
Exactly Learning Weighted Automata over a Field

Preliminaries

A weighted automaton over a field K is a tuple A = (n,Σ,α, {M(σ)}σ∈Σ,η)
comprising the dimension n ∈ N, alphabet Σ, initial-state vector α ∈ Kn,
family of transition matrices M(σ) ∈ Kn×n, and final-state vector η ∈ Kn.
Extend M freely to Σ∗ by writing M(σ1 . . . σk) = M(σ1) · · ·M(σk). Then A
is said to recognize a formal power series f : Σ∗ → K if f(w) = αTM(w)η
for all w ∈ Σ∗.

Write ei ∈ Kn for the column vector with 1 in the i-th position and 0 in
all other positions.

Define the Hankel matrix of a formal power series f : Σ∗ → K to be
the infinite matrix F whose rows and columns are indexed by Σ∗, such that
Fx,y = f(xy) for x, y ∈ Σ∗. Recall that if f is recognized by a K-weighted
automaton A then the rank of its Hankel matrix is at most the number of
states of A.

The Algorithm

We describe an algorithm (from [1]) to exactly learn a weighted automaton
computing a given function f : Σ∗ → K using membership and equivalence
queries. In a membership query the learner asks for the value of f on a given
word w ∈ Σ∗.

At each stage the algorithm maintains the following data:

• A set of n “rows” X = {x1, . . . , xn} ⊆ Σ∗, where x1 = ε.

• A set of n “columns” Y = {y1, . . . , yn} ⊆ Σ∗, where y1 = ε.

• A full-rank n× n submatrix H of F , determined by X and Y :

H =


f(x1y1) f(x1y2) · · · f(x1yn)
f(x2y1) f(x2y2) · · · f(x2yn)

...
...

. . .
...

f(xny1) f(xny2) · · · f(xnyn)


The entries of the matrix H are determined by making membership queries.

These data determine a Hypothesis automaton A as follows. Intuitively
the states of A correspond to the rows of H, with the i-th row being the
state reached after executing word xi from the initial state. The columns
can be considered as tests that distinguish different states.

1



Formally A has dimension n, initial-state vector α = eT1 H, the first row
of H, and final-state vector η = e1. Since H has full rank, for each σ ∈ Σ
we can define the transition matrix M(σ) by the equation

HM(σ) =


f(x1σy1) f(x1σy2) · · · f(x1σyn)
f(x2σy1) f(x2σy2) · · · f(x2σyn)

...
...

. . .
...

f(xnσy1) f(xnσy2) · · · f(xnσyn)


In each step of the algorithm an equivalence query is performed to deter-

mine whether A computes f . If not, a counterexample w ∈ Σ∗ is returned.

Proposition 1 A counterexample z has a prefix wσ, where σ ∈ Σ and
w ∈ Σ∗, such that for some i ∈ {1, . . . , n} the assignment X ← X ∪ {w},
Y ← Y ∪ {σyi} increases the rank of H by one.

Proof. Say that automaton A is correct on a word w ∈ Σ∗ if

αM(w) = (f(wy1), . . . , f(wyn)) . (1)

Note that in this case A(w) = αM(w)η = f(w). It follows that A is not
correct on z. Since it is clearly correct on the empty word, there must exist
a prefix wσ of z such that A is correct on w, but not on wσ. For such a w
we have that (1) holds, but also

αM(wσ) 6= (f(wσy1), . . . f(wσyn)) .

In particular, we can pick i ∈ {1, . . . , n} such that

αM(wσ)ei 6= f(wσyi) . (2)

Now consider the matrix H ′ defined by

H ′ =


f(x1y1) f(x1y2) · · · f(x1yn) f(x1σyi)

...
...

. . .
...

...
f(xny1) f(xny2) · · · f(xnyn) f(xnσyi)
f(wy1) f(wy2) . . . f(wyn) f(wσyi)


(1)
=

[
H HM(σ)ei

αM(w) f(wσyi)

]
.

It remains to show that H ′ has rank n+ 1. By assumption H has rank
n, so it suffices to show that the (n+ 1)-st row of H ′ cannot be expressed as

2



a linear combination of the first n rows. Indeed, suppose for a contradiction
that u ∈ Kn is such that uTH = αM(w) and uTHM(σ)ei = f(wσyi). Then

f(wσyi) = uTHM(σ)ei = αM(w)M(σ)ei ,

which contradicts (2). 2

The word w and suffix σyi in the above proposition can be found using
membership queries.

Comparison with Angluin’s Algorithm

The rows and columns in the above algorithm play a similar role to the access
words and test words in Angluin’s algorithm. The requirement that H have
full rank corresponds to the conditions of closedness and separatedness in
Angluin’s algorithm. Intuitively the situation for weighted automata is more
symmetric than for DFA: in particular, the number of rows and columns is
always the same.

References

[1] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Var-
ricchio. Learning functions represented as multiplicity automata. J.
ACM, 47:2000, 2000.

3


