ...0x) = M(01) -+ M(ox). Then A
is said to recognize a formal power series f : ¥* — K if f(w) = o M(w)n
for all w € X*.

Write e; € K" for the column vector with 1 in the i-th position and 0 in
all other positions.

Define the Hankel matriz of a formal power series f : ¥* — K to be
the infinite matrix F' whose rows and columns are indexed by ¥*, such that
Fpy = f(zy) for z,y € ¥*. Recall that if f is recognized by a K-weighted
automaton A then the rank of its Hankel matrix is at most the number of
states of A.

The Algorithm

We describe an algorithm (from [1]) to exactly learn a weighted automaton
computing a given function f : ¥* — K using membership and equivalence
queries. In a membership query the learner asks for the value of f on a given
word w € ¥*.

At each stage the algorithm maintains the following data:

e A set of n “rows” X = {z1,...,2,} C X* where z; = ¢.
e A set of n “columns” Y = {y1,...,yn} C X* where y; = .

e A full-rank n x n submatrix H of F', determined by X and Y:

friyn) flziye) - f(oiyn)

" f(x?yl) f(w?yz) f(x?yn)

Faown) Flny) - Flonm)

The entries of the matrix H are determined by making membership queries.

These data determine a Hypothesis automaton A as follows. Intuitively
the states of A correspond to the rows of H, with the i-th row being the
state reached after executing word x; from the initial state. The columns
can be considered as tests that distinguish different states.

Formally A has dimension n, initial-state vector a = el H, the first row
of H, and final-state vector n = e;. Since H has full rank, for each o € X
we can define the transition matrix M (o) by the equation

flxioyr) flxzioya) - f(xioyn)
HM(o) = f (132.Uy1) f (5E2.Uy2) - f (372.0'yn)
f (xn'a.m) f (arn'am) - f (fvn'ayn)

In each step of the algorithm an equivalence query is performed to deter-
mine whether A computes f. If not, a counterexample w € ¥* is returned.

Proposition 1 A counterexample z has a prefic wo, where o € % and
w € X*, such that for some i € {1,...,n} the assignment X < X U {w},
Y < Y U{oy;} increases the rank of H by one.

Proof. Say that automaton A is correct on a word w € ¥* if

aM(w) = (f(wy1), ..., fwyn)) .- (1)

Note that in this case A(w) = aM(w)n = f(w). It follows that A is not
correct on z. Since it is clearly correct on the empty word, there must exist
a prefix wo of z such that A is correct on w, but not on wo. For such a w
we have that (1) holds, but also

aM(wa) # (f(woy), ... fwoy.).

In particular, we can pick i € {1,...,n} such that
aM(wo)e; # f(woy;). (2)
Now consider the matrix H' defined by
flewn) fleye) - fl@ww) flzioy)

H — : : . : :
f(innyl) f(l‘ny2) te f($nyn) f(l‘no'yi)
floyr) flwyz) ... flwyn) flwoy;)

(1) H HM(o)e;

| aM(w) f(woy;)

It remains to show that H' has rank n + 1. By assumption H has rank
n, so it suffices to show that the (n+ 1)-st row of H' cannot be expressed as

a linear combination of the first n rows. Indeed, suppose for a contradiction
that u € K" is such that vl H = aM (w) and v HM (0)e; = f(woy;). Then

flwoy;) = uTHM(a)el- =aM(w)M(o)e;,
which contradicts (2). O

The word w and suffix oy; in the above proposition can be found using
membership queries.

Comparison with Angluin’s Algorithm

The rows and columns in the above algorithm play a similar role to the access
words and test words in Angluin’s algorithm. The requirement that H have
full rank corresponds to the conditions of closedness and separatedness in
Angluin’s algorithm. Intuitively the situation for weighted automata is more
symmetric than for DFA: in particular, the number of rows and columns is
always the same.

References

[1] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Var-
ricchio. Learning functions represented as multiplicity automata. J.
ACM, 47:2000, 2000.

