
Logic and Proof Hilary 2024

Propositional Logic

James Worrell

1 Introduction

Propositional logic analyses how the truth values of compound sentences depend on their con-
stituents. The most basic kind of sentences are atomic propositions, which can either be true or
false independently of each other. Sentences are combined using logical connectives, such as not
(¬), or (∨), and implies (→). A prime concern of propositional logic is, given a compound sentence,
determine which truth values of its atoms make it true. This question is key to formulating the
notions of logical consequence and valid argument.

2 Syntax of Propositional Logic

2.1 The Core Language

The syntax of propositional logic is given by rules for writing down well-formed formulas over a
given collection of propositional variables p1, p2, . . .. The set of formulas of propositional logic is
defined inductively as follows:

1. true and false are formulas.

2. All propositional variables are formulas.

3. For every formula F , ¬F is a formula.

4. For all formulas F and G, (F ∧G) and (F ∨G) are formulas.

We call (F ∧G) the conjunction of F and G, (F ∨G) is the disjunction of F and G, and ¬F
the negation of F . We read F ∧G as “F and G”, we read F ∨G as “F or G”, and we read ¬F as
“not F”.

The parentheses around conjunction and disjunction ensure that each string of symbols gener-
ated by the above definition can be parsed in exactly one way as a formula. Typically we omit the
outermost parentheses when writing formulas, e.g., we write p1∧ (p2∨p1) instead of (p1∧ (p2∨p1)).

Every formula F can be represented by a syntax tree whose internal nodes are labelled by
connectives and whose leaves are labelled by propositional variables. The size of F is defined to be
the number of nodes in its syntax tree. Each node in the syntax tree determines a subformula of
F whose syntax tree is the subtree rooted at that node.

Example 1. ¬((¬p4 ∨ p1) ∧ p3) is a formula. Its subformulas are p1, p3, p4, ¬p4, (¬p4 ∨ p1),
((¬p4 ∨ p1) ∧ p3), and ¬((¬p4 ∨ p1) ∧ p3). The syntax tree of this formula is shown in Figure 1.

The inductive structure of the set of propositional formulas allows us to define functions on
propositional formulas by induction. For example, we use induction to give a more formal definition
of the size of a formula as follows:

1



¬

∧

∨ p3

¬ p1

p4

Figure 1: Syntax tree of ¬((¬p4 ∨ p1) ∧ p3).

1. size(true) = 1, size(false) = 1, and size(P ) = 1 for a propositional variable P

2. size(¬F ) = 1 + size(F )

3. size(F ∧G) = 1 + size(F ) + size(G)

4. size(F ∨G) = 1 + size(F ) + size(G)

Exercise 2. Let sub(F ) denote the set of subformulas of a formula F . Given an inductive definition
of sub(F ).

2.2 Derived Connectives

Having a small set of primitive connectives makes it easier to implement our logic and to prove
properties about it. However in applications it is typically helpful to have a rich set of derived
connectives to hand. These are not part of the official language, but can be considered as macros.

We introduce three derived connectives, the conditional (F → G (read “if F then G”), the
biconditional (F ↔ G) (read “F if and only if G”) and exclusive or (F ⊕ G). We define these
syntactically in terms of the existing connectives as follows.

F → G := (¬F ∨G)

F ↔ G := (F → G) ∧ (G → F )

F ⊕G := (F ∧ ¬G) ∨ (¬F ∧G)

It is also useful to have indexed versions of disjunction and conjunction, similar to indexed sums
and products in arithmetic. We thus define

n∨
i=1

Fi := (. . . ((F1 ∨ F2) ∨ F3) ∨ . . . ∨ Fn)

n∧
i=1

Fi := (. . . ((F1 ∧ F2) ∧ F3) ∧ . . . ∧ Fn)

We adopt the following operator precedences: ↔ and → bind weaker than ∧ and ∨, which
in turn bind weaker than ¬. Indexed conjunction and disjunction bind weaker than any of the

2



A[[F ]] A[[G]] A[[F ∨G]]

0 0 0
0 1 1
1 0 1
1 1 1

A[[F ]] A[[G]] A[[F ∧G]]

0 0 0
0 1 0
1 0 0
1 1 1

A[[F ]] A[[¬F ]]

0 1
1 0

Figure 2: Truth tables for the Boolean connectives

A[[F ]] A[[G]] A[[F → G]]

0 0 1
0 1 1
1 0 0
1 1 1

A[[F ]] A[[G]] A[[F ↔ G]]

0 0 1
0 1 0
1 0 0
1 1 1

A[[F ]] A[[G]] A[[F ⊕G]]

0 0 0
0 1 1
1 0 1
1 1 0

Figure 3: Truth tables for the conditional, biconditional and exclusive or

above operators. We also typically omit the outermost parentheses. For example, we can write
¬P ∧Q → R instead of ((¬P ∧Q) → R). However well-chosen parenthesis can often help to parse
formulas.

3 Semantics of Propositional Logic

3.1 Assignments and Satisfiability

We call {0, 1} the set of truth values. An assignment is a function A : {pi : i ∈ N} → {0, 1} from
the set of propositional variables to the set of truth values. We also call A a valuation. We extend
A to a function on the set of all propositional formulas by induction on the set of formulas. The
base case of the induction are A[[true]] = 1 and A[[false]] = 0. The inductive cases are as follows:

1. A[[F ∧G]] = 1 if and only if A[[F ]] = 1 and A[[G]] = 1;

2. A[[F ∨G]] = 1 if and only if A[[F ]] = 1 or A[[G]] = 1;

3. A[[¬F ]] = 1 if and only if A[[F ]] ̸= 1.

These definitions are summarised by truth tables in Figure 2.

Figure 3 gives truth tables for the derived operators. Observe that F → G is true if F is false.
In this case we say that the implication holds vacuously.

Let F be a formula and let A be an assignment. If A[[F ]] = 1 then we write A |= F . In this
case we say that A satisfies F or that A is a model of F . Otherwise we write A ̸|= F , and say that
A does not satisfy F .

A formula F is satisfiable if it has a model, otherwise F is called unsatisfiable. A (finite or
infinite) set of formulas S is satisfiable if there is an assignment that is a model of every formula
in S. (Thus sets of formulas are treated conjunctively.) A formula F is valid or a tautology if all
assignments are models of F . Note that F is unsatisfiable if and only if ¬F is valid.

3



T P W F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Figure 4: Truth table for the thermostat

Example 3. In the following example we analyse the consistency of a sequence of assertions in
natural language by translating them to a propositional formula and computing its truth table.

A device consists of a thermostat, a pump, and a warning light. Suppose we are told the
following four facts about the pump:

(a) The thermostat or the pump (or both) are broken.

(b) If the thermostat is broken then the pump is also broken.

(c) If the pump is broken and the warning light is on then the thermostat is not broken.

(d) The warning light is on.

We want to find out if it is possible for the above sentences to all be true at the same time. To
this end we introduce atomic propositions T (the thermostat is broken), P (the pump is broken),
and W (the warning light is on). Then statements (a)–(d) are expressed by the following formula:

F := (T ∨ P ) ∧ (T → P ) ∧ ((P ∧W ) → ¬T ) ∧W .

The truth table for F in Figure 4 reveals that it is satisfied by a unique assignment. One way to
think of this is that each assignment describes a possible world, and there is only possible world in
which F is true.

3.2 Sudoku Example

Example 3 shows that propositional logic is an expressive constraint language. The following
example further illustrates this point.

Example 4. We transform an instance of the Sudoku puzzle into an instance of propositional
satisfiability, see Figure 5. For each choice of i, j, k ∈ {1, . . . , 9} we have a proposition pi,j,k
expressing that grid position i, j contains number k. We then build a formula F as the conjunction
of the following constraints:

• Each number appears in each row:

F1
def
=

9∧
i=1

9∧
k=1

9∨
j=1

pi,j,k

4



2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

Figure 5: A Sudoko grid

• Each number appears in each column:

F2
def
=

9∧
j=1

9∧
k=1

9∨
i=1

pi,j,k

• Each number appears in each 3× 3 block:

F3
def
=

9∧
k=1

2∧
u=0

2∧
v=0

3∨
i=1

3∨
j=1

p3u+i,3v+j,k

• No square contains two numbers:

F4
def
=

9∧
i=1

9∧
j=1

∧
1≤k<k′≤9

¬(pi,j,k ∧ pi,j,k′) .

• Certain numbers appear in certain positions: For the puzzle in Figure 5 we assert

F5
def
= p2,1,2 ∧ p1,2,8 ∧ p2,3,3 ∧ . . . ∧ p8,9,6 .

It might appear at first sight that some constraints are missing. For example, we might want
to express that no number appears twice in the same row:

F6
def
=

9∧
i=1

9∧
k=1

∧
1≤j<j′<9

¬(pi,j,k ∧ pi,j′,k) .

But this is entailed by the existing formulas: adding F6 as an extra constraint would not change
the set of satisfying assignments. (It turns out that adding logically redundant constraints may be
helpful to a computer that is searching for an assignment that satisfies the formula.)

The number of variables in our encoding is 93 = 729. Thus a truth table for the corresponding
formula would have 2729 > 10200 lines, which is greater than the estimated number of atoms in
the universe! Nevertheless a modern SAT-solver (see, e.g., www.minisat.se) can typically find a
satisfying assignment in milliseconds.

5



3.3 Entailment and Equivalence

We say that a formula G is entailed by a set of formulas S if every assignment that satisfies each
formula in S also satisfies G. In this case we write S |= G. If S = {F1, . . . , Fn} then write
F1, . . . , Fn |= G, and if S = ∅ then we write |= G. Observe that |= G just asserts that G is valid.

Example 5. In the Sudoku puzzle in Example 4 we have F1, . . . , F4 |= F6.

Warning! In logic the symbol |= is overloaded. Above we define S |= F for a set of
formulas S and formula F . Previously we have written A |= F to say that an assignment
A is a model of F .

Two formulas F and G are said to be logically equivalent if A[[F ]] = A[[G]] for every assignment
A. We write F ≡ G to denote that F and G are equivalent. (We reserve the symbol = for
syntactic equality, i.e., F = G means that F and G are the same formula.) For example, an
implication F → G is equivalent to its so-called contrapositive ¬G → ¬F . This fact is often used in
mathematical proofs, where it may be more intuitive to prove the contrapositive than the original
implication.

Exercise 6. Fix n ∈ N. Argue that there are finitely many formulas on the set of propositional
variables p1, . . . , pn up to logical equivalence. How many such formulas are there?

4 The SAT Problem

A decision problem is a computational problem for which the output is either “yes” or “no”. Such
a problem consists of a family of instances, together with a question that can be applied to each
instance. A decision problem of prime importance is the SAT problem for propositional logic. Here
the instances are propositional formulas and the question is whether a given formula is satisfiable.

4.1 Complexity of SAT

The truth-table method for solving the SAT problem requires at least 2n steps in the worst case for
a formula with n variables, that is, it runs in no better than exponential time. The proof system
underlying modern SAT solvers can be seen as a subsystem of the resolution proof procedure,
which will be introduced later on. These SAT solvers work well in practice, routinely determining
(un)satisfiability of formulas with thousands of variables and clauses. However it is known that
resolution is also exponential in the worst case.

It is an open question whether there is an algorithm for deciding SAT whose worst-case running

time is polynomial in the formula size. In fact this question is a formulation of the famous P
?
= NP

problem. It is even open whether there is a sub-exponential algorithm for the SAT problem. By a
sub-exponential algorithm we mean that the running time f(n) is 2o(n), e.g., f(n) could be n600,
nlog(n), n

√
n, or 2n/ log(n). In other words, it is not known whether or not we can do even a tiny bit

better than exhaustive search in the worst case!

4.2 Reductions to SAT

Many “hard” combinatorial decision problems can be reduced to SAT. A reduction of a decision
problem to SAT is an algorithm that inputs an instance I of the decision problem and outputs a

6



propositional formula φI such that φI is satisfiable if and only if I is a “yes” instance.

Example 7. We consider the 3-colourability problem for graphs. Recall that an undirected graph
is a tuple G = (V,E) consisting of a set of vertices V and an irreflexive symmetric edge relation
E ⊆ V × V . If (u, v) ∈ E we say that vertices u and v are adjacent. A 3-colouring of G is an
assignment of a colour in the set C = {r, b, g} to each vertex so that no two adjacent vertices have
the same colour. An instance of the 3-colouring problem is a graph G, and the question is whether
G has a 3-colouring.

We express the requirements of a 3-colouring in a propositional formula φG that is derived from
G. To define φG we first introduce a set of atomic propositions {pv,c : v ∈ V, c ∈ C}. Intuitively
pv,c represents the proposition vertex v has colour c. We then encode the notion of a 3-colouring
by the following formulas.

• Each vertex has at least one colour:

F1 :=
∧
v∈V

∨
c∈C

pv,c .

• Each vertex has at most one colour:

F2 :=
∧
v∈V

∧
c,c′∈C
c ̸=c′

¬pv,c ∨ ¬pv,c′ .

• Adjacent vertices have different colours:

F3 :=
∧

(u,v)∈E

∧
c∈C

¬pu,c ∨ ¬pv,c .

Finally, we define φG := F1∧F2∧F3. Note that it is straightforward to write a small program that
takes a graph as G input and outputs the formula φG.

It is clear that φG is satisfiable if and only if G has a 3-colouring and moreover a satisfying
assignment of φG determines a 3-colouring of G.

The idea of solving a combinatorial problem by reduction to SAT is that the SAT-solver should
do all the hard work. The reduction itself should be computationally straightforward: at the very
least it should be implementable by a polynomial-time algorithm. For example, in the case of
3-colourability, given a graph G one can produce φG by performing a single traversal of G.

Exercise 8. Consider the following two decision problems concerning propositional formulas:

1. Entailment: Let F and G be formulas. Does F |= G hold?

2. Equivalence: Let F and G be formulas. Does F ≡ G hold?

Describe how a procedure to solve the SAT problem could be used as a black box to solve the
Entailment and Equivalence problems.

7


	Introduction
	Syntax of Propositional Logic
	The Core Language
	Derived Connectives

	Semantics of Propositional Logic
	Assignments and Satisfiability
	Sudoku Example
	Entailment and Equivalence

	The SAT Problem
	Complexity of SAT
	Reductions to SAT


