
Logic and Proof Hilary 2024

Resolution for Predicate Logic

James Worrell

1 Unification

A drawback of the ground resolution procedure is that it requires predicting which ground instances
of clauses will be needed in a proof. In this lecture we introduce a version of resolution that allows
us to perform substitution “by need”. This relies on the notion of unification.

Substitutions. A substitution is a selfmap θ on the set of σ-terms such that (writing function
application on the right) cθ = c for each constant symbol c and f(t1, . . . , tk)θ = f(t1θ, . . . , tkθ)
for each k-ary function symbol f . A substitution is thus determined by its action on variables.
We denote by [t/x] the substitution that maps the variable x to the term t and leaves all other
variables unchanged. It is clear that the composition of two substitutions is a substitution. We write
composition diagrammatically, that is, θθ′ denotes the substitution obtained by applying θ first and
then θ′. This convention matches the fact that for substitutions we write function application on the
right. In particular, [t1/x1] · · · [tk/xk] denotes the substitution obtained by sequentially applying
the substitutions [t1/x1], . . . , [tk/xk] left-to-right.

Term Equations. A term equation is an ordered pair of terms s
?
= t. A substitution θ is a

unifier of a system of term equations {s1
?
= t1, . . . , sn

?
= tn} if siθ = tiθ for all i ∈ {1, . . . , n}. We

further say that θ is a most general unifier (mgu) if any other unifier θ′ factors through θ, i.e., we
have θ′ = θθ′′ for some substitution θ′′. For example, the substitution θ = [f(a)/x][a/y] unifies

x
?
= f(y), as does the substitution θ′ = [f(y)/x]. Here θ′ is an mgu and θ = θ′[a/y], that is, θ

factors through θ′. Note that both the substitutions [x/y] and [y/x] are both mgu’s of the equation

x
?
= y. In fact, mgu’s are only unique up to renaming variables. The term equation f(x)

?
= g(a),

where f and g are different unary function symbols, has no unifier. Likewise the equation x
?
= f(x)

has no unifier. A system S is solved if it is in the form S = {x1
?
= t1, . . . , xn

?
= tn} where the xi

are distinct variables that do not appear in any term tj . For such a solved form S the substitution
θS := [t1/x1] · · · [tn/xn] is well-defined and is an mgu; indeed, for any unifier θ of S we have θ = θSθ.

Unifying Sets of Literals. The notion of an mgu can be lifted from terms to literals. For a literal
L and substitution θ, we write Lθ for the literal obtained by applying θ to each term appearing in
L. Given a set of literals D = {L1, . . . , Lk} we say that θ unifies D if L1θ = · · · = Lkθ. We say
moreover that θ is a most general unifier if any other unifier factors through θ.

An mgu of a set of literals can be obtained by solving an appropriate set of term equations.
Consider the set of literals D := {P (f(x), u), P (y, y), P (y, u)}. An mgu of D is an mgu of the

system of equations S := {f(x) ?
= y, y

?
= y, u

?
= y}. In the case at hand an mgu is [f(x)/y][f(x)/u].

Examples of sets of literals that cannot be unified are {P (f(x)), P (g(x))} and {P (f(x)), P (x))}.
The problem in the second case is that we cannot unify a variable x and term t if x occurs in t.

1

1.1 Martelli and Montanari’s Unification Algorithm.

We present an abstract form of the unification algorithm as a family of rewrite rules that can be
applied non-deterministically to transform systems of equations into solved form or ⊥, representing
an unsatisfiable system. By convention we allow f and g in the rules Decompose and Conflict
to be constant symbols (considered as nullary function symbols); e.g., an instance Conflict with

m = n = 0 would be {a ?
= b} =⇒ ⊥ for distinct constant symbols a and b.

• Simplify: {x ?
= x} ∪ S =⇒ S for any variable x

• Swap: {t ?
= x} ∪ S =⇒ {x ?

= t} ∪ S if t is not a variable

• Decompose: {f(s1, . . . , sn)
?
= f(t1, . . . , tn)} ∪ S =⇒ {s1

?
= t1, . . . , sn

?
= tn} ∪ S

• Conflict: {f(s1, . . . , sm)
?
= g(t1, . . . , tn)} ∪ S =⇒ ⊥ if f ̸= g

• Elim: {x ?
= t} ∪ S =⇒ {x ?

= t} ∪ S[t/x] if x occurs in S and not in t

• Occur: {x ?
= t} ∪ S =⇒ ⊥ if x is a proper subterm of t.

The following proposition shows that the above rewriting system is terminating and that the
order in which the rules are applied does not matter.

Proposition 1. Given a system S of term equations, there is no infinite sequence of rewrites
S = S1 =⇒ S2 =⇒ S3 =⇒ · · · . A maximal chain of rewrites starting from S either ends in ⊥ or in
a solved system T . In the first case we have that S has no unifier whereas in the latter case θT is
a mgu of S.

Proof. We note that that the set N3 is well-ordered under the lexicographic order (i.e., there are no
infinite decreasing chains). Say that a variable x is solved in a system S if it appears once in S with

the single occurrence being in an equation of the form x
?
= t. We define the rank of an equation

system S to be the triple (n1, n2, n3) ∈ N3, where n1 is the number of variables in S that are not
solved, n2 is the total size of all terms occurring in S, and n3 is the number of equations in S of

the form t
?
= x with t not a variable. Then each rule that doesn’t lead immediately to termination

decreases the rank of a system. Specifically, Elim decreases n1, while both Decompose and
Simplify do not increase n1 and decrease n2, and Swap increases neither n1 nor n2 and decreases
n3. This proves termination.

On termination we either have ⊥ or a solved system. It remains to observe that each rule
preserves the set of unifiers of the system. We consider just the rule Elim by way of example. If θ

is a solution of {x ?
= t} then θ = [t/x]θ. Hence θ is a solution {x ?

= t}∪S if and only it is a solution

of {x ?
= t} ∪ S[t/x]).

From Proposition 1 we get:

Theorem 2 (Unification Theorem). A unifiable set of literals D has a most general unifier.

2

1.2 Robinson’s Unification Algorithm

We give a second variant of the unification algorithm, which usually attributed to J. Robinson. This
version does not explicitly break terms down into subterms (as in the Decompose rule above).
This makes the algorithm easier to think about in small examples, but makes the worst-case running
time exponential (see the question sheet).

Unification Algorithm
Input: Set of literals D
Output: Either a most general unifier of D or “fail”

θ := identity substitution
while D is not a singleton do
begin
pick two distinct literals in D and find the left-most positions at which they differ
if one of the corresponding sub-terms is a variable x and the other a term t not containing x
then D := D[t/x], θ := θ[t/x] else output “fail” and halt

end

We argue termination as follows. In any iteration of the while loop that does not cause the
program to halt, a variable x is replaced everywhere in Dθ by a term t that does not contain x.
Thus the number of different variables occurring in Dθ decreases by one in each iteration, and the
loop must terminate.

The loop invariant is that for any unifier θ′ of D we have θ′ = θθ′. Clearly the invariant is
established by the initial assignment of the identity substitution to θ. To see that the invariant is
maintained by an iteration of the loop, suppose we find an occurrence of variable x in a literal in Dθ
such that a different term t occurs in the same position in another literal in Dθ. From the invariant
we know that θ′ is a unifier of Dθ, and thus tθ′ = xθ′. It immediately follows that θ′ = [t/x]θ′.
Thus the loop invariant is maintained by the assignment θ := θ[t/x].

The termination condition of the while loop is that θ is a unifier of D. In conjunction with
the loop invariant this implies that the final value of θ is a most general unifier of D. Finally, the
invariant implies that if θ′ is a unifier of D then it is also a unifier of Dθ. But the algorithm only
outputs “fail” if Dθ has no unifier, in which case D has no unifier.

Example 3. Consider an execution of the unification algorithm on inputD = {P (x, y), P (f(z), x)}.
Scanning left-to-right, the leftmost discrepancy is underlined in {P (x, y), P (f(z), x)}. Applying the
substitution [f(z)/x] to D yields the set D′ = {P (f(z), y), P (f(z), f(z))}, where the underlined
positions again indicate the leftmost discrepancy. Applying the substitution [f(z)/y] to D′ yields
the singleton set {P (f(z), f(z))}. Thus [f(z)/x][f(z)/y] is a most general unifier of the set D.

2 Resolution

First-order resolution operates on sets of clauses, that is, sets of sets of literals. Given a formula
∀x1 . . . ∀xnF in Skolem form we perform resolution on the clauses in the matrix F with the goal of
deriving the empty clause. Although quantifiers do not explicitly appear in resolution proofs, we
can see the variables in such a proof as being implicitly universally quantified. This is made more
formal when we formulate the Resolution Lemma in the next section.

For any set of literals D, let D denote the set of complementary literals. For example, if
D = {¬P (x), R(x, y)} then D = {P (x),¬R(x, y)}.

3

{¬P (f(e), x, f(g(e)))}

[u/x]

{¬P (f(e), u, f(g(e)))}
[e/x][u/y][g(e)/z]

{¬P (x, y, z), P (f(x), y, f(z))}

{¬P (e, u, g(e))}

Figure 1: First-order resolution example

Definition 4 (Resolution). Let C1 and C2 be clauses with no variable in common. We say that a
clause R is a resolvent of C1 and C2 if there are sets of literals D1 ⊆ C1 and D2 ⊆ C2 such that
D1 ∪D2 has a most general unifier θ, and

R = (C1θ \ {L}) ∪ (C2θ \ {L}) , (1)

where L = D1θ and L = D2θ. More generally, if C1 and C2 are arbitrary clauses, we say that R is
a resolvent of C1 and C2 if there are variable renamings θ1 and θ2 such that C1θ1 and C2θ2 have
no variable in common, and R is a resolvent of C1θ1 and C2θ2 according to the definition above.

Example 5. Consider a signature with constant symbol e, unary function symbols f and g, and
a ternary predicate symbol P . We compute a resolvent of the clauses C1 = {¬P (f(e), x, f(g(e)))}
and C2 = {¬P (x, y, z), P (f(x), y, f(z))} as follows (see Figure 1). First apply the substitution [u/x]
to C1, obtaining a clause C ′

1 that has no variable in common in C2. Now unify complementary
literals under the substitution [e/x][u/y][g(e)/z], obtaining the clause {¬P (e, u, g(e))}.

A predicate-logic resolution derivation of a clause C from a set of clauses F is a sequence of
clauses C1, . . . , Cm, with Cm = C such that each Ci is either a clause of F (possibly with the
variables renamed) or follows by a resolution step from two preceding clauses Cj , Ck, with j, k < i.
We write Res∗(F) for the set of clauses C such that there is a derivation of C from F .

Example 6. Consider the following sentences over a signature with ternary predicate symbol A,
constant symbol e, and unary function symbol s. The idea is that A represents the ternary addition
relation, e the zero element, and s the successor function.

F1 : ∀xA(e, x, x)
F2 : ∀x∀y∀z (¬A(x, y, z) ∨A(s(x), y, s(z)))

F3 : ∀x∃y A(s(s(e)), x, y)

We use first-order resolution to show that F1 ∧ F2 |= F3, that is, we show that F1 ∧ F2 ∧ ¬F3 is
unsatisfiable. We proceed in two steps.

Step (i): separately Skolemise each formula. Formula ¬F3 is equivalent to ∃y∀z ¬A(s(s(e)), y, z).
Skolemising, we obtain the formula G3 := ∀z ¬A(s(s(e)), c, z), where c is a new constant symbol.
Now F1∧F2∧G3 is equisatisfiable with F1∧F2∧¬F3 and so it suffices to give a resolution refutation
of F1 ∧ F2 ∧G3.

1

1Formally the notion of a resolution proof assumes a single Skolem-form formula. So strictly speaking the proof
below is a resolution refutation of the formula ∀x∀y∀z(A(e, x, x) ∧ ((¬A(x, y, z) ∨A(s(x), y, s(z))) ∧A(s(s(e)), x, y)),

4

Step (ii). derive the empty clause using resolution. The proof is as follows. Note that
in order to always ensure that we resolve clauses with disjoint variables, we arrange it so that the
variables in line k of the proof are subscripted with k. In particular, we add a variable renaming
at the end of each unifying substitution so that the variables in the output formula have the right
subscript for the next line of the proof.

1. {¬A(s(s(e)), c, z1)} clause of G3

2. {¬A(x2, y2, z2), A(s(x2), y2, s(z2))} clause of F2

3. {¬A(s(e), c, z3)} 1,2 Res. Sub [s(e)/x2][c/y2][s(z2)/z1][z3/z2]

4. {¬A(e, c, z4)} 2,3 Res. Sub [e/x2][c/y2][s(z2)/z3][z4/z3]

5. {A(e, y5, y5)} clause of F1

6. □ 4,5 Res. Sub [c/y5][c/z4]

Given a formula H with free variables x1, x2, . . . , xn, its universal closure ∀∗H is the sentence
∀x1∀x2 . . . ∀xnH. The following lemma is key to the soundness of resolution.

Lemma 7 (Resolution Lemma). Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form, with
G quantifier-free. Let R be a resolvent of two clauses in G. Then F ≡ ∀∗(G ∪ {R}).

Proof. Clearly ∀∗(G ∪ {R}) |= F . The non-trivial direction is to show that F |= ∀∗R. For this,
since F is closed, it suffices to show that F |= R. (Check that you understand why this is so!)

To this end, suppose that R is a resolvent of clauses C1, C2 ∈ G, with R = (C1θ \ {L})∪ (C2θ
′ \

{L}) for some substitutions θ, θ′ and complementary literals L ∈ C1θ and L ∈ C2θ
′.

Let A be an assignment that satisfies F = ∀∗G. Since C1, C2 ∈ G, by the Translation Lemma
A |= C1θ and A |= C2θ

′. Moreover, since A′ satisfies at most one of the complementary literals L
and L, it follows that A satisfies at least one of C1θ \ {L} and C2θ

′ \ {L}. We conclude that A
satisfies R, as required.

Corollary 8 (Soundness). Let F = ∀x1 . . . ∀xnG be a closed formula in Skolem form. Let clause
C be obtained from G by a resolution derivation. Then F ≡ ∀∗(G ∪ C).

Proof. Induction on the length of the resolution derivation, using the Resolution Lemma for the
induction step.

A Refutation Completeness

In this appendix we prove the refutation completeness of predicate-logic resolution proofs by show-
ing that ground resolution proofs lift to predicate-logic resolution proofs. The proofs here are more
technical and can be regarded as optional.

Lemma 9 (Lifting Lemma). Let C1 and C2 be variable-disjoint clauses with respective ground
instances G1 and G2. Suppose that R is a propositional resolvent of G1 and G2. Then C1 and C2

have a predicate-logic resolvent R′ such that R is a ground instance of R′.

Proof. The situation of the lemma is shown in Figure 2. We can write the ground resolvent R in
the form R = (G1 \ {L}) ∪ (G2 \ {L}), for complementary literals L ∈ G1 and L ∈ G2. Since C1

and C2 have no variable in common we can write G1 = C1θ
′ and G2 = C2θ

′ for a single ground

which is logically equivalent to F1 ∧ F2 ∧G3.

5

C1 C2 C1 C2

G1 G2 R′

R R

Figure 2: Ground resolution step on the left, and its predicate-logic lifting on the right.

substitution θ′. Let D1 ⊆ C1 be the set of literals mapped to L by θ′ and let D2 ⊆ C2 be the set of
literals mapped to L by θ′. Then θ′ is a unifier of D1 ∪D2. Writing θ for the most general unifier
of D1 ∪D2, we have that

R′ := (C1θ \D1θ) ∪ (C2θ \D2θ) (2)

is a predicate-logic resolvent of C1 and C2.
Recall from the proof of the Unification Lemma that θ′ = θθ′. By (2) we now have that

R′θ′ = (C1θθ
′ \D1θθ

′) ∪ (C2θθ
′ \D2θθ

′)

= (C1θ
′ \D1θ

′) ∪ (C2θ
′ \D2θ

′)

= (G1 \ {L}) ∪ (G2 \ {L}) .

(The first equality uses the fact that D1θ and C1θ have disjoint images under θ′ and likewise D2θ
and C2θ have disjoint images under θ′, which follows from θ′ = θθ′.) We conclude that R is a
ground instance of R′ under the substitution θ′.

Corollary 10 (Completeness). Let F be a closed formula in Skolem form with its matrix F ′ in
CNF. If F is unsatisfiable then there is a predicate-logic resolution proof of 2 from F ′.

Proof. Suppose F is unsatisfiable. By the completeness of ground resolution there is a proof
C ′
1, C

′
2, . . . , C

′
n, where C ′

n = 2 and each C ′
i is either a ground instance of a clause in F ′ or is a

resolvent of two clauses C ′
j , C

′
k for j, k < i. We inductively define a corresponding predicate-logic

resolution proof C1, C2, . . . , Cn, such that C ′
i is a ground instance of Ci. For each i, if C ′

i is a ground
instance of a clause C ∈ F ′ then define Ci = C. On the other hand, suppose that C ′

i is a resolvent
of two ground clauses C ′

j , C
′
k, with j, k < i. By induction we have constructed clauses Cj and Ck

such that C ′
j is a ground instance of Cj and C ′

k is a ground instance of Ck. By the Lifting Lemma
we can find a clause Ci which is a resolvent of Cj and Ck such that C ′

i is a ground instance of Ci.

6

	Unification
	Martelli and Montanari's Unification Algorithm.
	Robinson's Unification Algorithm

	Resolution
	Refutation Completeness

