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1 The Compactness Theorem and Vaught’s Test

The following is a version of the Compactness Theorem for predicate logic.

Theorem 1. Let σ be a countable signature and S a set of σ-formulas such that every finite subset
of S has a model. Then S has a countable model.

Proof. The proof uses two results from earlier on in the course: Herbrand’s Theorem and the Com-
pactness Theorem for propositional logic. While relying on previously proven results is convenient,
the use of Herbrand’s Theorem means that our proof only applies to predicate logic without equal-
ity. A suitable generalisation of Herbrand’s Theorem to first-order logic with equality exists (see,
e.g., the 2023 Logic and Proof exam). If this version is employed, then the argument below applies
without change to first-order logic with equality.

By replacing the free variables in the formulas in S by constant symbols (using the same constant
symbol for different occurrences of the same free variable) we can assume without loss of generality
that S consists exclusively of sentences. For each sentence F ∈ S, let F ′ be its Skolemisation and
write S′ := {F ′ : F ∈ S}. Then every finite subset of S′ is satisfiable. It follows that each finite
subset of

⋃
F ′∈S′ E(F ′) (where E(F ′) denotes the Herbrand expansion of F ′) is satisfiable. By the

Compactness Theorem for propositional logic we have that
⋃
F ′∈S′ E(F ′) is satisfiable. This means

that S′ has a Herbrand model, which is the countable model of S′ that we seek.

Theorem 2 (Vaught’s Test). Let σ be a countable signature and let T be a σ-theory such that
any two countable (finite or infinite) models are isomorphic. Then T is complete.

Proof. Suppose T is not complete. This means that for some sentence F we have that both T ∪{F}
and T ∪ {¬F} are consistent. By the Compactness Theorem, there exists a countable model A of
T ∪ {F} and a countable model B of T ∪ {¬F}. By assumption, A and B are isomorphic, but this
contradicts the fact that A |= F while B |= ¬F .

We illustrate Vaught’s test by giving a new proof of the fact that TUDLO is complete (previously
shown using quantifier elimination).

Proposition 3. Given two countable unbounded dense linear orderings (A,<) and (B,<), there
is an order preserving bijection f : A→ B.

Proof. Let a1, a2, . . . and b1, b2, . . . be enumerations of the elements of A and B. We define new
enumerations a′1, a

′
2, . . . and b′1, b

′
2, . . . such that for any pair of indices i and j, a′i < a′j if and only

if b′i < b′j . Having done this we define the function f by f(a′i) = b′i for each i = 1, 2, . . ..

We define the a′i and b′i by strong induction via a back and forth construction. Suppose we have
defined a′1, . . . , a

′
n and b′1, . . . , b

′
n. If n is even then we define a′n+1 to be the first element of the

original enumeration a1, a2, . . . that does not appear among a′1, . . . , a
′
n. We then define b′n+1 such
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that a′i < a′n+1 if and only if b′i < b′n+1 for 1 ≤ i ≤ n. We can do this because (B,<) is a dense
linear order. On the other hand, if n is odd then we define b′n+1 to be the first element of the
original enumeration b1, b2, . . . that does not appear among b′1, . . . , b

′
n. We then define a′n+1 such

that a′i < a′n+1 if and only if b′i < b′n+1 for 1 ≤ i ≤ n. We can do this because (A,<) is a dense
linear order. Proceeding in this way, we obtain new enumerations a′1, a

′
2, . . . and b′1, b

′
2, . . . with the

desired properties.

Corollary 4. TUDLO is complete.

Proof. Since TUDLO has no finite models, it follows from Proposition 3 that any two countable
models of TUDLO are isomorphic. But then completeness follows from Vaught’s test.

We can likewise use Vaught’s test to show that the theory TRG of the random graph is complete
via the following exercise.

Exercise 5. Prove that any two countable models of TRG are isomorphic as graphs.

The Compactness Theorem can also be used to prove inexpressiveness results.

Proposition 6. There is no formula ϕ(x, y) expressing the reachability relation in the language of
graphs.

Proof. Suppose for a contradiction that such a formula ϕ(x, y) exists. For all n ∈ N let ψn(x, y) be a
formula expressing that there is no path from x to y of length n, e.g., we have ψ0(x, y) := ¬E(x, y),
ψ1(x, y) := ¬∃x1 (E(x, x1) ∧ E(x1, y)), etc. Now define

S := {ϕ(x, y)} ∪ {¬ψn(x, y) : n ∈ N} .

Then every finite subset of S is satisfiable whereas S is not satisfiable, contradicting compactness.

Proposition 6 does not preclude that there be a formula that defines the reachability relation
over the class of finite graphs. Indeed, the compactness theorem fails over the finite structures: a
set of formulas S may not have a finite model, while every finite subset of S has a finite model.
Instead, we will use games to prove inexpressiveness results over the class of finite structures.

2 Ehrenfeucht-Fräıssé Games

2.1 Games and Types

Given structures A and B, we denote their respective universes by A and B. For a formula
ϕ(x1, . . . , xm) and a = (a1, . . . , am) ∈ Am we will typically write A |= ϕ[a] for A[x1 7→a1,...,xm 7→am] |=
ϕ.

Fix k,m ∈ N. Let A and B be σ-structures and let a ∈ Am and b ∈ Bm respectively. The k-
round Ehrenfeucht-Fräıssé game Gk((A,a), (B, b)) is defined as follows. In each round i = 1, . . . , k,
Spoiler picks either an element a ∈ A or b ∈ B and then Duplicator responds with an element of
the other structure. After k rounds, let a′ ∈ Ak and b′ ∈ Bk be the tuples of elements generated
by the play of the game. Then Spoiler wins the play if for all atomic formulas ϕ(x1, . . . , xm+k) we
have

A |= ϕ[aa′] iff B |= ϕ[bb′] .
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We say (A,a) ∼k (B, b) if Duplicator has a winning strategy in Gk((A,a), (B, b)). Here a
strategy of Duplicator is a function that inputs a sequence of moves, ending with the last move of
Spoiler, and outputs the next move of Duplicator. Such a strategy is winning if Duplicator wins
every play in which they follow the strategy.

The family of relations {∼k}k∈N admits an attractively simple inductive characterisation.

Proposition 7. Given σ-structures A and B, and tuples a ∈ Am and b ∈ Bm, we have (A,a) ∼k+1

(B, b) iff

• ∀a ∈ A∃b ∈ B (A,aa) ∼k (B, bb)

• ∀b ∈ B ∃a ∈ A (A,aa) ∼k (B, bb)

Proof. The characterisation is almost immediate. Duplicator has a strategy to win in at most
k+ 1 moves iff for every move of Spoiler, Duplicator has a response that yields a position in which
Duplicator has a strategy to win in at most k moves.

Notation. In a ∈ Am is the empty tuple (that is, m = 0) then we sometimes denote the tuple
(A,a) simply by A. Thus we may write A ∼k B, etc.

Example 8. Let σ be the empty signature. Given two σ-structures A and B (i.e., sets), Duplicator
wins the game Gk(A,B) if and only if either |A| = |B| or |A|, |B| ≥ k. There are several cases to
consider: we consider two by way of example. First, if |A| < |B| and |A| < k, then Spoiler can
pick a sequence of distinct elements in B, which Duplicator cannot match. Second, if |A|, |B| ≥ k
or |A| = |B|, then Duplicator’s winning strategy is to ensure that the game state (aa′, bb′) after
each round satisfies the condition. ai = aj if and only if bi = bj for all i, j.

Example 9. Let σ be the signature with a binary relation symbol <. Given two finite linear
orders A and B such that |A|, |B| ≥ 2k − 1, Duplicator wins Gk(A,B). The Winning strategy for
Duplicator is to ensure that after round ` = 0, 1, . . . , k the tuples a = (a−1, a0, . . . , a`) and b =
(b−1, b0, b1, . . . , b`) satisfy the following condition: (i) ai < aj iff bi < aj for all i, j ∈ {1, . . . , `}; (ii)
d(ai, aj) < 2k−`−1 implies d(ai, aj) = d(bi, bj); (iii) d(ai, aj) ≥ 2k−`−1 implies d(bi, bj) ≥ 2k−`−1.
Here a−1 := min(A), a0 := max(A) and b−1 := min(B), b0 := max(B) are not moves played in the
game and only serve to express the invariant. Also d is the distance relation that arises by viewing
a linear order as a graph in which two elements are neighbours iff they are adjacent in the order. By
assumption, Conditions (i)–(iii) hold for ` = 0. We leave it as an exercise to show how Duplicator
can inductively maintain this invariant, no matter how Spoiler moves.

Fix k,m ∈ N. Write FOσ
k,m for the set of σ-formulas of quantifier-depth at most k in free

variables x1, . . . , xm. Let A be a σ-structure and a ∈ Am. The rank-k m-type of (A, k) is the set

tpk(A,a) := {ϕ ∈ FOσ
k,m : A |= ϕ[a]} .

We say that T ⊆ FOσ
k,m is a rank-k m-type if it arises as T = tp(A,a) for some A and a. Write

(A,a) ≡k (B, b) if tpk(A,a) = tpk(A,a). We also write A ≡k B to denote that A and B satisfy
same sentences of quantifier depth at most k.

We next show that a rank-k m-type can be summarised in a single formula.
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Proposition 10 (Hintikka Formulas). Fix k,m ∈ N. There are finitely many formulas in FOσ
k,m

up to logical equivalence. For each rank-k m-type T ⊆ FOσ
k,m there is a formula αT such that for

all σ-structures A and tuples a ∈ Am,

tpk(A,a) = T iff A |= αT [a]

Proof. The fact that there are finitely many formulas in FOσ
k,m up to logical equivalence can be

shown by induction on the quantifier depth k. For k = 0 every formula in FOσ
k,m is a boolean

combination of atomic formulas in the free variables x1, . . . , xm, of which there are finitely many
tout court. For the induction step, we note that every formula in FOσ

k+1,m is a boolean combination
of formulas of the form ∃xm+1 ϕ, for ϕ ∈ FOσ

k,m. But by the induction hypothesis there are finitely
many such formulas up to logical equivalence.

Let ϕ1, . . . , ϕs be an enumeration of the elements of FOσ
k,m up to logical equivalence. Define

αT :=
∧
ϕi∈T

ϕi ∧
∧
ϕi 6∈T

¬ϕi .

Note that αT itself lies in FOσ
k,m and A |= αT [a] if and only if tpk(A,a) = T . We call αT the

Hintikka formula of the type T .

We obtain a back-and-forth characterisation of types, analogous to that obtained for games in
Proposition 7.

Corollary 11. Given σ-structures A and B, and tuples a ∈ Am and b ∈ Bm, we have (A,a) ≡k+1

(B, b) iff

• ∀a ∈ A∃b ∈ B (A,aa) ≡k (B, bb)

• ∀b ∈ B ∃a ∈ A (A,aa) ≡k (B, bb)

Proof. Suppose that (A,a) ≡k+1 (B, b). By symmetry it suffices to show that ∀a ∈ A∃b ∈
B (A,aa) ≡k (B, bb). To this end, let a ∈ A be arbitrary and let α ∈ FOσ

k,m+1 be the Hintikka
formula for tpk(A,aa). Then A |= ∃xm+1 α[a]. Since (A,a) ≡k+1 (B, b) we deduce that B |=
∃xm+1 α[b], and hence there exists b ∈ B such that B |= α[bb]. But now we have (A,aa) ≡k (B, bb),
as required.

Conversely, suppose that we have ∀a ∈ A∃b ∈ B (A,aa) ≡k (B, bb) and ∀b ∈ B ∃a ∈
A (A,aa) ≡k (B, bb). We show that (A,a) ≡k+1 (B, b). To this end, suppose A |= ∃xm+1 ϕ[a] for
some formula ϕ ∈ FOσ

k,m. Then there exists a ∈ A such that A |= ϕ[aa]. By the back-and-forth
condition, there exists b ∈ B such that (A,aa) ≡k (B, bb), whence B |= ϕ[bb]. We conclude that
B |= ∃xm+1 ϕ[b]. By symmetry we conclude that (A,a) ≡k+1 (B, b), as desired.

Theorem 12 (Ehrenfeucht-Fräıssé). Fix k,m ∈ N. Let A and B be σ-structures, a ∈ Am, and
b ∈ Bm. Then

(A,a) ≡k (B, b) iff (A,a) ∼k (B, b)

Proof. The proof is by induction on k. In case k = 0 the Ehrenfeucht-Fräıssé game is trivial: by
definition, Duplicator wins G0((A,a), (B, b)) if and only if (A,a) ≡0 (B, b). This completes the
base case.

The induction case is an immediate consequence of Proposition 7 and Corollary 11.
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2.2 Expressiveness

It follows from the Ehrenfeucht-Fräıssé Theorem and Example 9 that the property that a finite
linear order has even cardinality cannot be expressed in first-order logic over the signature with a
binary relation symbol denoting the order symbol. The example shows that for every k there are
structures A ≡k B (i.e.,that cannot be distinguished by sentences of quantifier depth at most k)
such that A has an odd number of elements and B has an even number of elements.

Similarly we can show that the property of a graph being connected cannot be expressed in
first-order logic over the usual signature for graphs (i.e., with a single binary relation symbol E).
The idea is to exhibit for every k two graphs, one connected and one disconnected, which are
indistinguishable by formulas quantifier of depth at most k.

Proposition 13. Given a positiver integer k ≥ 2, let A consist of a single cycle of length 4 · 3k + 4
and let B consist of two disjoint cycles of respective lengths 2 · 3k + 2. Then A ∼k B.

Proof. Given r ∈ N and a vertex v in a graph G, let BGr (v) (“the ball of radius r centered at v”)
denote the subgraph of G whose vertices are those at distance at most r from v and which inherits
all the edges of G between these vertices. Notice that for r ≤ 3k and any a ∈ A we have BAr (a) is
a line graph consisting of 2r + 1 vertices (and similarly for B).

Duplicator’s winning strategy in Gk(A,B) is to maintain the invariant that after ` rounds there
is a graph isomorphism f :

⋃`
i=1B

A
3k−`(ai)→

⋃`
i=1B

B
3k−`(bi), with f(ai) = bi for i = 1, . . . , `, where

(a, b) ∈ A` ×B` is the sequence of moves played in the first ` rounds.

To see how Duplicator maintains the invariant from round ` to round ` + 1, it suffices, by
symmetry, to consider the case that Spoiler moves in A and Duplicator responds in B. If Spoiler
chooses a ∈ A at distance at most 2·3k−`−1 of some element of a then Duplicator responds by playing
f(a), which maintains the invariant since f restricts to a graph isomorphism from

⋃`+1
i=1 B

A
3k−`−1(ai)

to
⋃`+1
i=1 B

B
3k−`−1(bi). On the other hand, if Spoiler plays a ∈ A at distance strictly greater than

2 · 3k−`−1 to any element of a then Duplicator can likewise play b ∈ B at distance greater than
2 · 3k−`−1 from any element of b (you should check that there is enough “empty space” in B to do
this), and we can construct the required isomorphism from

⋃`+1
i=1 B

A
3k−`−1(ai) to

⋃`+1
i=1 B

B
3k−`−1(bi) by

gluing together an isomorphism from BA
3k−`−1(a) to BB

3k−`−1(a) (all balls of this radius in A and B are

isomorphic) and the restriction of f to an isomorphism from
⋃`
i=1B

A
3k−`−1(ai) to

⋃`
i=1B

B
3k−`−1(ai).

The “gluing” works because the respective domains do not overlap and do not contain adjacent
vertices.
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